
Acta Universitatis Carolinae. Mathematica et Physica

Greg Piper
Regular closure and corresponding PKλ versions of ♦ and ♣

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. 2, 67--76

Persistent URL: http://dml.cz/dmlcz/702110

Terms of use:
© Univerzita Karlova v Praze, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702110
http://project.dml.cz


2005 ACTA UNIVERSITATIS C ROLINAE MATHEMATICA ET PHYSICA VOL. 46, NO. 2 

Regular Closure and Corresponding &Kk Versions of 0 and * 

GREG PIPER 

Kobe 

Received 11. March 2005 

We discuss the notion of regular closure for subsets of gPKX and establish that this yields 
a sensible strengthening of stationarity. We then introduce corresponding diamond and 
club principles for £PKX and establish their consistency relative to ZFC We show that in 
this context, diamond implies club as is the case with 0K and *K for regular K. When K is 
the successor of a regular cardinal, these principles are natural generalisations of 
established principles on the ordinals. We also introduce several related problems. 

1 Introduction 

In analysing combinatorial ideas in the context of SPKK straightforward results 
do not always transfer easily from the context of ordinals. This situation is apparent 
when we consider the straightforward proof that 0* => +K in the context of £PKk 
versions of the guessing principles. In this paper, we transfer the standard proof of 
0K => *K to the context of 2PKX by introducing the notion of regular closure and 
using principles whose guessing corresponds to the associated (stronger) form of 
stationarity. 

Jensen's 0 principle was introduced in [4] and has many applications both in 
combinatorial set theory and more wide y. A related but weaker principle, *, was 
introduced by Ostaszevki in [7]; in fact * + C H is equivalent to 0, as proved by 
Devlin (see [7]). The 0 principle has several established generalisations in the 
context of ^W, some of which are discussed below. However, these principles do 
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not tie naturally to corresponding * principles. We will see that by strengthening 
the guessing to r-stationary sets, the theorem Cv => *K transfers easily to this 
context. 

We first define the 0K and *K principles. 

Definition 1.1 Cv holds if there is a sequence <A : a < K} such that A* <= a for 
all a < K and for every A .== K the set {a < K : A n a = A*} is stationary in K. 

*K holds if there is a sequence <A : lim(a) and a < K) such that A* is a cofinal 
subset of OL for all limit a < K and for every cofinal subset A ^ K the set 
{a < K: A n cc =2 Aa} is stationary in K. 

The following is well-known. 

Theorem 1.2 (Ostaszewski) Suppose K is regular. Then 0K => *K. 

Proof Let {Ax: a < K} witness 0K. We define {Bx: a < K and lim (a)} witnessing 
*K. If Aa is cofinal in a then let Ba = A*. Otherwise let Ba be any cofinal subset 
of a. 

Given cofinal X .== /c, let Cx = {a < K : X n a is cofinal in a}. Then it is 
straightforward to show that CX is club in K. Consequently, {oce K: X n 
n a = Aa} n Cx is stationary in K. Since for all a in this intersection we have 
Ax = Ba, we are done. • 

Even within the theory of cardinals, a number of other variations on 0K have 
been studied. Jech's *(/c, X), as defined in [3], was the first generalisation of 0* to 
SPA. A number of other variations have also been defined, notably by Matet in [5] 
and Dzamonja in [2], The principle defined in Section 3 is a slight variation on 
Matet's §K,X principles, which is presented below for ease of comparison. 

Definition 1.3 0K,x holds iff there is a set {Ax : x e £PKX} such that Ax c= 0\x (x) 
and if A .== 0KX then the set {x: A n 0\x\ (x) = Ax} is stationary in &KX. 

This principle is consistent relative to ZFC if K is either Mahlo or the successor 
of a regular cardinal. A *K,x corresponding to 0K,x can certainly be defined by 
insisting Ax is cofinal in SP\x\(x) and requiring guessing only of cofinal A .== SPKX. 
Although this principle is consistent relative to ZFC, its relationsip to OK,;, is 
unclear. The proof of Theorem 1.2 presented above cannot be transferred because 
for an arbitrary cofinal X .= SPKX the set CX = {xe SPKX : X n SP\X\ (x) is cofinal in 
0\x\ (x)} is cofinal in SPKX but is not closed in general. This is not to say that CX does 
not contain a club, which whould be enough for the theorem, but it is not clear 
whether this is the case. 

