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On Projection of Nonseparable Souslin and Borel Sets along 
Separable Spaces 

PETR HOLICKÝ and VÁCLAV KOMÍNEK 

Praha 

Received 11. March 2001 

A method of reducing the study of subsets of products of a general (topological) space 
and a Polish space is used to derive several analogues to theorems of the classical 
descriptive set theory. Theorems on generalized projections, on bimeasurability, and on 
uniformization are obtained. 

Introduction and some notation 

The main aim of this remark is to point out which "classical" results on 
descriptive properties of subsets S a X x Y of products of two separable metric 
spaces can be, in a quite straightforward way, extended to more general non-
separable spaces X from the known separable versions by a reduction of the 
respective nonseparable problem to its separable analogue. As examples we 
investigate some results on "generalized projections" (i.e. the sets of x e X such 
that the sections Sx = {y e Y; (x, y) e S) are elements of some prescribed family of 
sets), on bimeasurability, and on uniformization. 

It turns out that the mentioned attitude has some principal limitations. We are 
able to deduce in this way only those results that do not assume analyticity of X. 
Thence our considerations point out to some problems that probably need a deeper 
study in the nonseparable case. 
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We formulate explicitly the mentioned "separable reduction" in Section 1. The 
applications to (generalized) projections, bimeasurability, and uniformization are 
presented in the next sections. Let us notice that we obtain e.g. a result of [L] and 
an improvement of [RW, Theorem 17]. 

We begin now by recalling some notions and notation. 
Given a family J f of subsets of a set X, we use S(jf) to denote the class of sets 

obtained from elements of the class #£ by the Souslin (or Aleksandrov) operation, 
i.e. the sets of the form A = (J (~]Aai^ak, where As e 2/f for each finite 

ff6l^w keN 

sequence 5 of positive integers. We denote the set of all finite sequences of positive 
integers by §, Later on we use the abbreviated notation o\k for (oh ..., ok). 

We use 30fa to denote the family of unions of all at most countable subfamilies 
of Jf. 

By Ji x tf we understand the set {Mx H;M e Ji,H e Jf7} for families Ji and 
Jf7 of subsets of sets X and Y, respectively. 

A mapping f of (X, Ji) to a topological space Z is called Jl measurable if 
f~\G) G Ji for every open subset G of Z. 

If X is a topological space, we denote by F(X), G(X), K(X) and B(X) the classes 
of all closed, open, compact and Borel subsets of X, respectively. The symbol 
(F A G) (X) stands for the family of sets of the form F nG with F e F(X) and 
G G G(X). 

The elements of S(B(X)) are called here Souslin subsets of X, their complements 
are called co-Souslin, and Souslin sets with Souslin complements are called 
bi-Souslin. Let us remark that S(F(X)) is in general smaller than S(B(X)) for 
non-metrizable spaces X, whence they coincide for metrizable X . Souslin and 
co-Souslin subsets of Polish spaces are also called analytic and coanalytic, 
respectively. 

1. A separable reduction 

We formulate here explicitely statements that will help us to deduce the results 
on subsets of nonseparable products in the next sections. The reduction of the space 
X to a separable space f(X) in Lemma 1 and its Corollary 2 was used more or 
less explicitly in other papers. One, in fact a bit more finer, application of such 
a reduction was used in the proof of [JR, Theorems 5.9.3 and 5.9.5] that are related 
to our Theorems 3(c) and 5(c). 

Lemma 1. Let X, Y be two sets, Ji be an algebra of subsets of X, 3tf be an 
arbitrary family of subsets of Y. Let S a X x Y be in S(J( x Jf). 

