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Two ideals on w are presented which determine the same class of #-ultrafilters. It is
proved that the existence of these ultrafilters is independent of ZFC and the relation
between this class and other well-known classes of ultrafilters is shown.

Let .# be a family of subsets of a set X such that .# contains all singletons and
is closed under subsets. Given a ultrafilter % on w, we say that % is an
J-ultrafilter if for any mapping F : @ — X there is A € % such that F (4) € 4.

Concrete examples of #-ultrafilters are nowhere dense ultrafilters, measure zero
ultrafilters or countably closed ultrafilters defined by taking X = 2“ and £ to
contain all the nowhere dense sets, the sets with closure of measure zero, or the
sets with countable closure, respectively. The class of a-ultrafilters was defined for
an indecomposable countable ordinal « by taking X = w; and .# to consist of the
subsets of w: with order type less than o.

Consistency results about existence of these ultrafilters and some inclusions
among the appropriate classes of ultrafilters were obtained by Baumgartner [1],
Brendle [4], Barney [2]. It was proved by Shelah [8], that consistently there are no
nowhere dense ultrafilters, consequently all mentioned ultrafilters (except the
o-ultrafilters for which the question is still open) may not exist.

In this paper, we focus on free ultrafilters on w defined by taking X = w and
# to be two different collections of subsets of natural numbers.
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I. Basic facts and definitions.

It was noticed in [1] that for a given family # the £-ultrafilters are closed
downward under the Rudin-Keisler ordering <grk (recall that % <grx ¥~ if there
is a function f: w — w whose Stone extension Sf: fw — Bw maps ¥~ on %, see
[5D).

Replacing f[U] e by f[U] e (S in the definition of .-ultrafilter, where
{#) is the ideal generated by #, we get the same concept (see [2]), i.e.
J-ultrafilters and {.# )-ultrafilters coincide. Obviously, if % is an Z-ultrafilter then
U I # O (the converse is not true) and if # = ¢ then every .£-ultrafilter is
a ¢-ultrafilter.

Lemma. If € is a class of ultrafilters closed downward under <rx and ¥ an
ideal on w then the following are equivalent:
(i) There exists U € € which is not an S -ultrafilter
(ii) There exists V" € € which extends I%*, the dual filter of 5

Proof. No ultrafilter extending #* is an f-ultrafilter, so (ii) implies (i) trivially.
To prove (i) implies (ii) assume that % € € is not an .#-ultrafilter. Hence there is
a function f'€ “w such that (VA e J)f~'[A] ¢ U. Let v = (V< w: f~'[V]eu}.
Obviously 7~ extends #* and ¥~ <rk %. Since ¥ is closed downward under
<rkand # €€ we get ¥ €%. O

An infinite set A < o with enumeration A = {a.: n € w} is called almost thin
if lim supn a2y < 1 and thin (see [3]) if limaaz; = 0. (Notice that by enumeration
of a set of natural numbers we always mean an order preserving enumeration.)

We will denote the ideal generated by finite and thin sets by 7 and the ideal
generated by finite and almost thin sets by /. The corresponding .#-ultrafilters
will be called thin ultrafilters and almost thin ultrafilters respectively. We prove
in Section II. that in fact these two classes of ultrafilters coincide, although the
ideals 7 and .o/ differ as the set {2':new}e A\T.

We show in Section III. the relation between thin ultrafilters and selective
ultrafilters and the relation between thin ultrafilters and Q-points in Section IV. Let
us recall the definitions:

A free ultrafilter % is called a selective ultrafilter is for all partitions of w,
{R:: i € w}, either for some i, Ri€ %, or 3U € % such that (Vie w) [U n Ri| < 1.

A free ultrafilter % is called a Q-point if for all partitions of w consisting of
finite sets, {Q:i € w},JU € % such that (Vie w) |[U N Q| < 1.

II. Thin ultrafilters and almost thin ultrafilters.

The existence of thin ultrafilters is independent of ZFC. It is easy to construct
a thin ultrafilter if we assume the Continuum Hypothesis (in Section III. we prove
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that the strictly weaker assumption (see [6]) that selective ultrafilters exist is
sufficient) and we prove in Section IV. that every thin ultrafilter is a Q-point whose
existence is not provable in ZFC (see [7]).

