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1. Preliminaries

The word “function” will mean a bounded real function of a real variable. We
consider functions f defined on a non-empty (metric subspace) D < R. If xe D
is an isolated point of D, we put lim,, f(t) := f(x).

Definition 1. For each function f:D — R, we denote

C(f) = {xeDstim £(9) = £(x)};
U(f) = {xeD;lim f(¢) + £ (x)}

L(f) = {x € D; there exists lim f (t)} ;

t—x

Definition 2. A point x, € U(f) is called an improvable point of discontinuity
of the function f.
It is easy to see the following fact:

Remark 1. Let f: D — R. Then U(f) n C(f) = 0 and L(f) = U(f) v C(f).
The following proposition is well known (compare to [1]).

Proposition 1. The set U(f) is countable.
We define the function f(;) as follows:

f(x) if x¢U(f),
f(l)(x) - {limraxf(t) if xe U(f) )

The following easy remark will be very useful in the paper.

*) Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
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Remark 2. Let f:D — R. Then

(i) {xe D; fu(x) * f(x)} = U(f),
(ii) if x € L(f), then lim,_, f(t) = fy(x),
(iii) L(f) c C(f(l)).

Definition 3. We denote
= {f:D - R; C(fy) = D}.
Of course, all continuous functions defined on D are in «7,.

Definition 5. Let f: D — R. For each interval I = (a, b) n D * @, the quantity
o(f, I) = Supyer f (x) —infe; f (x) is called the oscillation of f on I. For each
fixed x €D, the function o(f,(x — &, x + 8) N D) decreases with 6 > 0 and
approaches a limit o(f, x) = lims_o o(f, (x — 6, x + 6) N D) called the oscilla-
tion of f at x.

Theorem 1. Let D < R be closed and f:D — R. If C( f(l)) = D, then the set
C(f) is a dense subset.

Proof. Suppose that C(f) is not a dense subset of D. Then there is an open
interval (a, b) such that (a,b) " D % @ and (a,b) "D n C(f) = . Thus (a,b) "D <

U{xeD @(f,x) = 3}. Since (a,b) N D is the set of the second category in

[a, b] A D, and {xe D; w(f, x) > 5} is closed, there exists an positive integer n, and
an open interval (c, d) such that (c,d) " D =+ @ and (¢,d) " D < {xeD; o(f, x) > ,,0}.
Thus (¢,d) n D = D' L(f). Since U(f) = L(f), C(f)) N (c, d) = 9, a contradic-
tion.

Definition 2. Let K = D. We shall denote
K* = {xe D; x is an accumulation point of K in D}
and K* = K\K".
Definition 7. For A < D < R, let
M(A) = {f:D - R; f(4) = {0} and, for each x € D, f(x) > 0}.
The following auxiliary theorem is not difficult to prove.

Theorem 2. Let D = R, let A be a dense subset of D and let f be 1-improvable
function on D such that C(f) = A. Then g = |f — fu € #(A), U(f) = U(g),
C(g9) = A and g is 1-improvable.

2. 1-Improvable discontinuous functions
First, we shall give examples of discontinuous functions defined on R and
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belonging to the class &/, and one example of a function which does not belong
to this class.

Example 1. Let W = {l/n;n€ N} and let f be the characteric function of the
set W. Then U(f) = W, and 0 is not an improvable point of discontinuity of f.
Note that fi;(x) = 0 for each x € R, so f e «/,. Observe that f is a continuous
function also at the point, which does not belong to the set U(f).

Example 2. Let K < [0, 1] be the Cantor set. Let K, be the set of all midpoints
of all contiguous intervals of the Cantor set. Let h be the characteristic function of
K,. Observe that U(h) = K,, and no point of K is an improvable point of
discontinuity of h, but h(x) = 0 for each xe R, so he .

Example 3. Let W be as in Example 1. Let g be the characteristic function of
Wy {0}. Note now that U(g) = W, and O is not an improvable point of
discontinuity of g, but g, is the characteristic function of {0}.The function g does
not belong to o/, because ¢, is not continuous at the point 0.

Now, we establish necessary and sufficient conditions under which A is the set
of all points of continuity of some 1-improvable discontinuous function. First, we
give the conditions when A4 is an open subset of a complete space D and, next,
when A is a &; subset of a complete space D.

Lemma 1. Let D < R be a closed set, A = D be open in D and let

fe MA) N o, be a function such that C(f) = A. Then F* = F\F? is dense in
F, where F = D\ A.