Then there exists an Jia-measurable mapping f : X —• {0,1}N such that the set 
T = {(/(x), y); (x, y)eS}^ f(X) x Y is in S(F(/(X)) x jf\ and Sx = 7 } w for 
every x e X. 
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Proof. Since S is in S(Ji x Jf), it may be written in the form 

where MseJi and Hs e ^ for s e S. 
For each s e S let f be the characteristic function of Ms. Let us define f : X —> 

{0, i f by f(x) = (f(x))se§. We prove that it is ^-measurable. The sets of the 
form li = {ie{0,lf ; T(A) = {1}, z(B) = {0}}, where A9B are disjoint finite 
subsets of S, form a countable basis for the topology of {0,1}S. As the preimage 
/ l(Ii) of l£ equals to (JMS \ \jMt, it is in the algebra Jl and the ^-measur-

seA teB 

ability of f follows from the countability of the basis. 
We define O: X x Y -> {0, I f x Y by <D(x, y) = (f(x), y) and we put T = O(S). 

Clearly <I>(X x Y) = f(X) x Y. The mappings f and O have the following properties. 
1) Obviously, f(Ms) = f(X) n {ie {0, If; T(S) = 1} and thus f(Ms) is clopen 

in f(X) and f~1(f(M5)) = Ms for each 5 e S. 
2) (D(S)= U f](f(Ma\n)xHff\H). 

The inclusion c is clear as 0( (J f) (M,|n x H0\n)) a J f] <&(Ma\n x Ha\n) 
OGNM neN oeN^ neN 

and 0(Ms x Hs) = f(Ms) x Hs for each s e S. 

Conversely, let z e f] (f(Ma\n) x Ha\n) for some a e NN. So z = (zb z2), where 

zxe f]f(Ma]n) and z2 e f]Ha]n. Cloose x e f - ^ ) . Then (x, z2) e Q A/CT)„ X 

Hal„"e<- S as f-!(f(Ms)) =£MS by 1), and hence z = (zb z2) = <D(x, z2je O(S). 
3) It follows immediately from 1) and 2) that d>(S) e S(F(f(X)) x jf) . 
4) It can be easily observed from the definition of f that 

-•-= u n-*..» = u n î« = w)/w 
{trjxe^n^M,-!.,} nef̂ J {ff;V„(/<-|„(x)-= 1)} nef^ 

for all x e X. This concludes the proof (noticing that {0, I f is homeomorphic to 
{0,1 }s>. n 

Corollary 2. Let X, Y Z?e two sets, Ji be an algebra of subsets of X, Jf7 be 
a family of subsets of Y. Let Sl a X x Y, where i e N (for some N a N), be in 
S(Ji x jj?). 

Then there exists an MG-measurable mapping f : X —> {0, i f such that the sets 
V = {(f(x), y); (x, y) e S'} cz f(X) x Y are in S(F(f(X)) x jf) and Sx = T/{x)for 
every xeX and i e N. 

In particular, if Sl form a partition of X x Y, then Tl form a partition of 
f(X) x Y. 

Proof. Let f\X—> {0, I f be the function whose existence is ensured by 
Lemma 1 such that the set Sl = {(f(x\ )); (x, y) e S1} is in S(F(f(X)) x jf) and 
such that Sl

x = Sl
fi(x for each x e X. 
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Let f: X -> ({0,1}N)N be defined by the equality f(x) = (f(x))ieN. Put now 
V = {(f(x\ y); (x, y) e y } . Then T = (f(X) x Y) n {(z,y); (z(i), y) e S1} is obviously 
in S(F(f(X)) x je) and Sx = Tf\x) for xeX. 

The claim on partitions follows immediately from the last equalities of "vertical 
sections". • 

2. Generalized projections along separable spaces 

Here we generalize the theorems on sets {xeX; Sxe£)}, where X is 
non-separable in general and Q) stands for a family of subsets that are in some 
sense small. The separable counterparts can be found e.g. in [Dl, Theorem 32] and 
[D2, Chap. 4, Theorems 50 and 51] and we also use the corresponding results to 
deduce our generalizations. We begin with a basic notion of hereditary coanalytic 
family used in this section. 

