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By definition, the sharp packing index indp (A) of a subset A of an Abelian group G is 
the smallest cardinal K such that for any subset B c G of size |B| > K the family 
{b + A : b e B} is not disjoint. We prove that an infinite Abelian group G contains 
a subset A with given index indp (A) = K if and only if one of the following conditions 
holds: (1) 2 < K < \G\+ and K $ {3,4}; (2) K = 3 and G is not isomorphic to ©fe/Z3; (3) 
K: = 4 and G is not isomorphic to ©fe/Z2 or to Z4 © (©.e/Z2). 

The famous problem of optimal sphere packing traces its history back to 
B. Pascal and belongs to the most difficult problems of combinatorial geometry 
[CS]. In this paper we consider an analogous problem in the algebraic setting. 
Namely, given a non-empty subset A of an Abelian group G we study the cardinal 
number 

indP(i4) = sup {\B\: B a G and (B - B)n(A- A) = {0}} 

called the packing index of A in G. Note that the equality (B — B) n(A — A) = 0 
holds if and only if (b + A) n (b' + A) = 0 for any distinct points b, V e B. 
Therefore, indp(y4) can be thought as the maximal number of pairwise disjoint shift 
copies of A that can be placed in the group G. In this situation it is natural to ask 
if such a maximal number always exists. In fact, this was a question of D. 
Dikranjan and I. Protasov who asked in [DP] if for each subset A a Z with 
indp(^4) > No there exists an infinite family of pairwise disjoint shifts of A. 
The answer to this problem turned out to be negative, see [BLi], [BL2]. So the 
supremum in the definition of indp (̂ 4) cannot be replaced by the maximum. 
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To catch the difference between sup and max, let us adjust the definition of 
the packing index indp (X) and define the cardinal number 

indP(A) = min{?c: VB c G\B\ > K => (B - B n A - A # {0})} 

called the sharp packing index of A in G. In terms of the sharp packing index the 
question of D. Dikranjan and I. Protasov can be reformulated as finding a subset 
A cz Z with indp (/I) = K0. According to [BL2] (and [BLi]) such a set A can be 
found in each infinite (abelian) group G. Having in mind this result, I. Protasov 
asked in a private conversation if for any non-zero cardinal K < \G\ there is a set 
A cz G with indp (/l) = K. In this paper we answer this question affirmatively 
(with three excepions). Firstly, we treat a similar question for the sharp packing 
index because its value completely determines the value of ind/> (A): 

indp(A) = sup{fc: K < indp (A)}. 

Our principal result is 

Main Theorem. An infinite Abelian group G contains a subset A cz G with 
sharp packing index ina% (A) = K if and only if one of the following conditions 
holds: 
(1) 2 < K < \G\+ and K <£ {3,4}. 
(2) K = 3 and G is not isomorphic to ffi,e/Z3. 
(3) K = 4 and G is not isomorphic to ©ie/Z2 or to Z4 0 (®teiZ2). 

Using the relation between the packing and sharp packing indices, we can derive 
from the above theorem an analogous characterization of possible values of the 
packing index. 

Corollary. An infinite Abelian group G contains a subset A cz G with packing 
index indp (A) = K if and only if one of the following conditions holds: 
(1) 1 < K < \G\ and K £ {2,3}. 
(2) K = 2 and G is not isomorphic to ©lG/Z3. 
(3) K = 3 and G is not isomorphic to ®teiZ2 or to Z4 © (®teiZ2). 

1. Preliminaries 

In the proof of Main Theorem we shall exploit a combinatorial lemma proved 
in this section. For a set A by [A]2 = {B cz A : \B\ = 2} we denote the family of 
all two element subsets of A. 

We shall say that a map f: [A]21-> \B\2 

• is separately injective if for any a e A the map fa: x\-^f({x,a}) is injective; 
• preserves intersection if for any ao,a\,a2eA the intersection f({ab,0i})n 

n f ({oo, a2}) is not empty. 
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Lemma 1. If \A\ > 5 and a map f: [-4]2i—• [B]2 w separately injective and 
preserves intersections, then \A\ < \B\. 