Another observation that we should make at this point is that when K = fi+ for 
regular li, the principle is unable to distinguish between A, B .== SPKX for which 
A n SP^l = B n SP^X. This is simply because for all A c $pKX and all x e £PKX, 
A n 0\x\ (x) .= SPptX. In this situation, it may be more interesting to require 
A .== 0 (x) instead of A ^ SP\X\ (x) as in the following variation. 
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Definition 1.4 O^, holds iff there is a set {Ax : x e SPKX\ such that Ax c= SP (x) 
and if A cz 3PKX then the set {x: A n SP(x) = Ax} is stationary in SPKX. 

The results described in the final section apply equally well to principle like this 
latter variation. However, for the sake of brevity, we only give the details for the 
principles derived directly from Matet's vv,/i. Note that given a set {Ax: x e SPKX} 
witnessing 0^,^, the set {A n 0\x(x): xe SPKX} witnesses V^A. 

2 Regu la r c losure 

We define versions of clubs and stationary sets in the context of SPKX based on 
the notion of regular closure, with the intention that in some situations this may 
be a more useful combinatorial object than the usual clubs and stationary sets. Note 
that regular clubs only make sense for SPKX when K is the successor of a regular 
cardinal or is Mahlo. For successor of singulars and for non-Mahlo limit /c, there 
will be a club subset of SPKX with no regular sequences. 

Definition 2.1 A sequence <Xx: a < ja} is an r-sequence if it is cz -increasing 
and [i is an uncountable regular cardinal and \[j{xx: oc < JJ]\ = fi. 

A set C ^ SPKX is r-club if (i) for any x e SPKXy there is y eC such that x c= y 
and (h) if <x*: a < ji) is an r-sequence in C then [J{xx: a < JI} e C. 

A set S ci £PKX is r-stationary in SPKX if for any r-club C cz 3PKX, S n C ^ 0. 

Note that in the case of 0*K+X, where K is regular, these notions are equivalent 
to the fc-clubs and K-stationary sets defined by Dobrinen in [1], for which closure 
is required for all sequences of length exactly K. This is simply because all regular 
sequences in [2]K are K-sequences, and vice versa. 

We now show that the r-clubs form a normal filter. Consequently, for any 
regressive functions on SPKX we can find an r-stationary set for which / is constant, 
just as we can find a stationary set with this property. We prove this only for Mahlo 
K. When K is the successor of a regular cardinal, the proof is similar; alternatively, 
the result follows immediately from the corresponding result for ^-closure, as 
presented in [1]. 

Definition 2.2 Let F be a filter on SPKX. Then F is normal iff it satisfies the 
following: 

(i) K-complete: for any {Ka : a < c ; } c F , with £ < K, f]{Xa: a < £}e F. 
(ii) for any y e X, {xe SPKX :y e x}e F. 

(Hi) for any <Xa: a < Xs) e kF, the diagonal intersection is in F, that is 
A{X : a < X}:= {xeSPKX : xe f] {Xa: a ex}}eF 

Proposition 2.3 Suppose K is Mahlo. Then the set F = {X cz gPKX \ X contains 
an r-club} is a normal filter. 
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Proof. We first show that given r-clubs C, D, the intersection C n D i s r-club. 
(Given two elements C, D' e F that are not r-clubs, simply work with r-clubs C, 
D contained in C, D' respectively.) It is trivial to see that C n D i s r-closed so we 
simply need to prove cofinality in 3PKX. Given x e SPKX, find sequences <xa : a < K) 
and <ya: a < K) from C and D respectively with x .= x0 and x0 e SP\yJ^y^) and 
ya c x a + 1 for all a < TC. This can be done because C and D are both cofinal in SPKX 
and K is a limit cardinal. Since K is Mahlo, there must be some regular limit jn < K 
such that | J { y a : a < JJ]\ = JI since the ya are increasing in cardinality. Note that 
J {xa: a < JJ] = J {ya: a < //} and this is the limit of a regular sequence in both 
C and D. Hence, it is clear that J {ya: a < li} e C n D. Since x <= J {ya: a < fi}, 
we are done. By a minor extension of the argument above for closure under pairwise 
intersections, it follows that F is K>complete. 

It is clear that for all y e X the set {y e SPKX : y e y} e F, since these sets are r-clubs. 
Finally, we must observe that F is diagonally closed. That is, for any 

sequence <K^: £ < X} taken from F, the set A {-3Q • £ < X} = {XESPKX : x e 
ef]{Xi:^ex}}eF. 

