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On the Isomorphic Classification of Weighted Spaces
of Holomorphic Functions

W. LUSKY
Paderborn

Received 11. March 2000

We show that there are only two isomorphism classes for weighted spaces of holo-
morphic functions on the unit disk with moderately decreasing weights. In particular
a space of holomorphic functions with a weighted sup-norm here is either isomorphic to
l, or to H,, depending on special properties of the weight which can be easily checked.

1 Introduction

We deal with Banach spaces of holomorphic functions on
D= {zeC:lz] < 1}.
ForO <rand1 < p < oo put

wihin) = (o [ ireenan)”

0

and Moo(fa r) = Suplzl=rlf(z)|'
We study holomorphic functions f on D where M,(f, r) grows in a controlled
way as r — 1 according to a given weight measure u. So, let u be a positive

bounded Borel measure on [0, 1] and put, for 1 < p < oo,
1 1/q
= <j M, ) d,u(r)) fl<g<o
0

and ”f”p,oo = Sup05r<l(Mp(fs 7') ,u([r, 1])) Define
B, (#) = {f:D — C: f holomorphic, || f,, < o}
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and
Byow) = {f € Byol):lim M,( £, ) ([, 1]) = 0}.

The assumption of boundedness of u ensures that these spaces contain all
polynomials. The B, (u) are Banach spaces under the given norms ||| nq (S€€
[13]). We want to assume that y satisfies

(1) tim (7 1]) = 0.

(If #({1})> 0 then we would obtain, for example, that B, ,(u) is isomorphic to H,.)
Moreover we want to assume that

0 < u([r,1]) foreach r< 1. (1.2)

((1.2) is not really a restriction. If supp u < [0, a] for some a < 1 then we could
replace, [0, 1] by [0, a] and use substitution to reduce everything to the case
a=1)

So from now on we assume (1.1) and (1.2). Note that we obtain, for a holo-

morphic function f: D — C,
1

f€B, . () ifandonlyif M,f,r)=0 <m> as r — 1

while
1

feB,ow ifandonlyif M,f,r)=o0 <m> as r— 1.

B, (1) and B, (1) have been studied by Shields and Williams ([19], [20]) and

by many other authors.
Similarly, the elements in Bpsq(,u) for 1 < g < oo are characterized by average

growth conditions for M,(f, ).
Example. Let du(r) = 2nr dr. Then

11, = (”Dv(x T i) d dy)w

and B, (u) is the classical Bergman space.
The aim of this paper is to finish the isomorphic classification of B, () for
moderately decreasing u which was started in [12] and [13].

1.1. Definition. Let x be a bounded Borel measure on [0, 1] satisfying (1.1) and
(1.2). We consider the following conditions

wr—21])

© P =2 )

. . .u([l - 2_n‘k’ 1])
*k inf lim sup — <1
( ) k=12.. n-wm H([l — 27 1])

For further characterizations of the conditions (*) and (#x) see [4].

< and
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Examples. dy(r) = (1 — r)*dr for some o« > —1 and dp(r) = r’ dr for some

B > —1 satisfy (*) and (). (This includes the Bergman spaces.) On the other hand,
i 1

H3 = kgl k(k n 1) 01 -k

dr
duy(r) = (I —r)log’ (e/(1 — 1))

fulfill () but not (xx).

and
for some y > 1

In [13] it was shown that
B, (1) is isomorphic to (Y, @ L), for any q if 1 < p < oo provided that
I satisfies (x).

(For Banach spaces X, we put
1/q
= {(x):x, e X, for all n, <Z||x,,|lq> < o}

o)
" W i1 <y

<Z @ X,,) = {(x): x, € X, for all n, sup ||x,| < co} and
n (c0)

q)

n

<Z ® X">(0) = {(x)e <Z @ Xn> : lim [|x,|| = 0})

() "%

Now we clarify the remaining cases. Let A} = span{l,z, z*, ..., z"} be endowed
with the norm M,(f, 1). Then we have

1.2. Theorem. Let y satisfy (x). Assume that p € {1,0}.

If u satisfies (x*) then B, (1) is isomorphic to (3, ® I}), for arbitrary q.

If u does not satisfy (xx) then B, [u) is isomorphic to (3, ® A}), for
arbitrary q.

