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Received 11. March 2001 

In this paper we show a new construction of almost invariant subsets of the real line. 
We first define almost invariant sets in some linear space and then we transport them by 
some special linear (over the field of rational numbers) isomorphism between this space 
and the real line treated as a linear space over rationals. We show a construction of 
a nonmeasurable almost invariant subsets of the real line and then we discuss the 
existence of Lebesque measurable almost invariant sets. 

1. Introduction 

In 1932 W. Sierpifiski proved two basic results about the existence of almost 
invariant subsets of the real line. Namely (see [5]) he showed that 

• there are nontrivial almost invariant subsets of the real line, 
• Continuum Hypothesis implies that there are nontrivial almost invariant, 

Lebesgue measure subsets of the real line. 

We improve the above results and show that some assumptions, like Continuum 
Hypothesis, are necessary in the second result. 

We shall use standard set theoretical notations. We denote by |X| the cardinality 
of set X. If K is a cardinal numbe then by C/(K) we denote its cofinality. We 
identify the first infinite cardinal number co with the set of natural numbers. By 
c we denote the cardinality of continuum, i.e. c = 203. For any set X and a cardinal 
number K by [ X ] < K we denote the family of all subsets of the set X of cardinality 
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less that K. Similarly, [X]K denotes the family of all subsets of X of cardinality K. 
Ac denotes the complement of the set A. 

By (R we denote the real line and by Q the set of rational numbers. The rj-ideal 
of Lebesgue measurable subsets of real line is denoted by LL and the a-ideal of first 
category subsets of real line is denoted by IK. We recal that cov(K) = min{|S|: S ^ 
IK A (JS = IR}. Obviously cov(K) is an uncountable cardinal number and 
cov(K) < c. The Continuum Hypothesis and the Martin's Axiom imply that 
cov(K) = c. The theory ZFC u {cov(lK) < c} is relatively consistent, too (see e.g. 
[1]). At the end of this article we use forcing terminology from [3]. 

The notion of almost invariant sets were discussed in many papers, see e.g. [5], 
[6], [2]. Let us recall that if ^ = <G, + > is an infinite group then the set A ^ G 
is an almost invariant subset of ^ if 

{VgeG){\AA{A + g)\<\G\), 

where A denotes the symmetric difference of sets. Notice that if ^ = <G, + > is 
an infinite group, A = G and \A\ < \G\ or \G\A\ < |G|, then A is an almost 
invariant subset of ^ . We call such sets trivial almost invariant sets. Other almost 
invariant sets are here called nontrivial almost invariant sets. In other words, an 
almost invariant set A is nontrivial if \A\ = |G\^4| = \G\. The family of all almost 
invariant subsets of an infinite group <G, + > is a c/(|G|)-additive proper subfield 
of the field of all subsets of the basic set G (see [2]). 

2. Basic construction 

Let Qc = {xe Q c : lsupp(x)| < co},there supp(x) = {a < c : x(a) 4= 0}. We treat 
this set as a linear space over the field of rational numbers with operations defined 
as follows: (x + y) (a) = x(a) + y(a), (q • x) (a) = q • x(a), where q e Q. The 
space Qc is isomorphic with the direct union of c many copies of the field Q. By 
0 we denote the neutral element of this space. For each a < c we put 
ea = ((c\ {a})x {0})u {(a, 1)}. Then {ea: a < c} is a linear base of the space Qc. 

By CQ we denote the set ( J{Q T : T e [c]c} and for each / e CQ we put 

< /> = {xe Q c \ {0}: ms(x) e dom(f) A x(ms(x)) = f(ms(x))} 

where ms(x) = sup(supp(x)). Notice that if / e Qc then the definition of the set <f> 
is slightly simpler, namely we have <f> = {XE Q C \ {0}: x(ms(x)) = f(ms(x))}. 

Theorem 1. For each f e CQ the set <f> is a nontrivial almost invariant 
subset of(Qc, +) . 

Proof. Let t e Q c \ {0} and a = ms(t). Notice that if x e Q c \ {0} and a < ms(x) 
then ms(x + t) = ms(x) and x(ms(x)) = (x + t) (ms(x)). Therefore 

« / > + t) A </> = {xe Q c : supp(x) < a}, 

so |«f> + t) A <f>| < |[a]<-| < |a| • co < c. 



Obviously |<f>| = c. Moreover <f> n <g> == 0, where g = {(a,f(a) + l ) : a e 
dom(f)}, so <f> is a nontrivial almost invariant set. • 

The next corollary is a generalization of Sierpinski's first result mentioned above 
about the existence of almost invariant sets. 

Corollary 1. There exists a partition {Bq}qeQ\^ of IR\{0} into Lebesgue non-
measurable, nontrivial almost invariant sets such that (Vg e Q\{0})(I^ = q • B{). 

Proof. For each q e Q\{0}we put Aq = <q>, where q = {(a,q): a < c}. Notice 
that Aq = q- Ax and that the family {Aq: q e Q\{0}}is a partition of the space 
Qc\{0}. Theorem 1 implies that Aq is a nontrivial almost invariant set for each 
qeQ\{0}. 

Let cp : Qc -> IR be a linear isomorphism over Q and let Bq = cp(Aq). Then the 
family $F = {Bq: q e Q\{0}}is a partition of tR\{0}into nontrivial almost in­
variant sets and (\/q e Q\{0})(Bq = q • B{). 