Let X be a topological space. A class <€ cz F(X) is called hereditary if H e %? 
whenever H e F(X), H cz F, and F e # . 

We denote by ^ * the class of all sets whose closure is in c€. 
If X is a separable metric space, we say that # cz F(X) is a co-Souslin family 

if ^ is coanalytic (equivalently co-Souslin) subset of the Effros Borel structure on 
F(Y) for some Polish completion Y of X. Here %! means the family of closures of 
elements of # in Y (cf. [D2, Rem. (d), p. 218]). 

One can find in [K, Chapter 35.G] or [D2, Chapter 4, Sect. 43] some examples 
of such hereditary coanalytic families ^ in Polish spaces, e.g. the families of all 
compact sets, of sets having at most one point, of finite sets, of closed nowhere 
dense sets, of compact sets that are null with respect to a given Radon measure 
can serve as such examples. Of course, the family consisting only of the empty set 
is hereditary coanalytic, too. This is to point out that the ordinary projections are 
covered by theorems on generalized projections. 

Theorem 3. Let X be a set and Ji be an algebra of subsets of X, Y be an 
analytic space, S cz X x Y be in S(Ji x F(Y)). Let <€ be a hereditary co-Souslin 
family of subsets of Y. 

(a) Then the sets 

Cx = {xeX\ Sx e <€*} and C2 = {xe X; Sx e <€*} 

are complements of sets from S(Ji). 
(b) If moreover the complement of S is also in S(Jf x F(Y)), then also 

C3 = {xeX;Sxe%} and C4 = {xe X; Sx e # ,} 

are complements of sets in S(M). 
(c) If moreover Y is Polish, the complement of S is also in S(Ji x F(Y)), and 

every element of <€ is o-compact, then the sets 
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C5 = {xe X; 0 + Sx e #} and C6{xeX; 0 + Sx e # , } 

are complements of sets from S(Ji) 

Proof, (a) Let S cz X x Y be in S(Ji x F(Y)), / and T be as in Lemma 1, and 
let D! = {zef(X); Tz e <€*}. It follows from Lemma 1 that Cx = f \D^). As / is 
Jla-measurable, it suffices to verify that Dx is a complement of a set from 
S(F(/(K))). Let Z be a Polish completion of f(X) and T' be an analytic subset of 
Z x Y with T n (f(X) x Y) = T. Applying [D2, Chapter 4, Theorem 50] we get 
that {zeZ; Tz $ <€*} is analytic, thus Souslin in Z, and so Dx = {zeZ; Tz' e <£*} n 
f(X) is co-Souslin in f(X). 

The claim for C2 follows similarly using [D2, Chapter 4, Theorem 51]. 
(b) Now let S and its complement be in S(Jf x F(Y)), S1 = S and S2 = Sc. Let 

/ T\ and T2 be as in Corollary 2 with N = {1,2}. Then T1 and T2 are in 
S(F(/(K)) x F(Y)), where f(X) and Y are separable metric spaces. Since T2 = T1C, 
it follows that T1 is bi-Souslin in f(X) x Y. 

To prove the claim on C3 and C4 it is enough to show that the sets 

D3 = {zef(X); Tz
l e <£} and D4 = {zef(X); Tz

l e <€a} 

are co-Souslin subsets of f(X). Let Z be a Polish completion of f(X) again. 
Since T1 is bi-Soushn in f(X) x Y, we can find SA, Sc cz Z x Y, the first being 

analytic (equivalently Souslin), and the second co-Souslin, subset of the analytic 
space Z x Y such that T1 = SAn (f(X) x Y) = Sc n (f(X) x Y). 

Let us consider a continuous h : NN -» Z x Y such that h(MN) = SA. Then 
define a closed set F cz Z x NN by (z, a) e F <-> nz(ri(a)) = z, and a family 
# cz F(NN) of all K such that n ^ K ) ) s g and h(K)Zx* cz Sc. 

