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We shall prove a combinatorial lemma from which it follows that the set g !(0) of 
zeros of a continuous and odd function g : S2 -> R, g( — x) = — g(x), from the 2-dimen-
sional sphere S2 contains a symmetric component. 

In 1945 A. W. Tucker [5] discovered a combinatorial lemma which serves as 
a base for a direct proof of the Borsuk-Ulam antipodal theorem for n = 2. Ky Fan 
[11 in 1952 extended Tucker's result for arbitrary n and established some 
generalization of the Borsuk-Ulam theorem. In this note we shall present a com­
binatorial lemma which differs from Tucker's result. We assume that the reader is 
familiar with a notion of triangulation on the sphere S2. 

Let T be a symmetric meridional-latitudal triangulation of the sphere S2 (i.e., xeT 
iff — x e T, see Figure 1). Especially, we require that any symmetric triangulation with 
"small spherical triangles" induces a triangulation of the equator E cz S2 onto "small" 
segments. Such a triangulation will be called a proper symmetric triangulation. Fix an 
odd map a :-+ {— 1, 1} defined on the set of vertices of the triangulation T; a( — x) = 
— cc(x) for each .x e V(T). For given two triangles S1? S2eT define a relation " ~ " ; 

S!~S2 iff a(S,nS2) = {-1 ,1} 

Observe that each maximal a-chain S0 ~ ... ~ Sm of triangles from T must be 

a-cycle i.e., S0 ~ Sw. Let us call an a-cycle to be symmetric if S0 ~ ... ~ Sm = 

Main Lemma. If oc: V(T) -> { — 1,1} is an odd map (labeling) defined on the 
set of vertices of a proper symmetric triangulation T of the sphere S2 then there 
exists at least one symmetric a-cycle 
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Figure 1 
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Proof. Let TE be a triangulation of the equator E induced by the triangulation T 
(see Figure 2). The number of the all completely labeled segments (i.e., such that the 
function a assumes on its ends both values — 1 and 1) is equal to 4s + 2, where s is 
a natural number. To see this, choose an arbitrary vertex a e V[TE). Since a is an odd 
map, we have a({— a, a}) = {—1, 1}. It is easy to observe that on "one half of the 
equator E from —a to a the number of completely labeled segments is odd, it is equal 
to 2s + 1 (see Figure 3). This and the fact that a is odd immediately yields the number 
4s + 2. 
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Figure 3 
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Now we can proceed to the proof of Main Lemma. Let us count the number 
M of non-symmetric a-cycles which occupy completely labeled segments from TE. 
First observe that each a-cycle occupies even number of completely labeled 
segments from TE. To see this, it suffices to observe that the trace of an a-cycle 
on the upper hemisphere is splitted onto disjoint family of a-chains such that each 
of them occupies exactly two completely labeled segments from TE (see Figure 4). 
Since for each non-symmetric a-cycle its antipodal image is also an a-cycle 
therefore the number M is equal to 4k. But the number of the all completely 
labeled segments is equal to 4s + 2. Thus at least one of completely labeled 
segments should be occupied by a symmetric a-cycle. 

Figure 4 
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Corollary. If a continuous map g : S2 -> R is odd then g l(0) contains a con­
nected and symmetric subset (component). 

Proof. Define an odd map a : S 2 - > { —1,1} such that a(x) = — 1 if g(x) < 0, 
a(x) = 1 if g(x) > 0 and for each pair of antipodal points x, — x e g_1(0) define 
a by an arbitrary way preserving only the odd condition; a( —x) = — a(x). Such 
defined map a has the following property; if a(x) = — 1 then g(x) < 0 and if 
a(x) = 1 then g(x) > 0. 

From the Main Lemma it follows that for each number n > 0 there exists 
a symmetric compact connected set Cn a S2 being the union of spherical triangles 
belonging to a triangulation Tn consisting of simplices of diameter less than -. 

Without loss of generality let us assume that there exist a converging sequence 
of points cn e Cn. Then according to Kuratowski's theorem [4, cf. 2] the upper limit 
C = Ls{Cn: n = 1, 2,...} is a symmetric and connected set. Since the continuous 
function g changes sign on each triangle contained in Cn and belonging to Tn, we 
infer that g(C) = 0. 

This corollary can be served as a simple proof of the Borsuk-Ulam antipodal 
theorem; 

For each continuous map f: S2 -> R2, f = (f, f2), there is a point ceS2 such 
that f(c) = f(-c). 

To see this let us put g(x) := f(x) — f( — x) and h(x) := f2(x) — f( — x). Then 
the functions g,h: S2 —> R are odd and according to Corollary there is a connected 
and symmetric set C a g-1(0). The map h as an odd continuous map changes signs 
on the connected set C and therefore there is a point c e C such that h(c) = 0. 
Since g(C) = 0 we infer that f(c) = f( — c). 

In our notation the Tucker lemma can be stated as follows; 

If a : V(T) -> { — 2, — 1, 1, 2} is an odd map from the set of vertices of a proper 
symmetric triangulation of the sphere S2 then there are two points x, y being 
vertices of a triangle from T such that a(x) = — a(y). 

Now we shall show how to get directly from the Tucker lemma the Borsuk-Ulam 
theorem. Suppose that there is a continuous map f: S2 -> R2 such that f(x) + 
f( —x) for each xeS2. Let g(x):= f(x) — f( — x), g = (gi, g2). Since 0 <£ g(S2) 
there is an rj > 0 such that g(S2) c: (— n, rj)2. The map g is uniformly continuous 
and therefore there exists a natural number n such that for each x, y e S2; 
\\x — yll < n implies ||g(x) = g(y)|| < r\. Fix a proper symmetric triangulation 
Tn of S2 consisting of triangles of diameter less that n and define a map a : V(T) -> 
{ — 2, — 1, 1, 2} satisfying the following condition; if a(x) = j then a;(x) > n and if 
a(x) = —j then g7(x) < rj. The map a can be defined by the formula; 
a(x) = j sgn gj(x), where; = min{r. \gt(x)\ > n). 

Since g is odd, the map a is also odd. Applying the Tucker lemma we obtain 
two points x, y being vertices of a triangle from T such that a(x) = — a(y). 
According to definition of a we have ||g(x) — g(y)\\ > 2n, a contradiction. 
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Consider the sphere S2 with a symmetric system consisting of finite number of 
meridian and latitudal lines as in Figure 1. This system induced a tiling T of S2 

onto spherical squares and triangles with a pole as a vertex. Fix an antisymmetric 
coloring a : T —• {w,b} into two colors; white and black (see Figure 5); a(P) = w 
iff a( — P) = b, for each P e T A tiling T with a fixed antisymmetric coloring will 
be said to be antisymmetric tiling onto white and black tiles. 

Figure 5 

A sequence P0,..., Pn of white [black] tiles is said to be rook's white [king's 
black] route if for each i < n the intersection Pt n Pi+1 is a segment [a nonempty 
set]. Using similar reasoning as in the proof of Main Lemma as well as in [3] it is 
possible to prove the following chessboard theorem 

If T is a antisymmetric tiling of the sphere S2 onto white and black tiles then 
there exists a symmetric path consisting of segments being the intersection of 
white and black tiles such that during a walk along the path on one hand there is 
a rook }s white [or black] route and on the other hand — king's black [or white] 
route. 
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