Proof. If A = D, then f(x) = 0 for each xe D, and F = (. Assume that
A =+ D and let f fulfils the assumptions. Since, by Theorem 1, A is a dense subset
of D and f e .#(A), we have that, for each x € F, lim inf,_,, f(f) = 0. Therefore,
U(f) = {xe D; f(x) > 0} and we conclude that, for each x € D\(U(f)u A),
f(x) = 0 and lim sup,.,, f(t) > 0. ‘

We suppose that cl{xe F; f(x) > 0} + F. Then there exists an open interval
(a, b) such that (a,b) " F #+ @ and (a,b) n F n {xe F; f(x) > 0} = 0. Therefore,
for each x € (a,b) N D, f(x) = 0 and (a, ) n D = C(f) = A. This is impossible
because F N (a, b) + @. Thus cl{xe F; f(x) > 0} = F.

Suppose now that F* is not a dense subset of F. Then there exists a closed
interval [a, b] such that F* N [a, b] = @ and F n (a, b) & . We may assume that
f(@) >0 and f(b) > 0. Let, for each neN, F, = {xe[a,b]; f(x) = +}. We

claim that F N [a,b] = |JcIF,. Let x,e F n[a,b]. If f(xo) > 0, then there
n=1

exists n € N such that f(xo) > x and xo € cIF,. If f (%) = 0, then xo€(a,b) N F

and lim sup,_,, f(x) > 0. Then there exist ne N and (x,)i2; = D N (a, b), such

that limy_., X, = x, and, for each ke N, f(x) > i Thus (x)iz1 = F,, and

Xo € clF,,. '
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Since F n[a,b] is closed, it follows that there exist an open interval
(c,d) = (a, b) and ny € N, such that

(d)nF+0 and (c,d)nF < (c,d) nclF,.

Therefore, for each x € (¢, d) N F,

lim sup f(t) Zni and (c,d)n F < D\(4 v U(f).
t—x 0
Since (c,d) N F = 0, there exists x, € (¢, d) N F such that f(x,) > 0. Therefore,
xo € U(f), a contradiction.

Theorem 3. Let A be an open subset of a complete space D. Then the following
conditions are equivalent:
(1) there exists a function f € o, N M(A) such that C(f) = A4;
(2) clA = D and if F = D\ A, then the set F* is dense in F.

Proof. First we assume that f: D — R satisfies condition (1). Thus the function
f satisfies the assumptions of Lemma 1, so the set F* is dense in F. Additionally,
by Theorem 1, clA = D.
Now, we assume that condition (2) holds. If F = §, then we can put f = 0 on D.
Assume that F 3 (. Let f be the characteristic function of the set F*. Since
D\F is dense in D, we have that, for each x € F, liminf,_, f (t) = 0. Clearly
A < C(f).
Let x, € F. We shall consider two cases:
1. Xo € F*.
Since x, is an isolated point of F, limsup,.,,f(x) =0 and f(x,) = 1.
Therefore x, € U(f) and x, ¢ C(f).
2. xo€ F4.
Since F* is dense in F, there exist (x,,),‘,’°=l < F* such that
lim x, = x, and lim f(x,)=1.
Therefore lim sup,.,, f(x) > 0 and x, ¢ U(f) v C(f).
Thus C(f) = A. Since U(f) = F*, we obtain a function f;): D — R such that
fi(x) = 0 for each x € D, so C(f(;) = D. Hence the function f satisfies condition
(1) and the proof is completed.

Theorem 4. Let A be an open subset of a complete space D. Then the following
conditions are equivalent:
(3) there exists a function f e o/, such that C(f) = A;
(4) clA = D and if F = D\ A, then the set F* is dense in F.

Proof. Assume that condition (3) holds. Then, by Theorems 1 and 2, we have
that there exists a function g € #(4) N o/, such that C(g) = A. Thus, by Theo-
rem 3, we have condition (4). The reverse implication is obvious.
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Lemma 2. Let A = D, where D is a complete subspace of R. The following
condition are equivalent:
(5) there exists a function fe M(A) N o, such that C(f ) = A;
(6) clA = D and there exists an ascending sequence of closed sets (A,,),‘f’:l such
that

D\4d =4, Jarn{J4i=0 and D\Ac (JclA}.
n=1

n=1 n=1 n=1

Proof. First, we assume that fe .#(4) N o/,, where A = C(f). Then, by
Theorem 1, clA = D. Thus we have that