The mappings K h^ ny(/i(K)) and K i—> /z(K) x are Borel measurable as h and 
n y are continuous by [D2, Chapter II, Theorem 10]. Thus the family <$ is 
coanalytic in the Effros structure of F(NN) using the fact that {FeF(Z x Y); 
F cz Sc} is co-Souslin due to [D2, Chapter II, Rem. 13c]. 

Using [D2, Chapter 4, Theorem 50 and Theorem 51] we get that 

D3 = {zeZ;Fze <£} and D\ = {ze Z; Fz e <£a} 

are complements of sets from S(F(Z)). As Tz e <£ if and only if Fz e <$ and T̂ 1 e <&a 

if and only if Fz e <£a for z e f(X), our claim easily follows from the equalities 
Dt = f(X) n D\ for i = 3 4. 

(c) Let Sl = S, S2 = Sc and / T\ and T2 be as in Corollary 2 with N = {1,2}. 
Since T2 = T1C, we have that T1 is bi-Souslin in f(X) x Y The set D = (z e f(X); 
0 ^ Tz e Ka(Y)} is a complement of a set in S(F(f(X))) due to [Dl, Theorem 31] 
and [D2, Remark (b), p. 255]. 

So C = f~l(D) is a complement of a set from D(Jt) because of the 
^4-measurability o f / We have C = {xe X; 0 4= Sx e Ka(Y)}, C5 = C n {xe X; 
Sxe<£}3 and C6 = C n {xeK ; S e r 4 . The sets {xeX; Sxe<€} and {xeK ; 
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Sx e ^ff} are complements of sets from S(Ji) due to part (b) and this concludes the 
proof. • 

To get some corollaries of Theorem 3 for topological spaces X, we need the 
following elementary lemma. 

Lemma 4. Let X and Y be Hausdorff spaces, Y having a countable basis. Then 

S(F(K x Y)) = S(F(K) x F(Y)) and S(B(K x Y)) = S(B(X) x B(Y)). 

Proof. Let {#n}neN be a countable basis of the topology of Y Let G c l x 7 
be open. For every x e G we find n = n(x) e N and an open H(x) c l s o that 
x e H(x) x Bn a G. The sets Gk = (J {H(x); xe G,k = n(x)} are open in X and 
G = \JkGk x Bk. Now Gc = Pi (Gk x Bkf and each of the sets (Gk x Bkf is a finite 

/cef^ 

union of sets from F(X) x F(Y). So all open subsets of X x Y are in (G(X) x G(Y))(T 

and all closed subsets of X x Y are in (F(K) x F(Y))ad. 
Since S(S(^)) = S(^ ) for any class of sets $f (see [JR, Theorem 2.3.1]) and 

S(Sf) is stable to countable unions and intersections (see [JR, Corollary 2.3.3]), it 
follows that S(F(K x Y)) c S(F(K) x F(Y)) and S(B(K x Y)) cz S(B(K) x B(Y)), 
whence the other inclusions are obvious. • 

Theorem 5. Let X be a Hausdorff space. Let Y be an analytic space, 
S cz X x Y be in S(B(K x Y)). Let ^ be a hereditary co-Souslin family of closed 
subsets of Y. 

(a) Then the sets 

C! = {xeX;Sxe%*} and C2 = {xe X\ Sx e <€*} 

are complements of sets in S(B(K)). 
(b) If moreover the complement of S is also in S(B(K x Y)), then also 

C3 = {xeX\Sxe^} and C4 = {xe X; Sx e ^a} 

are complements of sets in S(B(K)). 
(c) If moreover Y is a Polish space, S cz X x Y is such that both S and Sz are 

in S(B(X x Y)), and each element of ^ is o-compact, then the sets 

C5 = {xe X; 0 4= Sx e %} and C6 = {xe X; 0 4= Sx e <€a} 

are complements of sets in S(B(K)). 