Proof. Fix any point a0eA and consider the family {f({a,ao}): ae A\{ao}}. 
Since / preserves intersection we have that f({a,ao})nf({a',ao}) 7-= 0 for any 
distinct a, a' e A. Using the separate injectivity of / and the inequality \A\ > 5 we 
can prove that the intersection f}aeA{ao}f({a,cio})is not empty and hence contains 
some element bo. Thus we obtain that / : {a,ao} \-> {b,bo}. And since / is separately 
injetive we obtain an injective map from >l\{ab} into B\{bo} implying the desired 
inequality \A\ < \B\. D 

We shall also need one structure property of Abelian groups. By Z we denote 
te additive group of integer numbers and by 

Z(p°°) = {zeC:3neN with zpn = 1} 

the quasicyclic p-group for a prime number p. 

Proposition 1. Each infinite Abelian group G contains an infinite subgroup 
isomorphic to Z, Z (p00) or the direct sum of finite cyclic groups. 

Proof If G contains an element g of infinite order, then it generates a cyclic 
subgroup isomorphic to Z. Otherwise, if is a torsion group and by Theorem 8.4 
[Fu] decomposes into the direct sum G = ®PAP of p-groups Ap. If each group 
Ap is finite, then G contains an infinite direct product of finite cyclic group. If for 
some pnme number p the p-group Ap is infinite, then there are two posibilities. 
Either Ap contains a copy of the quasicyclic p-group Z (p00) or else each element 
of Ap has finite height. In the latter case, take any infinite countable subgroup 
H cz Ap and apply Theorem 17.3 of [Fu] to conclude that H is the direct sum of 
finite cyclic groups. • 

2. The proof of the "only if" part of main theorem 

The proof of the "only i f part of Main Theorem is divided into two lemmas. 

Lemma 2. If a group G contains a subset A cz G with indp (A) = 3 (which is 
equivalent to indp(A) = 2), then G is not isomorphic to the direct sum 0,6/Z3. 

Proof. On the contrary suppose that G is isomorphic to the direct sum ©,G/Z3 

and take a subset A of G with ind|>(̂ 4) = 3. The latter is equivalent to indp (/l) = 2 
which means that there is a subset B2 a G of size 2 such that the family 
{b + A be B2} is disjoint. Note that for every b' e G the family {b + A : b e 
e V + B2} is disjoint too. So without loss of generality we can assume that 
B2 = {0,bi}. The family {b + A : b e B2} is disjoint and hence 

An(b{ + A) = 0. 

71 



Adding to both sides bi and 2b i we get 

(bi + A)n (2bi + A) = 0; 

(2bi + A)n (3bi + A) = 0. 

Since G is isomorphic to the direct sum ®fe/Z3 we get 3bi = 0. Thus we 
conclude that {bi + A : b e {0,bi,2bi}} is disjoint and so indp(^4) > 2 and 
indp (A) > 3, which contradicts our assumptions. • 

Lemma 3. If a group G contains a subset A a G with indp (A) = 4 (which is 
equivalent to indp (̂ 4) = 3), then G can not be isomorphic neither to the direct 
sum ®i<=iZ2 nor to Z4 ® (®fe/Z2). 

Proof. Conversely suppose that G is isomorphic to 0,G/Z2 or to Z4 ® (®,G/Z2) 
and there exists a subset A of G with indp(yl) = 4. This is equivalent to 
indp (̂ 4) = 3 and from the definition we get that there is a three-element subset 
B3 cz G such that the family {b + A : b e B3} is disjoint. Note that for any b' e G 
the family {b + A : b e b' + B3} is disjoint too. So, without loss of generality we 
can assume that B3 = {0,bi,b2}. Since the family {b + A : b e B3} is disjoint we 
conclude that 

(1) A n (bi + A) = 0; 
(2) A n (b2 + A) = 0; 
(3) (bi + A)n (b2 + A) = 0. 

We consider three cases. 