The first part of the theorem was already proved in [13], Corollary 2.7. We
prove the remaining part in section 3.

1.3. Corollary. Let p satisfy (x). If w also satisfies (x*) then B, ,(u) is
isomorphic to l,.. If u does not satisfy (x) then B, (1) is isomorphic to H.,,.

Proof. If u satisfies (+x) then B, (u) is isomorphic to (), @ I%)., which is I,
Otherwise B, .,(1) is isomorphic to (Y, @ A% )w) which itself is isomorphic to
H_ ([22], II1 E 18). ]

Problem. Does Theorem 1.2. remain true if u does not satisfy (*)"

In [13] also the corresponding spaces b, (#) of harmonic functions were
investigated. It turned out that, in contrast to B, (1), b, /(1) is always isomorphic

to(d, @ l;’)(q) if p satisfies (x).
53



This is no longer true if we drop the assumption (x): In [14] an example was
constructed where both spaces, B, (1) and b, (1) are not isomorphic to I,.
On the other hand, if y([r, 1)] = exp (—1/(1 — r)), then u does not satisfy (x).
But here B, (1) and b, .(u) are isomorphic to L, (see [15]). So, also in the case
where () does not hold, there are at least two different isomorphism classes of

Bw,oo(u).
In the following, if not noted otherwise, p is always a fixed element of [1, co]
and q is a fixed element of {0}u [1, oo].

2 The spaces (3, @ 4;),
For f(re”) = Yysou* e put
(21) (O',,f) (r eie) = Z Ol
k=0

It is well-known that o, is contractive with respect to the norms M,(f,r) (for
fixed r), see for example [10].

n—=k
n

O‘krk eik(i

2.1. Lemma. Let n, and n, be positive integers. If m < min(n,, n,) then there is
an isometry i: Ay — (A @ A%), and a projection P : (A} @ AP, — i(A4}) with
IP|| < 2 and

(2.2) P(z*,0) = 0 = P(0, 2" if k>m.
Proof. Put (Uf)(z) = z"f(2). Define
. m m 1
i ( Y (xkz"> =Y Xz (24, z7h)
k=0 k=0
which is easily checked to be an isometry. (Recall, we consider the norms M p(-, 1).)
Then take P : (Ay' @ Ay?), — i(Ajy) with

P(f,g) = (0nf + Uo,g, Us,f + 0,9).

Hence L
(N ifk<m
P(z5,0)={ " (& ~— 7 and
(= 0) { 0 else
m—k( m—k _ky
—(z 2 ifk <m
PO, kY — m ( > >
( Z) { 0 else
This shows in particular that P is a projection. We have ||P| < 2. O

2.2. Lemma. Let (ny) be a sequence of positive integers such that supy n = co.
Then
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Lo) a (Cosuoreme. )
n q n n
are isomorphic to (3, ® A;‘)(q).

Proof. Put X = (},, @ 4})yand Y = (X @ X @ ...)(;. Clearly, by counting
all positive integers infinitely many times we see that Y is of the form (3, @ 4}¥),
for suitable n,. Using Lemma 2.1. we see that (), @ A4}"), is isomorphic to
a complemented subspace of X. Moreover, by Lemma 2.1. for suitable pairs of
components, (A, A7¥), we obtain that X is isomorphic to a complemented
subspace of (Y, @ A;")(q). Since this is true in particular for (3, @ Ay), =Y
Pelczynski’s decomposition method yields that Y is isomorphic to X and then, that
Ok ® 4y in general is isomorphic to X. O

(@)

3 Some convolution operators

For f(z) = Y k=002 put

n+1 m+l L

(3-1) (Rf)(2) = Zak2+ 2

ka
k=2"n+1 2

Then we have (see (2.1)) R, = 205.+1 — 0,.. Hence M (R, f, r) < 3M(f,r) for
any p and any r > 0.