Proof. According to Lemma 4, S(B(K x Y)) = S(B(K) x B(Y)). Moreover, 
S(B(K) x B(Y)) = S(B(X) x F(Y)) because of the metrizability of Y. So we can 
use Theorem 3 with Ji = B(K) to get all assertions of Theorem 5. • 

Remark. Of course, if X is a Hausdorff space, where open sets are in S(F(K)), 
then Cj's from Theorem 5 are complements of sets from S(F(K)), since S(B(K)) = 
S(F(K)) in this case. One statement of Theorem 1 of [L] says that, if X is 

38 



a topological space with G(X) c S(F(X)) and Y is a Borel subset of a Polish 
space, then {xeX; 0 #- SxeKff(y*)} is a complement of a set from S(F(X)). 
Obviously, this result follows from Theorem 5 (c). Whence Larman gives in 
[L] a proof of the classical theorem in the same time, correcting a gap in the 
original Kunugui's proof, we just deduce our a bit stronger statement from the 
classical one. 

3. B imeasurable mappings 

We use here results of Section 2 to deduce generalizations of two characterizations 
of Borel bimeasurable projections. The first concerns the combination of theorems 
of Luzin (see e.g. [K, Theorem 15.1]) and Purves [P] giving a characterization of 
all Borel measurable mappings between Polish spaces that map Borel sets to Borel 
sets. The other concerns the combination of the classical theorem of Arsenin and 
Kunugui and its counterpart proved in [HZ] characterizing those Borel measurable 
mappings that map closed sets to Borel sets in the classical setting. 

In the following assertion we need a perfect set theorem. We might consider 
complete metric space X and use that a Souslin subset of such an X contains 
a homeomorphic copy of the Cantor set if it is not cr-discrete. We prefer a more 
general formulation using isolated-analytic spaces that were introduced by R. W. 
Hansell under the name "descriptive spaces" in [H]. This class of spaces contains 
all Banach spaces, that have an equivalent norm with the Kadets property, endowed 
with their weak topology [H, Theorem 1.5]. 

A Hausdorff space X is isolated-analytic if there is a continuous mapping 
f: M -* X of some complete metric space onto X such that, for every discrete 
family of subsets Da, ae A, of M, we have f(Da) = Ea = (J Ea, where the 

neN 

indexed families {££; a e A} are relatively discrete (or, equivalently, isolated) in X. 
It means that every point of (J Ea has a neighbourhood intersecting Ea for at most 

aeA 

one index aeA.lt is not difficult to notice that an isolated subset of a topological 
space, i.e. a set whose one-point subsets form an isolated family, is the intersection 
of an open set and a closed set and so any cr-isolated set is Borel (cf. [H, Lemma 
3.4]). 

We need the facts that a Souslin subset of an isolated-analytic space is isolated-
analytic [H, Theorem 5.3] and that a regular isolated-analytic space that is not 
cr-isolated contains a homeomorphic copy of the Cantor set. The last statement can 
be proved similarly as [FH, Lemma 5.3] replacing the uniform discreteness by the 
relative discreteness. We have to take into account that every isolated-analytic 
space has a a-relatively discrete network [H, Theorem 5.1] and consequently that 
locally cr-isolated sets are cr-isolated. 

We use n ^ to denote the project on to X in the following theorem. 
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Theorem 6. Let X be an isolated-analytic regular space and Y be a Polish 
space. Let B ^ X xY be in bi-S(B(X x Y)). 

(a) Then UX(E) is in bi-S(B(X)) for every E e bi-S(B(B)) if and only if the set 
{xe X\ Bx is uncountable} is c-isolated. 

(b) Then UX{F) is in bi-S(B(X)) for every F e F(B) if and only if the set {xe X; 
Bx is not Ka(Y)} is o-isolated. 