We first show that A {-3Q : £ < A} is cofinal in ^y, . Suppose x0 G ̂ K l . We will 
find an element x ^ e A {-3Q: £ < /I} such that x0 cz x^. Note that {JQ : ^ e x 0 } is 
a set of < jc-many elements of F and hence the intersection is also in F. Thus we 
can find Xj e f] (X^: t; e x0} such that x0 e SP\Xl\ (x^. Note that we do not necessarily 
have X! 6 P | {JQ : £ e x{} so we are not yet done. We continue inductively, defining 
x a + 1 e f] [X^: t; e xa} such that xa e SP\Xa+x\ (xa+i) in a similar way. At limit stages, 
we set xa = J {x^: jS < a}. Since K is Mahlo and the xa are increasing in 
cardinality, there must be some regular limit stage ji at which |x^| = \i. Note that 
for all a < JLL the inductive definition implies that for all fi > a, x^ e f] {X^: £ e xa}. 
Consequently, for all a < \x the sequence (x^ : a < /? < /a} is an r-sequence in the 
r-club f] {X%: £ e xa} so x ^ e f ) {X^: £, e xa}. Hence, for each £ e xa, x^ e X^. 
Since for all ^ e x ^ there is a < JJ, such that £ e xa, it follows that 
x ^ e f ) {JQ ^ e x ^ } and hence that xMe A {X^: £ < X}. 

We now show that A {̂ Q : £ < X} is r-closed. So suppose <xa: a < jn) is an 
r-sequence in A {-3Q : £ < A} and let xM = J {^ : a < /i}. We show that 
x ^ e A {X%: £ < X}. For all a < JJL, the sequence <x^ : a < /? < //> is an 
r-sequence of P {JQ: <!; e xa} because for each /? in the interval (a, /i), 
XpE f) {X% : ( J G X | J } C P {X{: £ e xa}. Hence for all £ e xa, x^ e X^. Since for all 
£ E x^, there is a < jn such that £ e xa, it follows that XME f] {X%: £ e x^} and 
hence that x^ e A {K^: £ < A} as required. • 

It is clear that r-stationarity and stationarity are not equivalent. For example, for 
limit K, the set S = {XESPKX: \X\ is singular} is stationary but not r-stationary. 
A more interesting question is whether the principle is equivalent to various other 
strengthenings of stationarity. We briefly discuss some other stationarity properties 
below, before moving on to guessing principles in the next section. 
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One natural generalisation of stationarity corresponds to clubs relativised to 
a stationary set, as defined below. In the context of cardinals, it is trival to show 
that r-stationarity and stationarity relativised to the set of regular cardinals are 
equivalent. However, in the context of 3PKk, the situation is less clear. 

We use the following notation. 

Definition 2.4 For X cz gPKky we say reg(X) = {xe X : \x\ is regular}. Also, we 
write "reg" for reg (£PKk). 

Definition 2.5 Given Mahlo K we say C ^ SPKk is clubreg if there is a club 
D cz 2PKk such that C = D n reg (£PKk). We say S ^ 2PKk is stationary'68 if for any 
clubre8 C cz SPKk, S nC ^ 0 . 

Relativising to a stationary set is a useful way of transferring theorems to the 
SPKk context but is not effective in the problem discussed in section 3. In [8], 
Zwicker works with a version of club and stationary set slightly different from the 
relativised version given above. We subscript with Z here to distinguish the two. 
Note that in [8], while the intention is to use a stationary coding set, the definition 
is more general, allowing any arbitrary stationary set. We say C ^ SPKk is clubz* 
in &Kk if there is a club D cz g>KX such that Cn r e g ( ^ ) = Dn r e g ( ^ ) . Also, 
S ^ SPKk stationary^ if S has non-empty intersection with every c lub^ set. In fact, 
the two concepts give the same normal filter and the corresponding definitions of 
stationarity are equivalent. Note that, assuming K is Mahlo, any clubrefir set is also 
r-club so trivially, r-stationarity implies stationarity^. It is not clear whether 
r-stationarity and stationarity^ are equivalent. 

In [6], Mignone introduced another form of closure in the interest of studying 
the combinatorics of SPKk. Here, we say C ^ SPKk is L-closed if for any .= -increa­
sing sequence < ^ : a < 5} with \5\ < (J {\\\: a < 5} < /c, which we call 
a L-sequence, we have (J {x^: a < 3} e C. Note that <a: a < co{y is an example 
of a ^-increasing sequence that is not an L-sequence. With L-club and and 
L-stationary defined in the obvious way, the following theorem shows that 
L-stationarity and stationarity are also not equivalent. 