Proposition 1. (CH) There is a thin ultrafilter.

Proof. Enumerate “o = {f»: 0o < 601}. By transfinite induction on o < w; we

construct countable filter bases %, satisfying
(i) S is the Fréchet filter
(il) F < Fp whenever o < f8

(iil) % = (Ja<y Z for y limit

(iv) (Vo) OF € Forr) fu[Fle T
Suppose we have constructed Z.. If there exists a set F € % such that f;[F leT
then put Zuv1 = F. If f.[F] ¢ 7 (in particular, f,[ F] is infinite) for every F € Z
then enumerate %, = {F,: n € w}and construct by induction a set U = {u.: n € w}
which we extend the filter base by:

Choose arbitrary uo€ Fo such that f;(uo) > O (such an element exists since
fa [Fo] is infinite). If uo, u1, ..., ux—1 are already known we can choose ux € ﬂisk F;
so that fu(ux) > k- fu(u—1).

It is obvious that U =* F,, i.e. all but finitely many elements of U are contained
in F,, for all n € w. We can check immediately that f [U] is thin:

C flw) ) 1
im ) S I e ) ) M =
To complete the induction step let %1 be the countable filter base generated by
Z and the set U.
It is clear that any ultrafilter extending Ua<a)1 Z, is thin. O

Since J < &/ every thin ultrafilter has to be almost thin. The following
proposition states that the converse also holds true and the classes of almost thin
and thin ultrafilters coincide.

Proposition 2. Every almost thin ultrafilter is a thin ultrafilter.

Proof. Because of the Lemma it suffices to prove that every almost thin
ultrafilter and Uo e % is an almost thin set which is not thin with enumeration
Uo = {t:: n € w}. Denote lim sup, z%5 = go < 1. We may assume that the set of
even numbers belongs to % (otherwise the role of even and odd numbers
interchange).

Define g : @ — w so that g(un) = 2n, g[w\Uo| = {2n + 1:ne w}.

Since % is an almost thin ultrafilter there exists Ui € % such that g [Ui] is
almost thin. Let U = Uon Ui = {u,:kew}. Almost thin sets are closed
under subsets, therefore g[U] = {g(un):kew} = g[Ui] is almost thin and
1 > lim supk{—(ﬂ% = lim supi yo%-.

Glunk +1
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We know that there is no such that (Vi > no) .7, < ;" and that there is ko such
that (Vk > ko) mk > no. Hence for k > ko we have

Rk+1 Nk
Uny Uny L Unk 1< <q0 + 1) N

- 2

u"k+1 unk+l u“k+l

It follows from lim supk »,%, < 1 that limk(nk+1 — nx) = + 0o. Hence

Ne+1 Nk
lim < lim <q° + 1> =0

k—oo Unp 1 k-0 2

and the set U € % is thin. O

II1I. Thin ultrafilters and selective ultrafilters.

Proposition 3. Every selective ultrafilter is thin.

Proof. Selective ultrafilters are minimal points in Rudin-Keisler ordering (see
[5]), hence the class is downward closed under <rk and we may apply the Lemma.
It suffices to prove that there is no selective ultrafilter extending the dual filter of
g.

Claim: Every selective ultrafilter contains a thin set.

Assume % is a selective ultrafilter and consider the partition of w, {R., ‘ne w},
where Ro = {0}and R, = [n!, (n + 1)!) for n > 0. Since % is selective there exists
Uo € % such that |[Uo n R4 < 1 for every ne w. Since % is an ultrafilter either
Ao = |J{Ru:nis even} or Ai = | J{R.: n is odd} belongs to %. Without loss of
generality, assume Ao€%. Enumerate U = Uon Ao as {u:ke w}. If
ug € [(2mk) (2mk + 1)!) then wk+1 > (2mx + 2)! and we have %, < g,’::—i;%
= 2 < 2k, Hence U is thin.