Proof, (a) If set {x e X; Bx is uncountable} is cr-isolated, then obviously NE = 
{xeX; Ex is uncountable} is cx-isolated for each bi-S(B(B)) subset E of B. Each 
NE, being a-isolated, is (F A G)ff, so Borel. The set E = E\(NEx Y) is 
bi-S(B(K x Y)) and such that each section E'x is countable. So the complement of 
UXE is in S(B(K)) by Theorem 5(c) applied to ^ consisting of the sets that contain 
at most one point. The set UXE itself is also in S(B(K)) by Theorem 5(a) used to 
the family # = {0} this time. Since UX(E) = UX(E') u NE, so UX(E) is also in 
bi-S(B(X)). 

Conversely, let NB = {xe X; Bx is uncountable} be not cr-isolated. It is also in 
S(B(K)) by Theorem 5(a) applied to <& consisting of at most one-point sets again. 
So NB is isolated-analytic and it contains a homeomorphic copy of the Cantor set 
C as mentioned before Theorem 6. 

Due to [P, Theorem] there exists a Borel set E a B n (C x Y) with the 
projection to C being non-Borel in C. Since C n UX(E) is not Borel, UX(E) can 
not be in bi-s(B(K)). 

(b) If the set {xe X\ Bx $ Ka} is cr-isolated, then also NF = {xe X\ Fx $ Ka} is 
(j-isolated for each closed F c B . Thus it is also in (F A G)ff. The set F' = 
F\(NFx Y) is thus in bi-S(B(K x Y)), every section F^ is in Ka(Y). So the 
complement of UX(F') is in S(B(K)) by Theorem 5(c) with # = K(Y) and the set 
itself is in S(B(X)) by Theorem 5(a) applied to # = {0}. Since nx(F) = UX(F') u 
NF, UXF is also bi-S(B(X)). 

For the converse implication we use that the set {x e X; Bx is not Ka} is in 
S(B(X)) (Theorem 5(b) with # = K(Y)). If it is not rx-isolated, it contains a copy 
of the Cantor set C and using [HZ, Main Theorem] we find a closed set 
F cz B n (C x Y) with the projection to X being non-Borel, thus also not in 
bi-S(B(K)). • 

Remark. Another generalization of the results of Luzin and Purves for mappings 
between nonseparable complete metric spaces, and thence between "point-Luzin" 
spaces, was proved in [FH, Theorem 5.3]. 

4. Uniformization 

We shall give here an application of the separable reduction described above to 
derive an improvement of the classical Kondo uniformization theorem (see e.g. [K, 
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36.14]). Let us notice that some generalization of Kondo's theorem were proved 
in [RW]. As concerns the uniformization, our result is stronger than that of [RW, 
Theorem 17] as we uniformize complements of sets from S(B(X x Y)) and not 
only from S(F(X x Y)). Of course, for the case of X with G(X) cz S(F(X)), we get 
just another proof of [RW, Theorem 17]. 

Theorem 7. Let X be a Hausdorff topological space and Y be a Polish space. 

Let the complement of C cz X x Y be in S(B(X x Y)). 

Then there exists a set U cz C whose complement is also in S(B(X x Y)) which 

uniformizes C, i.e. HX(U) = n x ( C ) and Ux is a singleton for every x e HX(U). 

Proof. Using Lemma 4 and Lemma 1 to the complement S of C, we get the 
Borel measurable mapping / : X -> f(X) cz {0, I f and a set T e S(F(/(X) X Y)) 
as in Lemma 1. Applying Kondo's theorem we get the co-Souslin uniformization 
V for the complement of T in f(X) x Y. The set U = (f x id)'1 (V) is a uni­
formization of C whose complement (/ x id)~l (Vz) is in S(B(K x Y)) since the 
mapping / x id is Borel measurable. • 

Remark. A uniformization theorem for equivalence classes in nonseparable 
metric spaces is proved in [Ko, Theorem 3.1]. We do not see how to receive this 
result, or its corresponding improvement, by methods used above. 
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