Theorem 2.6 (Mignone)Suppose K is huge and k is any cardinal greater than 
K such that there exists a normal ultrafilter over [/l]K. Then there is an L-club that 
does not contain a club. 

Although similar in definition, L-stationarity and r-stationarity appear to be quite 
distinct. It is trivial that L-stationarity does not imply r-stationarity since the set 
{xe 3PKk : \x\ is singular} is L-stationary but not r-stationary. 

3 Guessing principles in the context of £PKk 

We now define a 0 principle based on regular stationarity along with a corres­
ponding * principle. 
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Definition 3.1 0 ^ holds iff there is a set {Ax:xe SPKf\ such that Ax c 0>x\(x) 
and if A c= 0>KX then the set {x: A n SP\A (x) = Ax} is r-stationary in £PKX. 

* r
; / l holds iff there is a set {Ax : x e 0*KX] such that Ax is cofinal in SPx\(x) and 

if A is cofinal in SPKX then the set {x: A n SP\A (x) =2 Ax} is r-stationary in SPKX. 
Note that 0r

A => 0 ^ . We will see below that 0r
K/l => * r

M . 

Theorem 3.2 Suppose M is a countable transitive model of a suitable fragment 
ofZFC in which X > K and either 
(a) K is Mahlo or 
(b) K = /a+ for some regular fi and ji<li = pi and K<K = K. 

Then there is a generic extension M\(J\ preserving cardinalities\ cofinalities 
and (if appropriate) the Mahlo-ness of K such that M [G] N 0 ^ . 

We proceed by forcing. Let p e Q iff p is a function with dom (p) e SPK (&KX) and 
Vx e dom (p) (p(x) c ^ j x | (x)). For p, qe Q, we say p < q iff q .= p. 

Claim 1. Suppose K<K = K. Then Q preserves cardinalities, cofinalities and £PKX 
and the fact that K is Mahlo. 

Proof of Claim 1. We show that Q is K-directed closed and has the K:+-CC. 

First, let {pa: a < /J] c= Q be a set of pairwise compatible conditions, with 
li < K. Then let p = [j {pa: a < fi}. It is clear that p e Q and for all a < fi, 
p < pa. Thus, Q is K-directed closed. 

That Q has the K:+-CC follows by a straightforward A-system argument. Let 
A c= Q with |yl| = K:+ and let J / = {dom(p): p e A}. Note that since K<K = /c, it 
follows that \s/\ = K+. If not, there would be 7c+-many elements of A all with the 
same domain. But this cannot be For suppose |X| is such a domain and 
v = sup {\x\: x e X}. (Note that v < K.} Then the number of possible conditions is 
at most |X|.2V<V = 2V < K<K <K+. Note that for the preceding statement, if 
K = fi+, we require p,<li = /i for the first equality and K<K = K for the final 
inequality. For the case with K Mahlo, both follow from the assumption that K is 
a strong limit. 

By the A-System Lemma we can find R c £PKX with \R\ < K and ^ ^ srf such 
that 13$\ = K+ and for all X, Ye £8, X n Y = R. Since there are at most K>many 
suitable functions that can be defined with domain R, it follows by the pigeonhole 
principle that there is a set C c= A with |C| = /c+ such that for all p, qsC and all 
xe rv ,p (x ) = q (x). But it is clear that p u qe Q and p u q < p, q. Thus, A is not 
an antichain. 

• (Claim 1) 

Claim 2. Suppose M N "K is Mahlo". Let G be a generic of Q. Then M [G] 1= 0r
j/L 

holds. 
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Proof of Claim 2. Given a generic G of Q, for each x G ^KA, we set Ax = p(x) 
where p is any element of G with x e dom (G). Then {̂4X : x e SPKX) is a witness to 
0Kh as we demonstrate below. 

Suppose p \\- "C is club and A c ^ " . We find q > p such that q \\-
"3x e dom(g)(^4 n~^x (x) = <I(x) and x e C)". 

Suppose p0 < p and x0 e 3PKX are such that p0 \\- "x0 e C". Note that since Q is 
< K-closed we can assume that x0 is an actual element of SPKX rather than a name. 

Now let p0 < p0 be such that p'0 \\-"A n ^Xo)(x0) = A0\ Note that again by 
< K-closure we can assume A0 is a set not just a name, since K is a strong limit 
SO | ^ X 0 (x0) | < K. 

