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On Dense Subsets of Rational Numbers 
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Received 11. March 2001 

In this article we consider the family of dense subsets of rational numbers as a partially 
ordered set. We define cardinal numbers pQ and tQ for this partial order and we prove 
that pQ = p and tQ = t, where p and t are the classical cardinal numbers describing 
combinatorial properties of the family of all infinite subsets of natural numbers. We also 
consider some variant of spli ting number of dense subsets of rationals. 

1. Introduction 

The structure of the family P[co)/fin of all infinite subsets of natural nuimbers 
co modulo finite sets has been intensively investigated by many authors. One 
reason for its importance is a natural connection of this structure with the 
Cech-Stone compactification of natural numbers. Some results are contained in the 
van Douwen diagram (see [4]) which illustrates inequalities between certain 
cardinal numbers connected with properties of the structure P[co)/fin. In this paper 
we shall present some results about the family of dense subsets of rational numbers 
Q modulo finite sets. 

We use the standard set theoretical notations. The set of natural numbers is 
denoted by co. We identify the set co with the first infinite cardinal number. The 
cardinality of a set A is denoted by \A\. The family of all functions from set A into 
set B is denoted by BA. Cardinal numbers are usually denoted by small Greek 
letters. If K is a cardinal number then \_A]K denotes the set [X c= A : \X\ = K). If 
4 , B are sets then 4 c * B means that |-4\B| < co. A family X c [c0]w is centered 
if |P|F0 = co for each finite F0 ^ X. By p we denote the least cardinality of 
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a centered family X <= [co]w such that there is no infinite set d e [co~\M such that 
d .=* x for each x e X. By t we denote the least cardinal number K such that there 
exists a c=*-decreasing function f: K; —> [co]w such that there is no infinite set 
d e [co]w such that d = * f(a) for each a < K. 

If cp,\j/ e of3 then the relation cp <* \j/ denotes that (3rc G CO) (Vk > n) ((D(n) < 
i//(n)). A family F <= cow is unbounded if there is no ^ G cow such that cp <* \\j 
for each cp G F. By b we denote the least cardinality of an unbounded family 
of function from of. It is well known that cox < p < t < b < 2™. By d we 
denote the least cardinality of a such family D of subsets of co that 
(Vfeco")(3deD)(f<*d)(see[l]). 

The family of all dense subsets of Q is denoted by D(Q). The set of real numbers 
is denoted by IR. Let U_ denotes the cr-ideal of Lebesgue measure zero subsets of 
[R and let K denotes the rx-ideal of first category subsets of U. If I is an arbitrary 
ideal of sets then let add(l) = min{|S|: S ^ I A (JS <£ /} and cov(l) = min{S ^ 

/ A us = UI}-

2. Main result 

We begin our consideration with one classical observation formulated by W. 
Sierpinski (see e.g. [3]). 

Lemma 1. (Sierpinski) There exists a function F: Q -> co such that 
1. (Vneco)(\F-\{n})\< co) 
2. (V.4 G [co]™) (F"1 (A) is a dense subset of Q). 

Proof. Let (pn)nGCO be an enumeration of the set of all prime numbers. Let f = 
{<^, n) : n e co A 0 < i < pn} and D = dom(f). Then D is a dense subset of the 
interval (0, 1) without end-points. Let cp : Q -> D be an order isomorphism between 
structures (Q, < ) and (D, < ) . Then F = f O cp is a required function. D 

W, Sierpinski used the above Lemma for construction of a family of dense 
almost disjoint subsets of rational numbers. Namely, suppose that A is a family of 
pairwise (almost) disjoint subsets of natural numbers and let F be a function from 
Lemma 1. Then {F_1(X): X e A} is a family of dense pairwise (almost) disjoint 
subsets of rational numbers. 

Let p Q denotes the least cardinality of a family D c D(Q) such that f]F e D(Q) 
for each finite family F !== D and there is no d e D(Q) such that d c=* x for each 
xeD. Similarly, let tQ denotes the least cardinal number K such that there exists 
a ^-decreasing function f :K -> D(Q) such that there is no d e D(Q) such that 
d .=* f(oc) for each a < K. 

Now we prove the main result of this paper. A part of the proof of main theorem 
(inequality t < tQ) was embedded in one proof of A. Szymafiski (see Theorem 2) 
and was independently rediscovered by G. Labedzki. 



Theorem 1. p = pQ and t = t 0 . 