If one set from the family 3F has the Lebesgue measure zero then each set from 
this family has the Lebesgue measure zero, too, but [J{Bq: qe Q\{0}}= IR\{0}, 
which is impossible. Suppose hence that the Lebesgue measure of one set from this 
family, say Bq is positive. But Bq + Bq ^ Bqu B2q c 1R\{0} and Steinhaus' 
theorem (see [4] implies that there exists a non-empty interval I such that 
/ .= Bq + Bq. Let peQ n (1, 2) be such that I n p • I -# 0. But then 
0 #= I n p • I c (Bq\j B2q) n (Bpq u B2pq) = 0. This contradiction shows that no 
set from the family J^ is Lebesgue measurable. • 

Sierpinski in [6] showed that there exists an almost invariant set A c: [R such 
that A and Ac contains a nonempty perfect set. The next corollary is a generaliza­
tion of this result. 

Corollary 2. There exists a family {Na: a < c} of pairwise disjoint almost 
invariant subsets of U such that Na contains a nonempty porfect set for each a < c. 

Proof. Let P c IR be a nonempty perfect set of algebraically independent 
elements. Let {Pa: a < c} be a family of nonempty pairwise disjoint perfect 
subsets of P. Let {7^: a < c} .= [c]c be a family of pairwise disjoint sets such 
that |c\ U{Ta: a < c}| = c. Let q>: Qc -> IR be a linear isomorphism over Q such 
that cp({e^: £ e Ta}) = Pa for each a < c. Then {(p((Ta x {l}>): a < c} is a required 
family of almost invariant sets. • 

3. A lmost i n v a r i a n t Lebesgue measu re zero sets 

In this section we discuss the existence of Lebesgue measurable, almost 
invariant subsets of the real line. It is easy to check that if L is such a set then 
Lei or [R\LeO_. 

Let Odd = {a < c : (3£) (In e co) (C is a limit ordinal A a = { + 2 - n + 1)}. 
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Theorem 2. Suppose that cov(K) = c. Let U = K u L where KeK and 
L e\L. Then there exists a linear isomorphism (p : Qc -> U over the field of rational 
numbers such that (p({xe Qc\{0} : ms(x) e Odd}) c= L. 

Proof. Let ^ be a fixed well-ordering of U of the order type c. We shall build 
by a transfinite recursion of length c some Hamel base {h^<c. Suppose that a < c 
and that the sequence {h^<a is defined. Let Ha be the linear span of the set 
{e£: £ < a} and let (pa: Ha -> IR be the unique linear function such that (pa(e^) = h^ 
for each £ < a. If ccec\Odd then let ha be the ^ — first element of the set 
ER\ (pa(Ha) (note that H0 = {0}). If a e Odd then let ha be any element of the set 

C\{r(L- (pa(y)): q e Q\{0} A y e Ha}\(pa(Ha). 

The assumption cov(K) = c implies that the above set is non-empty. Finally, let 
(p be the unique linear over Q isomorphism between Qc and U such that 
(Voc < c) ((p(ea) = ha). This is the required mapping. D 

The next result is a generalization of the second, mentioned above, Sierpihski's 
result about the existence of almost invariant sets. 

Corollary 3. Suppose that cov(K) = c. Then there exists a Lebesgue measure 
zero, nontrivial almost invariant subset of the real line. 

Proof. Let (p: Q c - • R be a linear isomorphism over Q such that (p({xe Q c \ {0}: 
ms(x) e Odd})e I. Let / = {(a, 1): a e Odd}. Then <f> c {Xe Q c \{0}: ms(x) e 
Odd} and, by Theorem 1, <f> is a nontrivial almost invariant subset of the space 
Qc. Therefore (p((f}) is a required subset of BR. • 

We show now that the existence of Lebesgue measure zero, nontrivial almost 
invariant subset of the real line cannot be proved in the theory ZFC without any 
additional assumption. 

Theorem 3. The theory ZFC u {-|(3_4 ^ R) (\A\ = 2wAAelAAis almost 
invariant)} is relatively consistent. 

Proof. Let M be a countable standard model of the theory ZFC u {2° = K2}. 
In the model M for each infinite subset T of (Dx we define the family BT of Borel 
subsets of the space {0,1 }T, the cr-ideal LT of measure zero subsets of the space 
{0,1 }T with respect to the standard product measure and the boolean algebra 
RT = BT/LT. Note that RM is the standard measure algebra and that ROH is the 
standard measure algebra which adds simultaneously co{ random reals. Note that if 
T ^ col then we may consider RT as a complete subalgebra of the algebra ix.^.. 
Let G be a Rm-generic set over model M and let N = MRcoi[G^. Then 
N\= 2W = K2. 

Suppose that A e N and N N (\A\ = X2 A A $ L). Let a e cow n 1V be a Borel 
code of a measure zero set such that N^= (A c= #a ) , where #a denotes the Borel 
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set coded by a. It follows from the countable chain condition of the boolean 
algebra RCOl that there exists a set S e [cOi]60 such that a e M[G n Rs]. Let us fix 
an increasing family {Ta}a<a)l of countable sets such that [JT0 = S and [J{Ta: 
oc < co{} = co{. The sequence ( H n M[G n BT]: oc < coxy is definable in the 
model N. Notice that N[= (A = (J {A n M[G n BTa~] : a < cOJ), so there exists 
C < co{ such that N\= (\A n M[G n 5 T J | = co2). Let B = 4 n M[G n £ r J and 
let L7 G [coj"0 be such that U n Tc = 0. Let r be the canonical random real 
generated by G n Rv. Then r is a random real over the model M[G n BTJ. Notice 
that B cz [R>M[Gn5T;]. Therefore for each x e B the real r + x is a random real over 
M[G n £ T J . Notice that a e M[G n £ T J . Hence NN ((r + B) n # a = 0. But 
4 gz # a and £ gr A This shows that |4 A (4 + r)\ > \B\ = 2°\ so 4 is not an 
almost invariant set. • 
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