Proposition 4. (CH) Not every thin ultrafilter is selective.

Proof. Fix a partition {R.:ne€w} of w into infinite sets and enumerate
e = {fa < wl}. By transfinite induction on a < w; we will construct coun-
table filter bases % satisfying

(i) o is the countable filter base generated by Fréchet filter and {&\R. : n € w}
(i) F» = Fp whenever a < f8

(iil) % = | Ju<y P for y limit

(iv) (Vo) (VF € &) {n:|F N R = w} is infinite

) (Vo) 3F € Far) fu(F)e T
Suppose we know already . If there is a set F € % such that f;[F] e 7 then
put Fuy1 = Fu If (VF € F) fx[F] ¢ T then one of the following cases occurs.

Case A. (VF € ) {n:|f[ F 0 Ra]| = w}is infinite
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Fix an enumeration {Fm :me w} of %, According to the assumption the set
L, = {n:| f,[(Ni<wF 0 R,]| = w} is infinite for all m € w. Let us enumerate the
set {<m,ny:nel,, mew}as {p( ke w} so that each ordered pair {m, n) occurs
infinitely many times. By induction we will construct aset U = {i: ke a)} which
we may add to %,

Consider p, = {m, n). Since |f;[()<mFiNR,]l = @ we can choose u,e
€ (i<mFi 0 R, such that f,(ug) > 0. Suppose we know ug, ..., 1, ; such that
Uiy > Uy, U € (),<m Fj 0 R, where p; = {m,n) and f,(u;y() > (i + 1) f,(u) for
i < k — 1. Consider p, = {(m, n). Since ﬂismF, N R, and its image under f, is
infinite we may choose u;€()ic,F;N R, so that u, > u,_, and f, () >
>k 'ﬁ(uk 1).

It remains to verify that f,[U] is thin and &, U {U} generates a filter base
satisfying (iv).

e f,[U] is thin:

. fa(uk) . f(uk) T 1
o ) S e He ) L) e+ D)

e (VFeZ) {n:|lUnF nR,| = w}is infinite:

For every Fe &%, thereis mrewsuchthat Un FNn R, 2 Un ﬂismFF,- N R,
which is infinite whenever n € I, since U N (i<, F N R, 2 {14 : py = {mpnd}.
To complete the induction step let Z,+1 be the countable ﬁlter base generated by

Z, and U.

Case B. (AFye #,) {n: f,[F, 0 R,]| = w} is finite

Enumerate #\{E} = {F,:m > 0}. Since F, satisfies (iv) there is ny € w such
that |f,[Fo N R, ]| < w and |Fy n R,| = w. It follows that there is z, € ® such
that f, '[{z}]n F, N R,, is infinite. The set ()<, F; satisfies (iv) for any me w
and for all but finitely many n the set f,[()i<nF N R,] is finite. So we may
choose n, > n,_, such that f,[()i<nFiNR,,] is finite and (i<mF N R,
infinite. We find z,, such that f,"'[{z,}]n (i<m F; 0 R,,, is infinite.

=0

Consider the sequence <z,:me w). We can find a subsequence {z, :j€ w)
which is either constant or satisfies z,  , > G+ 1) z,, for every jew. Set
U = Ujeofi'[{z4}]- It is obvious that f,[U]eZ and (VFeZ,) {n:|Un
N F N R,| = w} is infinite.

To complete the induction step let %, be the countable filter base generated by
%, and U.

The filter base # = U(le Z, satisfies (iv) and every ultrafilter which extends

& is thin because of condition (V).

Claim: Every filter satisfying (iv) may be extended to an ultrafilter satisfying (iv).
Whenever & is a filter satisfying (iv) and A < w then either for every F € & exist
infinitely many n € w such that |4 N F N R,| = w, so the filter generated by & and
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A satisfies (iv) or there is Fy € & such that for all but finitely many n € w we have
|[A N Fyn R,| < w. Then since for every F € &# exist infinitely many n e w for
which |F n Fy n R,| = o the filter generated by & and w\A satisfies (iv). Hence
for every subset of ® we may extend & either by the set itself or its complement.
Consequently, # may be extended to an ultrafilter satisfying (iv). O

IV. Thin ultrafilters and Q-points.

Proposition 5. Every thin ultrafilter is a Q-point.