Proof. We prove first that p ^ p©. Suppose that K < p and that <Da: a < K) 
is a centered family of dense subsets of rational numbers. Let </n: n e co} be the 
family of all intervals with rational end-points. Let us fix n e co. Then <Da n / „ : 
a < K) is a centered family of sets, hence there exists an infinite set Yn .== In such 
that (Va < K) (Yn .==* Da). Let cpa e cow be a function such that 1^\ {<̂  : k < cpa(n)} 
.== Da for each ne co. Since p < b there exists a function cp e cow such that 
(Va < K) (cpa < * cp). Let Y = \J{Yn\{qk:k < cp(n)} :neco}. Then Y is a dense 
subset of Q and it is easy to check that Y ^ * Da for each a < K. 

Next we show that p® ^ p. Suppose hence that K < p Q and that {Xa: a < K} 
is a family of infinite subsets of co. Let F : Q -> co be a function from Lemma 1. 
Then {F_ 1(Xa): a < K} is a family of dense subsets of Q of cardinality less than 
p Q . Let D e D(Q) be such that D c * F_1(Ka) for each a < K. Then F(D) is an 
infinite set and F(D) .=* Xa for each oc < K. The proof of the equality t = tQ is 
similar to the presented one. D 

We shall give now one application of Theorem 1. 

Theorem 2. (Szymaiiski) t < add(K) 

Proof. Suppose that K < t and that <D a : a < K) is a sequence of dense open 
subsets of the real line R. By transfinite induction on a < K we build a ^ - d e ­
scending sequence <Sa: a < K) of dense subsets of Q such that Sa <== D a for each 
a < K. Since K; < t = t e , there exists a dense set S .== Q such that S <^* Da for 
each a < K. Let S = {^}neco- F ° r e a c h a < K: we find a function (Da e cow such that 
the relation 

Sn j-VSn + — 7 - T ) = ^oc 

<pa(n) <pa(n)/ 

holds for every ri e co. Let us recall that the inequality t < b holds (see [1]). Let 

cp e cow be a function such that (Va < K) (cpa <* cp). Then it is easy to show that set 

D = П U(s« — П ' s« + — г.) 
/ c G o J n > f c \ <!>«(")' " ^ ) j 

is dense and is contained in the intersection of the sequence <D a : a < K>. El 

3. Dense embedding 

Suppose that S .== [co]w. We say that the function cp : co -> Q is a detzse 
embedding of the family S if (D is an injection and (p(yl) G D(Q) for each yl G S. Let 
#V<7 denotes the least cardinality of a family S c= [co]w for which there is no dense 



embedding. It is easy to see that each countable family of infinite subsets of co has 
a dense embedding and it is easy to see that there is no dense embedding of the 
whole family [cO]w. Therefore co < deq < 2W. 

Let us recall that a family R = P(co) is a reaping family if for each set A = co 
there exists X e R such that X = A or X = co\A. The least cardinality of 
a reaping family of subsets of co is denoted by r (see [1] or [4]). 

Lemma 2. Suppose that f g eco™ are strictly increasing, N eco are such that 
(Vrz > N) (f(n) < g(n)) and g(0) > 0. Then (Vn > N) (gn(0) < f(gn(0)) < gn+l(n)). 

Proof. Notice that k < g/c(0), f(k) for each k e co. Let n > N. Since f is strictly 
increasing, we have gn(0) < f(gn(0)). Moreover gn(0) > n, so we have f(g"(0)) < 
g(gn(n)) = gn+1(n). H 

Theorem 3. max{cov((K),cov(lL), b} < deq < r 

Proof. Suppose first that R is a reaping family of subsets of co. Suppose that 
<D : co -> Q is a dense embedding of the family R. Let A = cp~l([0, oo) n Q). Let 
X e R be such a set that X = A or X = co \A. If X c A then cp(X) = [0, oo) n Q 
and if X = co\ A then cp(X) = ( — oo, 0) n Q, so in both cases cp(X) is not a dense 
subset of rational numbers. This shows that deq < r. 

Suppose now S is a family of infinite subsets of co and that \S\ < cov(K). Let us 
treat Q as a discrete metric space and let us consider the product polish metric 
space Qw. Let T = {xe Qw : (Vn, m e co) (n < m -> x(n) 4= x(m))}. Then T is 
a closed subset of the space Q"0, hence is a polish space, too. Let us fix an 
enumeration {ln}new of all subintervals of Q with rational end-points. For each 
A e S and n eco we put DAn = {xe T :(3ke A) (x(k) e In)}. Then DAn are dense 
and open subsets of the space T. Hence the intersection f]{DAn: Ae S A ne co} 
is non-empty. It is easy to check that each element from this intersection is 
a required dense embedding of the family S. Hence we proved that cov(K) < deq. 