Now continue inductively as follows. Given pa, pa, xa and Aa, we define p a + 1 and 
xa+1 so that pa + 1 < p a + 1 < pa and xa e ^Xa+1,(xa+1) and pa ||- "xa e C". We then 
define pa + 1 < Pa+1 such that p a + 1 |- "̂ 4 n ^Xa+1|(xa+1) = -4a+1". 

At limit stages a at which (J {x^: /? < a} has singular cardinality, we set 
p* = (J {p/j: j8 < a} then find pa > p* and xa such that (J {x̂  : jS < a} e ^jX a | (xa) 
and pa ||- "xa e C". As for the successor case, we then define pa > pa such that 
p'\\-"An&M(xa) = A:\ 

We continue the induction until we reach a stage \i at which (J {x̂  : j? < a} has 
regular cardinality. This must occur eventually since K is Mahlo and the xa are 
increasing in cardinality. Let y = (J {xa: a < pi) and let A^= (J {4*: /? < /i}. 
We then define g as follows. If there is a < /a with x e dom (pa) then q (x) = pa (x). 
Also, let q (y) = SP\y\ (y) n A^. For all other z e ^A, g (z) is undefined. Since \y\ is 
regular and the sequence {xa: a < fi) is cofinal in g?lyl (y), we have 
q \\- "A n SP\y\ (y) = q (y)". And since q \\- "C is r-club", we also have q \\- "y e C", 
since q \\- "y is the supremum of a regular sequence in C". 

• (Claim 2) 

Claim 3. Suppose M N "K = fi+ for some regular cardinal \x\ Let G be a generic 
of Q. Then M [G] 1= 0 r

u holds. 

Proof of Claim 3. The proof follows exactly as for Mahlo K but the xa all have 
cardinality /i and we simply require that for all /? < a, x^ cz xa. Note that to obtain 
pa we use the fact that \i<ix = \i. The induction stops after /i-many stages. 

• (Claim 3) • 

The following is a simple variation of a theorem given in [3] concerning the 
A principle. 

Proposition 3.3 If K is a Mahlo cardinal then 0KX holds then there is a family 
of 2^KX -many stationary subsets of &K)i such that the intersection of any two is not 
stationary. 

By an analogous argument, it can be seen that with 0 ^ we have a similar 
theorem, replacing the first instance of "stationary" with "r-stationary". Note that 
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the second instance is still "stationary". The conclusion is apparently stronger since 
r-stationary sets are in a sense 'larger' since they must intersect not only the clubs 
but also the r-clubs. 

Proposition 3.4 Suppose K is a Mahlo cardinal. If 0r
KX holds then there is 

a family of 2^K^-many r-stationary subsets of SPKX such that the intersection of any 
two is not stationary. 

Proof. Let {Ax:xe 0>KX} witness 0r
M. For any B c 2PKX, let SB = {ye SPKX: 

: B n 2P\y\(y) = Ay\ Suppose Bh B2 c g>KX with Bx ^ B2. Let x e SPKX be such that 
either x e B{\B2 or x e B2\B1. If ye SBl n SBl then Bx n SP\y\ (y) = Ay = B2 n 
n SP\y\ (y) so x $ SP\y\ (y). Hence SBl n SBl does not intersect the club {y e 3PKX : x e 
e SP\y\ (y)} so is clearly non-stationary. Thus, {SB : B <= £PKX} is a family of I '^ '-many 
r-stationary subsets of SPKX each pair of which is non-stationary, as required. 

• 
The theorem does not hold in the case when K is the successor of a regular cardinal. 
In this case, where K = fi+, say, the set {ye 3PKX : x e £P\y\(y)} is not a club for any 
x e \X\fi. However, a similar theorem will hold for such a K if we consider the 
principle 0r ̂ <=, defined simply by replacing "Ax c= £P\x\(x)" with "Ax c ^ ( x ) " in 
the definition of 0r

 A. (Note also that we can prove the relative consistency of 
O^c with a forcing analogous to that given for 0r

?A.) The set {ye SPKX : x eSP(y)} 
is club in SPKX for all x e SPKX so the following theorem for 0r

?A^ will proceed as 
before even for K the successor of a regular cardinal. Of course, an analogous 
theorem holds for v ^ ^. 

Proposition 3.5 Suppose K is either a Mahlo cardinal or the successor of 
a regular cardinal. IfOr

K^ holds then there is a family of 2^K^-many r-stationary 
subsets of SPKX such that the intersection of any two is not stationary. 