Case 1. Suppose one of the element bi, b2 is of order 2. Let it be b\. Then 
2bi = 0 and 

(2) + bi: (bi + A)n (bi + b2 + A) = 0; 
(3) + bi: An (b, + b2 + A) = 0. 
(1) + b2: (b2 + A)n (b2 + bi + A) = 0. 

Thus we get that the family {b + A : b e {0,bi, b2, bi + b2}}is disjoint and hence 
indp (̂ 4) > 3 and indj(^4) > 4, which contradicts our assumption. Thus we com
plete the proof of the Case 1. 

Next we consider two cases both bi and b2 are of order 4. In this case the 
group G is isomorphic to Z4 ® (®,e/Z2). Therefore there are two possibilities: 
bi = (g,x), b2 = (g,y) or bi = (g,x), b2 = (-g,y) where x,y e ®,e/Z2 and g e Z4 

is order 4. 

Case 2. Suppose bi = (g,x), b2 = (g,y) where x,ye ®fe/Z2 and g e Z4 is of 
order 4. 

Recall that B3 = {(0,0), (g,x), (g,y)} and consider the set 

B4 = {(0,0),(g,x),(g,y),(0,x + y)}. 
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We claim that the family {b + A: be BA\ is disjoint. Indeed, since {b + A : 
: b e B3} is disjoint we have: 

(1) An({g,x) + A) = 0; 
(2) An{(g,y) + A) = 0; 
(3) ((g,x) + A)n((g,y) + A) = 0. 

Then 
(3) + (3g9y) : ((0,x + y) + A) n A = 0; 
(2) + (0,x + y): ((0,x + y) + A) n ((g,x) + A) = 0; 
(1) + (0,x + y): ((0,x + y) + A) n ((g9y) + A) = 0; 

Hence, the family {b + A : b e B4} is disjoint which implies indp(^) > 3 and 
ind?> (A) > 4, a contradiction with the assumption. 

Case 3. Suppose b\ = (g,x), b2 = ( — g,y) where x,y e ©IG/Z2 and g e Z2 and 
g e Z4 is of order 4. 

In this case B3 = {(0,0),(g,x),(-g,y)}. Put B4 = {(0,0),(g,x),(-g,);),(2g,x + y)}. 
We claim that the family {b + A : b e B4} is disjoint. Indeed, since {b + A : 
: b e Bi} is disjoint we have: 

(1) An((g,x) + A) = Q; 
(2) An((-g,y) + A) = (b; 
(3) ((g,x) + A)n((-g,y) + A) = 0. 

Then 
(3) + (g,y) 
(2) + (2a, x + y) 
(1) + (2a, x + y) 

((2& x + y) + A)nA = 0; 
((2g,x + y) + A)n ((g,x) + A) = 0; 
((2g,x + y) + ^ ) n ((-g,j;) +,4) = 0. 

Hence the family {b + A:beB4} is disjoint and thus indp(^) > 3 and 
indp (̂ 4) > 4, which contradicts our assumption. • 

Thus if G contains a subset .4 cz G with indp (>l) = K then one of the condition 
1)-3) holds. 

3. The proof of the if part "of" main theorem 

To prove the " i f part of the Main Theorem, we should construct a subset 
A cz G with indp (̂ 4) = K for any cardinal K satisfying one of the conditions 
1) —3) First we shall construct a subset AK assuming that we have in disposal an 
auxiliary subset BK with some properties. Next, a subset BK with the desired 
properties will be constructed in each group G. 

Proposition 2. An infinite Abelian group G contains a subset AK with 
indj> (/!.<) = K if there exists a subset BK = — BK ofG with the following properties: 
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(1K) for every cardinal a < K there is a subset Ba of size |Ba| = a such that 
# a — -Ba cz B K ; 

(2K) BK — BK <£ BK for any subset BK cz G of size K; 
(3 J F + BK # G for any sufcset F cz G ofs/ze |F| < |G|. 

By |̂ 4| we denote the cardinality of a set A. 

Proof. Let BK = BK\{0}. We shall construct a subset AK cz G such that 
(BK + 4̂K) n AK = 0. Moreover, the subset AK will be constructed so that G\ B cz 
cz AK A K . 