Let us assume now that S is a family of infinite subsets of co and that |S| < 
cov(L). Let Mn = {yn: 0 < i < pn} where pn is the n-th prime number. Let us 
consider a measure \in on the family of all subsets of the set Mn defined by the 
formula ^(,4) = ^ and let us consider the product measure space (M, kt) = 
f|(M„, fin). This measure space is isomorphic with the standard Lebesgue measure 

n 

on the interval [0, 1]. Let us fix an enumeration {ln}neco of all subintervals of 
Q with rational end-points. For each A e S and n e co we put DAn = {xe T: 
(3k e A) (x(k) e In)}. Notice that 

li(M\DA,n) = Y\fik({xeMk:x$In} =< (1 - \In\)™ = 0, 
/ c e A 

hence ^(DAn) = 1. Therefore the intersection f^{DAn: Ae S A ne co} is 
non-empty. It is easy to check that each element from this intersection is a required 
dense embedding of the family S. Hence we proved that cov(L) < deq. 



Suppose now that S .= [co]w and \S < b. For each A e S let fA : co -> A be 
a strictly increasing surjection. Let g e cow be are strictly increasing function such 
that (VAeS)(fA <* g) and g(0) > 0. Let Kn = [gn(0\ gn+1(n)). Then for each 
jleSwe have (3N) (Vn > N) (A n Kn 4= 0). Let us fix an enumeration {/„}nEC0 of 
all subintervals of Q with rational end-points. Let {Jn}nECO be a family of pairwise 
disjoint infinite sets such that Jn cz In for each ne co. Finally, let cp : co -> Q be 
such that cp(Kn) cz Jn. Then (D is a dense embedding of the family S. This shows 
that b < deq. This finishes the proof of theorem. B 

We say that a set X e [co]w splits a set A e [co]w if \A n X\ = \A\X\ = co. Let 
us recall the next two cardinal numbers used to describe combinatorial properties 
of the family of infinite subsets of co : s = min {\D\: (V_4 e [co]w) (3X e D) (X splits 
A)}, K0 - s = min {|D|: (VF e ([co]10)0) (3X e D) (Vn) (X splits F(n))}. Notice that 
b < s < K0 — s (see [2]). We define a splitting number for dense subsets of Q as 
follows: sQ is the least cardinality of a family D subsets of Q such that for each 
dense subset A cz Q there exists X e D such that both sets A n X and A\ X are 
dense in Q . 

Theorem 4. sQ < K0 — s 

Proof. Suppose that D cz [co]w is a such family of sets that for each F : co -+ 
[co]w there exists X e D such that (Vn) (X splits F(n)). Let cp : Q -> co be any 
bijection. Then the family {cp~l(X): X e D} splits all dense subsets of Q into dense 
sets. Indeed, let D be a dense subset Q and let {ln}nG(a be an enumeration of all 
nonempty open subintervals with rational of Q. Let us consider the function 
F(n) = cp(D n In). There exists a set X e D such that (Vn e co) (\F(n) n X\ = 
\F(n)\ X\ = co). Then (Vn eco)(DnInn cp~\X) + 0 A (D n In)\ cp-\X) + 0). • 

Theorem 5. min {deq,sQ} < K0 — s 

Proof. Suppose that S is a family of subsets of co such that \S\ < deq and 
\S\ < sQ. Let cp : co -> Q be a dense embedding of the family S. Then |{<p(X): X e 
S}\ < sQ SO the family S does not densely split all dense subsets of Q, i.e. there 
exists a dense subset A cz Q such that 

(VX eS)(An cp(X) $ D(Q) A _4\ cp(X) $ D(Q)). 

Let {ln} eco be an enumeration of all subintervals of Q. Then we have 

(VX e S) (3n e co) (\(A n In) n cp(X)\ < co A \(A n In)\ cp(X)\ < co), 
so 

(VX e S) (3n e co) (\An n X\ < co A \An\X\ < co), 

where An = cp~\A n In). Note that An is an infinite set for each ne co. Therefore 
S is not an K0 splitting family for infinite subsets of co. • 
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