Moreover define
(32) (Paf) (&) = Yoam2™
=0

P, is a projection and we have M (P, f,r) < M,(f,r) for all p and r > 0. This
follows from the fact that

1 2m—1 2 .
)0 =5 2 /(e (31)2)
since, for any integer k,

1 2’"21 exp <2nkj i) 3 {1 if ke2"z
om n

m
fr 2 0 else
3.1. Lemma. Let ny < n, and n; < n4 be positive integers and put X =
n n n 1_ n n n, 1_ .
span{Z" ¥, 222 2T Y = span{Z7, 272, L, 2L Fix some

radii r > 0 and s > 0 and some constants ¢ > 0 and d > 0. Consider the norms
M,(f,r)c on X and M,(g, s)d on Y. Let m = min(2"~™ =", 2n="=1),

Then there is an isometry i : Ay — (X @ Y) and a projection Q :(X @ Y), —
i(Ap) with |Ql < 2 such that
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(3'3) ((an - Rnx)f’ (R"4 - R"3) g) = (fs g)
whenever (f, g) € i(A}).

Proof. Recall that, for f(z) = ) x>00z" We obtain

np+1 k _ 2n1 bLS ona+1 matl _
((an - Rn1)f) (Z) = z Ay n Zk + z O(ka + Z o 2;/—k- zk
( ) k=2m141 2 k=2n1+141 k=2m241 2m2
34
in view of (3.1). Hence
(P"1+1(Rn2 - Rnl)f) (Z) = ((an - Rnl) Pn1+1f) (Z)
ona2—n3—1
= 2 aj2n1+1zj2m+l +
j=1
27— ni+1l _ yng+1
Z aj2n1+l L—Jz__ Zj2"1+l
j=2m—mi—1, 2"

X is isometric to Z = span{zZ"'*', 2" *% ..., 22"~} endowed with M, 1) as
norm. Let T: X — Z be the canonical isometry. Hence P, .1X is isometric to
TP, X =span{z”""":j=1,.,2m" _1}c Z.

Now, for fe A7 ™" put (Sf)(z) = f(z"""). Then S is an isometry from
A" " "'onto TP, ,,X. This shows that P, X is isometric to 42> "~

—n3_ p .
Similarly, P, .Y is isometric to 4™ "~". Hence ((P,, 4, X) @ (Pu+1Y))y is
isometric to (47" "7 @ 4;™ "), Let m = min(2%~"~1,2%"1) and apply
Lemma 2.1. to find an isometric copy i(4}) of A in

(3.5) span{z”""":j = 1,.., 2" — 1} @ span{z”" "' 1j = 1,..., 247" — 1}

which is complemented in ((P,, ;1 X) @ (P,,+1Y)), by a projection Q with ||| < 2
satisfying (2.2). Define

Q(f,9) = QP41 f Puyyrg) forall (f,g)e(X @ Y),.

(3.4) and the choice of m yield (R,,2 — R,,l) f = f whenever there is g with
(f. 9) € i(A}). Similarly we have (R,, — R,,) g = g. 0

In [13], Theorem 2.5., the following proposition was proved.

3.2. Proposition. Assume that u satisfies (*) Put m; = 1 and let my.1 be the
smallest integer larger than m with

[ R

Then there are constants a > 0 and b > 0 such that, for every f € BM(H),
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(36) a (;M;’;((Rmk — R, ) f.1)u ([1 _ 2% - zmiﬂ[))l/q 3
T e A
ifl<gqg< o and

(3.7) a 51:p (M(Ry, — Ry,_,) f> D 1t ([1 — %m 1}) SN fllpg <

bsup (4(Rey — Ruv ) ([ 1 = 551

e
ifg=0o0rq= oo.
If (+) is not satisfied and p = 1 or p = oo then we have sup; (m, — m_y) = oo.

It is easily seen that the polynomials are dense in B, (u)if g = Oor 1 < g < o
(see [13], Proposition 2.1.). In particular, for these g, this implies that

f = Z(Rn - Rn—l)f if fe BP“I(‘“)'

(3.7) shows that B, (1) is isomorphic to a subspace of (3., @ E,)q for some fipite
dimensional spaces E,. We derive easily that, with the natural embedding,

B, o(1)** = B, (). This is even true if u does not satisfy (x), see [13],
Corollary 2.3.)