Let X = |G\BJ and G\BK = {ga: a < X} be an enumeration of G\BK by ordinals 
a < X. 

We put AK = (Ja<A {tfooga + â}? where a sequence (aa)a<A is to be defined later. 
This clearly forces that G\BK cz AK — AK. 

The task is now to find a sequence (aa)a<x such that (BK + AK) n AK = 0. We 
define this sequence by induction. 

We start with a0 = 0. Assuming that for some a the points ap, /? < a, have been 
constructed, put Fa = {a^g^ + a^: /J < a}. 

According to the property (3J of the set BK we can pick a point aa e G so that 

aa£(Fa+ B K ) u ( F a - g a + BK). 

This gives (BK + A*) n AK = 0. 
It remains to show that AK satisfies the conclusion of the theorem. 
According to the property (1J of the set BK, for any cardinal a < K there is 

Ba such that Ba — Ba cz BK. From the fact that BK + AK n AK = 0 we conclude 
that (b — b' + 4̂,,) n AK = 0 for all distinct b, b' e Ba. Thus for any cardinal 
a < K there is Ba such that the family {b + -4K: b e £a} is disjoint and so 
indP(y4K) > K. 

Let us show that indP(^4K) = K. According to the property (2J, for any subset 
BK cz G of size K there are b, b' e BK such that b, b' $ BK. Therefore 
b - b' e G\BK cz AK - AK. Hence b + AK f] b' + AK =£ 0, which yields 
i ndp^ ) < K. Combining the two inequalities, we get indJ>(̂ 4K) = K. D 

The proof of the Main Theorem will be completed as soon as we construct 
a subset BK with properties (1J — (3K). This will be done in the following five 
lemmas. 

Lemma 4. Let K = 3 and G be an infinite Abelian group which is not 
isomorphic to the direct sum ©Ie/Z3. Then G contains a subset B3 with the 
properties (13) — (33). 

Proof Pick any nonzero point g e G whose order is not equal to 3 and consider 
the set B3 = B2 - B2 = {0,+g} where B2 = {0,g}. It is clear that B3 has the 
properties (13), (33). So it is enough to show that B3 satisfies the property (23). Note 
that if 2g = 0 then B3 = {0,g} is a subgroup of G and hence has the property (23). 
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So we assume that 2g ^= 0 which yields that B3 = {0,g, — g) contains three 
elements. To prove that B3 has property (23) fix some subset B3 <= G of size 3 and 
pick any point b0 e B3. If there is b e B3 with 

b = b0$B3 = {0,g,-g) 

then there is nothing to prove. Otherwise we have that 

B3 - b0 <= B3. 

Since \B3\ = 3 there are b, b' e B3 such that b — b0 = g; b' — b0 = —g. Hence 
we get b — b' = 2g. From the choice of elements g we get that 2g $ B3. Hence 
b2 — b $ B3 and B has the property (23) which completes the proof of the 
lemma. • 

Lemma 5. Let K = 4 and G be an infinite Abelian group which is not 
isomorphic to ffi,e/Z2 or to Z4 © (ffiie/Z2). Then G contains a subset B4 with 
properties (14) — (34). 

Proof. We consider three cases. 

Case 1. Suppose a group G contains an element g with order >5 . 

Put B4 = B3 - B3 = {0,±g, ±2g) where B3 = {0,g, -g). It is easily to 
check that B4 has the properties (14),(34). We claim that B4 satisfies the property 
(24). 

To derive a contradiction, suppose that there is a subset B4 cz G of size |B4| = 4 
such that B4 — B4 cz B4 = {0,g, —g,2g, —2g). 

Fix some element b0 e B4. Since B4 — b0 cz B4 there are b, b' e B4 such that 
b - b0= - g; b' - b0 = 2g or b - b0 = g; b' - b0 = -2g. 

Then V - b = 3g or b' - b = -3g 
Note that since the order of g is greater than 5, neither 3g e B4 nor —3ge B4. 