Proof. Let % be a thin ultrafilter and 2 = {Q, : n € w} a partition of  into finite
sets. Enumerate Q, = {¢':i = 0, ..., k,} (where k, = [Q,| — 1).

Define a one-to-one function f: w — w in the following way:
f(@) =0, f(g¢"") = (n + 2)- max {f (g} ), ks 1} forne wand f(q7) = f(qh) + i
fori<k,neow

Notice that f | Q, is strictly increasing for every n.
Since % is a thin ultrafilter there exists U, € % such that f[Uy] = {v,: me w}is
a thin set. Hence there is m; € w such that ;-5 < 5 ! for every m = my.

Since f is one-to-one and & a partition of w we find K = w of size at most
mqy such that {f ~'(v):i < my} S | Juex Q- The latter set is finite. Therefore
U = U\Unex Qs € 2.

Claim: (Vnew) |[UN Q,| < 1

The intersection is clearly empty for n € K. Assume for the contrary that for some
n¢ K there are two distinct elements u;, u,€ U N Q,, u; < u,. Then f(u;) = v,

for some m>n0 and f(%)—v for some n>m + 1. We get ;2= > & =
+

Um+1, = Un
uy (n+ n

+1
= Tl e = ) M+M = r2 where M = max {f (q;.'), k,}. But 752 > 2, a con-
tradiction. O

Note that while proving that every selective ultrafilter contains a thin set we
actually proved that every Q-point contains a thin set as the partition under
consideration consists of finite sets. However, Q-points need not be thin ultrafilters.

Proposition 6. (CH) Not every Q-point is a thin ultrafilter.

Proof. Fix {R,:n € w} a partition of w into infinite sets. Let {Z,: o < w,} be
the list of all partitions of w into finite sets. By transfinite induction on « < w; we
will construct countable filter bases %, so that the following are satisfied:

(i) &%, is the Fréchet filter
(i) &, = F4 whenever o < f8
(i) & = \Ju<, Z, for y limit
(iv) (Vo)(VF € #)(Vn)|F " R,| =
(v) (Va)(3F € oc+1)(\7’Q»59)|Fr\ gl<1
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Suppose we already know Z,. If there is a set F € &, such that |[F n Q| < 1 for
each Q € 9, then let #,,, = Z,. If (VF € &) (3Q € Z,)|F n Q| > 1, we construct
by induction a set U compatible with % such that |U n Q| < 1 for each Q € 2,

Enumerate Z, = {F:keow}, 2,={Q,:new} and list {R:new}=
= {M, : k € ®} so that each R, is listed infinitely often. To start the construction
of U choose uye M, arbitrarily. Since U@a = @ there exists ny € @ such that
Uy € Qe

Suppose we already know uy, ..., u; ; and ny, ..., n,  such that u;e Q, for
i < k. Since U,<k 0,, is finite and ﬂ,-< F, n M, is infinite according to (iv) we
may choose € (()i oFi " M\ Ji<k @, Let Q, be the unique element of
92, which contains u,.

Finally, let U = {i: k € }. For every n € w we have either U n Q, = {u} (if
n=mn)or UnQ,=0. It remains to check that U is compatible with %, and
satisfies (iv). However, for every F € &, and for every R, there is ny € w such that
UNnFAR,2U N (\icar FAR, 2 {th:k > ng, M, = R,}. The latter set is
infinite. Hence the countable filter base generated by &, and U satisfies (ii), (iv),
(v) as required and it may be taken as %, ;.

Because of condition (v) every ultrafilter which extends the filter base
F = Us<on % is a Q-point. Let 4 = {| }em R, : ©\M € 7 }. Condition (iv) in
induction assumption guarantees that # U ¥ generates a free filter on w. Every
ultrafilter % which extends & U ¢ is a Q-point but not a thin ultrafilter because
for every Ue % f[U] ¢ 7 where f:w — w is defined by f | R, = n. O
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