We retain the notation of Proposition 3.2. In the following put

1 1
1—— 1 —— if 1<q<o
o[- 2D b
1 .
u([l—ﬁ,ljb if g=0orgq=
We have

o[-l o[- 21)

and, by construction,

(- n (- i)

From this in combination with condition (*) we derive

. [ Oy
0<1nf< k>ssup< ><oo
ko N0 +1 K \%k+1

(see [13], Lemma 5.1.)

o =

57



Now we have

3.3. Lemma. Let p satisfy (x). Then B, (u) is isomorphic to a complemented
subspace of (Y, ® Ap)y-

Proof. This is essentially the proof of [13], Lemma 4.3. We prove the case
q * 0, 0o. The proof for the case g = 0 is identical, while the proof for g = oo
follows from the biduality.

We have (in view of (3.1)), for any holomorphic f: D — C,

(Rm. — R, _,) fespan{l,z, ..., 2™}
Let X, = span{l,z, ..., z2™""} be endowed with M,(f, 1) «}/? as norm. Then, of
course, X, is isometric to A2™"". Define T: B, (1) —» (3 @ Xyg by Tf =
((Rw,— Rm,_,) f)- By (3.6), T is an isomorphism. Moreover, define S:(} , ® X)) —
B, (1) by
S((gk)) = Z(Rmk+1 - Rmkfl—l) 9

k

whenever g, € X,. We obtain STf = f for every fe B, () which follows from
the fact that

(Rmk+1 - Rmk—l—l) (Rmk - Rmkfx)f = (Rmk - Rmk71)f
and f = (R, — R,,_,) f- Moreover, we have, with the constant b of (3.6),

1/q
”S(gk)”pq <b <ZM3((ij - ij—l) Z(Rmk+1 - Rmk—l—l) 9k 1) aj>

' X

! Jj+2 1q
< a2 % MRy~ Ro ) (Ruses = Ruu ) 1))

P k=j—2

j k=i v
<6 (ZMZ(Qk, 1) ak)

x
= Cz”(gk)”

for some universal constants ¢; > 0 and ¢, > 0. Here we used the facts that
(ij — ij_l) (Rmk+1 - Rmkfl_l) =0ifk<j—2o0rk>j+ 2(see (3.1)), that
the R,, are uniformly bounded and that

) o o
0<1nf(k>SSup<k><oo.
ko \Ok+1 ko \Ok41

Hence T'S is a bounded projection from (), @ X,), onto T B, (u). a

Finally we obtain

3.4. Lemma. Let p satisfy (x) and assume that p = 1 or p = co. If (x*) does
not hold then B, (u) contains a complemented subspace which is isomorphic to

(Zn ©® A;)(q)'
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Proof. It suffices to assume ¢ = 0 or 1 < g < 00. The case g = oo then
follows in view of B, o(1)** = B, (1)

If m_y + 1 < m — 1 we have
me—1+1 lf] =k

R,...1 — R
39 Rm. - I{m._1 Rmk—— - Rmk—1 =
(39) (R, y—1) (R +1) { 0 else

Put, for these k,
Xie = (R'"k_l - Rmk—1+1) Bp,q(:“) = Span{zzmﬂlﬂﬁ, e szk_l}.

By (3.6), (3.7) and (3.9) the norm ||, , on X, is equivalent to M,(-, 1) a}/? if
1 <gq < oo and to My, 1) if g =0. Since sup,(m, — m;_,) = o we have
sup; dim X, = co. The space X = closed span(| ), X,) = B, /(u) is isomorphic to
2k ® Xy

For f e B, (1) and some subsequence (n,) of the indices put
Tf = Z(Rm,,k-—l - Rm,,k*1+1)f
k

Then, in view of the fact that the polynomials are dense in Bp,q(u), according to
(3.6) and (3.7), T is well-defined and bounded.

Using Lemma 3.1. we find indices 1 < n; < n, < ... such that (3, @ Ay),) is
isometric to a subspace Y of X = closed span(| J,X,,) and there is a bounded
projection § : X — Y with

(3.10) (Rt = R s o = fi

whenever f, € X, and ), fie Y.
Define, for f € B, (1),

0f=20 %(Rmm_l — Ry, 1) f-

Then, by (3.6) and (3.7), Q is bounded. Using (3.9), (3.10) we see that Q is
a projection onto Y.

The Lemmas 3.3 and 3.4. together with Pelczynski’s decomposition method
prove that B, (u) is isomorphic to (), @ Aj), if p=1 or p= oo and p
satisfies (*).
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