Thus we get b' — b $ B4, a contradiction with the assumption. Hence B4 satisfies 
the property (24) and we complete the proof of Case 1. 

Case 2. Assume that G contains no element of order greater that 5. Then G is 
the direct sum of cyclic groups according to Theorem 17.2 of [Fu]. More precisely, 
G is isomorphic either to (®ie/Z2) © (®jeJZ4) or to ©IG/Z3 or to ®IG/Z5. Since G is 
not isomorphic to ©IG/Z2 or Z4 © (®ieiZ-2), we have to consider the following two 
cases: G contains a subgroup isomorphic to Z3 and G contains a subgroup 
isomorphic to Z, © Z; for some 4 < i,j < 5. 

Case 2a. Suppose that G contains a subgroup H isomorphic to Z3. 

In this case we put B4 = H and see that B4 has the properties (14) — (34). 

Case 2b. Suppose G contains a subgroup isomorphic to the direct sum of 
Z, © Z for some 4 < i,j < 5. 
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We shall identify Z, © Z; with a subgroup of G and shall find a subset 
B4 c: Z, © Z, with the properties (14) — (34). Obviously B4 has the same proper
ties in the whole group G. 

Put B4 = B3 - B3 where B3 = {(O^g^O),^ ,^)} . It is clear that B4 has the 
properties (14), (34). We claim that B4 has property (24). Indeed, assuming the 
converse, we would find a subset B4 a G of size \B4\ = 4 with B4 — B4 c 
c~B3- B3. 

Fix any point b0 e B4. Then 

B4 - b0 c B4 = {(O,O),(01,O),(O,flf2),(-ffl,O),(O, -g2),(gl9 -g2),(-g i ,g2)}. 

Let us show that (gi,0) <£ B4 — b0. Since the elements g{ and g2 have order >4, 

( g i , 0 ) - ( - g , 0 ) £ B 4 ; 
(g 1 ,0 ) - ( -g 1 ,g 2 )^B 4 ; 

(g i , 0 ) - (0 , -g 2 )£B 4 . 

Thus if there is b G B4 with b — b0 = (gh 0) then 

B4 - b0 c B4 = {(O^^g^O^Cg,),^!, -g2)}. 
From the above and the fact that |B4| = 4 we get that there are bub2 e B4 such 

that bx - b0 = (0,g2) and b2 - b0 = (gl9 -g2). Hence b2 - b{ = (gu -2g2) <£ B4, 
a contradiction with the assumption that B4 — B4 a E4. So, we conclude that 
(g{,0)$B4-b0. 

In the same manner we can show that none of the elements (0,g2), ( —gi,0), 
(0, — g2) belong to B4 — b0, which contradicts the fact that B4 — B4 a E4. This 
completes the proof of Lemma. • 

Lemma 6. If K > 4 is a finite cardinal, then each infinite Abelian group 
G contains a subset EK with the properties (1J — (3 J . 

Proof. It is easy to check that each subset BK with the properties (1J — (3K) in 
a subgroup H cz G has these properties in the whole group G. This observation 
combined with Proposition 1 reduces the problem to constructing a set EK in the 
groups Z, Z(p°°) or the direct sum of finite cyclic groups. This will be done 
separately in the following three cases. 

Case 1. We construct a subset Ek in the group Z. 

In this case put EK = BK { — BK_l where BK r = [i: 1 < i < K — 1}. It is 
easy to check that EK has properties (1J — (3K) in Z. 

Case 2. We construct a sbset EK in the quasicyclic p-group Z (p00). 

Choose n such that zp" e {ei(j): 2
K < <j> < ^ } . Then put BK = BK_{ - BK { where 

BK 1 = { ^ : 0 = -2^, 1 <1<K- l } . 
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It is easy to check that BK has the properties (1K) — (3K) in Z(p°°). 

Case 3. We construct a subset BK in the direct sum of cyclic groups ©IGCXg.>. 

Put BK = _?K_! — BK_i = {gt'A < i < K — 1}. Obviously BK has properties 
(1K), (3K). We claim that BK has property (2K). To obtain a contradiction assume 
that there exists a subset BK cz G with size \BK\ = K such that 

BK — BK cz BK_X — 5K_j. 