The following theorem is proved in the same manner as the well-known proof 
of 0K => *K. Note that we cannot prove that 0K?A implies *K^ in this way as the 
correspondening set Cx (using the notation of the proof below) is not closed under 
arbitrary unions. Indeed, working with stationaryrefif, we would have the same 
problem. Note that it is unclear whether the set Cx contains a club or c lub^ set 
which would, or course, be sufficient for the theorem. 

Theorem 3.6 Suppose K is either the successor of a regular cardinal or is Mahlo 
and that X > K Then 0r

 tX implies *r
c>A. 

Proof. Let {Ax : x e SPKX} witness 0 r
 A. We define {Bx : x e SPKX} witnessing *r

?/l. 
If Ax is cofinal in ^xl (x) then let Bx = Ax. Otherwise let Bx be any cofinal subset 
o f ^ | ( x ) . 

Given cofinal X .= 3PKX, let Cx = {xeSPKX:X r\ SP\x\(x) is cofinal in ^\x\(x)}. 
We will show that Cx is r-club in 3PKX. Consequently, it will follow that 
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{xe £P A: X n @>x\(x) = Ax) n Cx is r-stationary in SPKX. Since for all x e Cx we 
have Ax = Bx, we will be done. 

We first show that Cx is cofinal in SPKk. Suppose first that K is Mahlo. Let 
x0 e SP X. We find y ^ x0 with y e Cx. Since X is cofinal in 3PK1, we can find 
xx e X with x0 ^ xx. Indeed, we can assume without loss of generality that 
|x0| < \xx\ since K is a limit cardinal. We continue inductively, defining xa+1 e X 
with xa G ̂ jxa+1|(xa+i) ar1d taking the union at limit stages until we reach a limit 
stage \i at which (J {x«: a < //} has regular cardinality. Since K: is Mahlo there 
must be some stage at which the induction stops. Now let y = (J {xa: a < \i\. By 
the inductive definition, the set {xa : a < JJ] is cofinal in ^ (y). Thus y e C ^ and 
x0 <= y as required. 

If K = n+ for some regular /z, the proof that Cx is cofinal is very similar to the 
one above for Mahlo K. We require that |xa| = \i for all a and continue the 
induct on for exactly /i-many steps. 

We now show that Cx is r-closed. Suppose <xa: a < \i) is an r-sequence in C*. 
Let y = (J {\: a < //}. Then by the regularity of \i, for any z G SP\y\(y\ there is 
a < ji such that z G SPX^\ (xa). Hence there is u e Cx n ^Xa) (xa) such that z ^ u. But 
clearly u e SPy\ (y). Hence Cx n ^ y | (y) is clearly cofinal in SP\y (y) so yeCx as 
required. 

• 
There still remain several natural unanswered problems concerning the relation­

ship between * and 0 principles in the context of SPKX. Among them are the 
following. 

Question 3.7 (i) Does * ^ imply §r
KJ If not, is there a statement of cardinal 

arithmetic, "SCA"', such that SCA + * ^ implies 0^? 

(ii) Does 0M /mpZ>̂  * M ? 

References 

[1] DOBRІNEN, N., к -statюnary subsets of £PK+X, infinitary games and distributive laws in Boolean 
algebras, preprint. 

[2] DŽAMONJA, M., On 0>KX combinatorics using a third cardinal, Radovi Matematicki 9(2) (2000), 
14 -155 . 

[3] JEСH, T., Some combinatorial problems concerning uncountable cardinals, Annals of Mathematical 

Logc 5 (1973), 165-198. 
[4] JENSEN, R. B., The fìne structure of the con tructible h erarchy, Annals of Mathematical Logic 

4(1972), 229 -308 . 
[5] M A ET, P., Partitions and diamond, Proceeďngs of the American Mathematical Society 97(1) 

(1986), 133-135 . 
[6] MIGNONE, R. J., An extension of the closed unbounded filter, Proceedings of the American 

Mathematical Society 103(4)(1988), 1221 - 1225. 

75 



[7] OSTASZEWSKI, A., On countably compact perfectly normal spaces, Journal of the London Mathe­
matical Society 14 (1975), 505-516 . 

[8] ZWICKER, S., 0>KX Combinatorics I: Stationary coding sets rationalize the club filter, Axiomatic Set 
Theory, Contemporary Mathematics 31, American Mathematical Society, Providence R.I., (1991), 
243 - 259. 

76 


		webmaster@dml.cz
	2012-10-06T04:29:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