Consider the sets 5 = {i: 1 < i < K — 1} and F = {i: 1 < i < K}. We can 
enumerate the sets BK_{ and BK as BK_X = {gt :ie S} and BK = {bt: i e F}. 

Since BK — BK cz BK_V — BK_l we can define a map / : [F]2i—> [S]2 assigning 
to each pair {ij}e [i7]2 a unique pair {kj}e [S]2 such that bt — b}, = ±(gk — g). 
A desired contradiction will follow from Lemma 1 as soon as we check that / is 
separately injective and preserves intersections. 

Claim 1. The map / preserves intersection. 

To derive a contradiction, suppose that there are distinct i, i' e F andj G F such that 
/(M)n/({fj})=0. 

Then 
bt - bj = gk - gx and br - bj = gn - gm 

where k, I, n, m are pairwise distinct. 
Hence br — bt = gn — gm — gk + gt£ BK_X — BK_U which contradicts the as

sumption that BK — BK cz J5K_! — BK_{. 

Claim 2. The map / is separately injective. 

To derive a contradiction, suppose that there are distinct i, i' e F andj e F such that 

f({iJ}) = /({*'J}) -{M}-
Since bb b? are distinct we get 

bt - bj = gk- gx and b? - bj = gx- gk 

and thus bf - bx = 2(gx - gk) # 0. Note that 2(g{ - gk) eBK_x - BK_, iff 
2(gi - gK) = gk - gt. Thus we get that 3gk = 0 and 3a, = 0. 

Since |F| = K > 4 we can chose r e F\{iJ'j}. The map / preserves intersection 
so f({rj}) n {kj} ^ 0. Also note that f({rj}) n {kj} 7-= {kj} otherwise br = b{ or 
br = bt>. So without loss of generality we can assume that f({rj}) n n {kj} = {k}. 

Hence br — bj = gs — bk or br — bj = gk — gs for some s. 
Consequently, br - bt = gs - 2gk + gt or br - br = 2gk - gs - gb 

Note that 2gk ^ 0 since 3gk = 0. 
So we get br- bt = gs- 2gk + gl $ BK_l - BK_{ or br - br = 2gk - gs-

— 9i£ BK_{ — BK_X. 
This contradicts the assumption that BK — BK cz BK_1 — BK_X. D 
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Lemma 7. Let K be an infinite non-limit cardinal with K < \G\ where G is an 
infinite Abelian group. Then there exists a subset BK with the properties 
( IJ - (3J. 

Proof. Since K is infinite non-limit cardinal there exists cardinal a such that 
K = a+. Put BK = Ba — Ba where Ba is any subset of G with size \Ba\ = a. 
Obviously BK satisfies property (1K). 

Since |BK| = a and \BK — BK\ = K = a+ for any subset BK cz G of size /c we 
get BK — 5K cz_ BK. Therefore BK has property (2K). 

The last property (3K) follows from the fact |F| + |BK| < |F| • |BK| < |G|. D 

Lemma 8. Let K be a limit cardinal and G be an infinite Abelian group with 
K <\G\. Then there exists a subset BK cz G with the properties (1K) — (3K). 

Proof. Note that it is enough to show that each group G of size K contains 
a subset BK with properties (1K) — (3K). When \G\ > K then we can take any 
subgroup H cz G of size |H| = K and find a subset BK of with properties 
(1K) — (3K) in H. Then the subset BK will have the properties (1K) — (3K) in the 
whole group. 

So it remains to prove that such a set BK exists in each group G of size K. 
First we describe a sequence of symmetric subsets Fa cz G of size a such that 

G = (Ja</cPa and Fa => [Jp<aFp. Enumerate the group G so that G = {ga: a < K} 
and go = e- Then put Fa = {ĝ , — g^ : /? < a} for all a < K. 

We put 

^>K = ( J B« — -5a 
OL<K 

where a set Bx = {bf: /J < a} cz G of size a will be chosen later. 
To simplify notation we write B< a instead of [Jp<a{Bp — Bp) and B>fl instead 

of \Jz<p<K{Bp — Bp). By B<p we shall denote the initial interval {1%: y < jS} of 
Ba. 

Now we are in a position to define a sequence of sets Ba forcing the set BK to 
satisfy the properties (2K) and (3K). To ensure property (3K) we will also construct 
a transfinite sequence of points (/ia)a<K of G such that /ia <£ Fa + BK. 

We start putting B0 = {e} and taking any non-zero point h0 e G. Assume that for 
some ordinal a < K the sets B$ and the points /fy, (I < a, have been constructed. 
Then pick any point h^e G with 

/ia£Fa + B< a . 

Such a point exists because the size of the set Fa + B< a is equals a < K = \G\. Let 

#« = %-h^.p< a}. 
Next we define inductively elements of Ba = {t% : ft < a}. 
We pick any b°a with ba E G\B<a. Next, we choose b£ with 
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(a) bi$B<" + Fa + B<a; 
(b) bteBf-B^ + Bf + F.; 
(c) bUBj + Fx + Hx. 

To ensure properties (a), (b), (c) we have to avoid the sets of size a, which is 
possible because \G\ = K. 

Now let us prove that the constructed set BK satisfies the properties (1J — (3J. 
In fact the property ( I J is evident while (3J follows immediately from (c). It 
remains to prove 

Claim. The set BK has property (2K). 

Let BK be a subset of G of size \BK\ = K. Fix any pairwise distinct points 
cuc2,c eBK. 

IfB - BK cz BK then BK cz f)l=lCi + BK and K = \BK\ < If)?.- cx + BK\. 
So to prove our claim it is enough to show that |P|f=1C; + BJ < K. Find an 

ordinal a < K such that cp — cqeF^ for any 1 < p,q < 3. Assuming that 
|Qf lcl + BK\ = K we may find a point b e f]^=1{ct + B>a)\{c;}. A contradiction 
will be reached in three steps. 

Steps 1. First show that there is /? > a with b e P|f=1(c, + Bp). 

Otherwise, b — cpe By — By and b — cqe Bp for some y > /? > a and some 
p T-= <1. Find i j < y with b — cp = b\ — yy. The inequality b 7-= complies i 7-= j . 

If i < j then Vy = b\ - b + cp = b\ - b + cq - cq + cp cz fo; - Bp + B^ + 
+ Fy cz £< J + B< r + Fr which contradicts (a). 

If i < j then bj, = fej, + b - cp = b\ + Bp - Bp + cq - cp cz fl<' + B < r + 
+ Fy, which again contradicts (a). 

Step 2. \Vc c/a/m 1/zal if b — cp = b\ — ftp and b — cq = bsp — blp then 
max {i,j} = max {s,t}. 

It follows from the hypothesis that cq — cp = blp — tip + b^ — b^. To obtain 
a contradiction assume that max {ij} > max {s,t}. 

If j < i then b^ = cq - cp + /^ - b\ + b^ e Fp + B / ' - B<' + Bf\ which 
contradicts (b). 

If i < j then tfp = Cp - cq + b*fi + ty - tfeFfi + Bf - Bf - Bf\ again 
a contradiction with (b). 

Step 3. According to the previous step there exist j8 > a and / such that 
b — cx = Vp — yp where max {ij} is equal to /; 
b — c2 = bp — b*p where max {s,£} is equal to /; 
b — c3 = b% — brp where max {q,r} is equal to /. 
In this case we obtain a dichotomy: either among three numbers i, 5, q two are 

equal to / or among j , t, r two are equal to /. 
In the first case we lose no generality assuming that i = s = /; in the second, 

that j = t = I. 
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In the first case we get Fa9 c2 — c{ = b\ — b\, which contradicts (a). 
In the second case we get Fa 3 c2 — c{ = b\ — tfr which contradicts (a) again. 
Therefore, there is no be f]^=1(ct + E>(X)\{q} and hence If)* & + 

+ e>a| <K. a 
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