D\A < {xeD;liminf f(2) = 0}

t—x

{
{xeDhmf(t—Oandf() }

t—x

U(f) = {xeD;limf(t) =0 and f(x) > 0}

D\U(f) = {xeD; f(x) = 0}

Let A, = cl{xe D\4; f(x) > —} for each ne N. We observe that x,€ D\ A 1f
and only if there exists neN such that f(xo) > or limsup,.,, f (t) > =
Therefore D\ A4 = ()=,

We suppose that there ex1sts xo€ [ 4¥n 142 + 0. Let n;,n,e N be
such that x, € A% and x, € A%. Then

S(x0) = nl and lim sup f(f) > —l—

1 t—x1 n,

Since xo€ D, we have that xoe U( f) and lim sup,_,,, f(t) > 0, a contradiction.
Therefore | )2, 4% ()2,
Let x,€ D\ A. Then 11m sup,_,xO f i) > 0 or xo € U(f). Thus

xo€ (Jeld¥ or xpe |JAX.
n=1 n=1
Hence D\ A < U,°,°=l clA¥ Thus condition (6) holds.
Now, we assume that condition (6) is satisfied. If 4 = D, then we can put f = 0
on D. Assume that 4 3 D. Let

0 if {meN; xe AX} =0,
f(x) =1« Inif x e A¥
where n = min {me N; x € A}}.

Since U L A¥n 48 = 0, D\A = | J214, and D\ A < | )& clA¥ we have
that D is the following union of three disjoint sets
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D=A4v (JAru |4,
n=1 n=1
no1As € D\NA < | o clAy= |1 A¥ 0 U (4% and | J2,48 < (&= (4%
Thus | J2,(4)? = | 2142 We observe that

{xeD; f(x) > 0} = (J4F
n=1
and {xe D; lim sup,_,, f(t) > 0} = | J=\(4}* = D\(4 u |J=,4).
Therefore A = {xe D; lim,, f(t) = 0 and f(x) = 0} and

U) 4z = {xeD;lim f() = 0 and f(x) > 0}.

Now, we know that

4= {xeD; limsup f(t) > 0 and f(x) = 0}.
n=1 t—x

Hence C(f) = A and U(f) = | J;2 4% Therefore, for each x € D, f;(x) = 0, and
the proof is completed.

Theorem 5. Let A — D, where D is a complete subspace of R. Then the
following conditions are equivalent:
(7) there exists a function f € o, such that C(f) = 4;
(8) clA = D and there exists an ascending sequence of closed sets (A,,)f=1 such
that

D\A = |JA4, J4*n|J4i=0 and D\A c |JclAr.
n=1 n=1 n=1 n=1
(9) clA = D and there exists a %; set E such that A = E and the set C = E\A
is countable and dense in D\ A.

Proof. By Theorems 1 and 2, we may assume that f € o/, N .#(A). We observe
that, by Lemma 2, conditions (7) and (8) are equivalent.

Put C = (J=,4F and E = AU C = D\ J2,4% It is easy to see that the
condition (8) implies (9).

Now, we assume that there exists a %; set E > A such that the set C = E\A
is countable and dense in D\ A. Then E = ﬂ,“,LlE,,where each of sets E, is open
in D.

Let neN and E, = D n U,, where U, = ()2 (a}, b}) is an open subset of
R and ((af, bf))i=, is the sequence of components of the set U,

We shall define three sets P%", P%", P%" for each ke N.

Fix ke N.

If a} ¢ cl(C N (af, bf)), then PY" = @, otherwise there exists
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(z)21 = C  (ag, b) such that lim zi = af, so we choose P¥" = {z; pe N}.
p—00

If b ¢ cl(C n (ag, b)), then Py™ = @, otherwise there exists

()21 = C N (aj, by) such that lim zj = b}, so we choose Py" = {7; pe N}.
p—©

If C n (a}, bf) = @, then P§" = @, otherwise P5" = {2'} where z" € C n (a}, b}).

Let H} = Pt u P4" U P5™. Then (H}) < {4, b}

Put F, = Uk=1H3- Then, for each ke N, F, N (a}, b}) = Hj}.

We shall show that F¢ = D\E,. Suppose that x, € F¢ N E,. Since x, € E,, there
exists k € N such that x, € (af, b}).

Thus x, € F2 N (af, b}). Then there exists (x,);2, = F, N (ak, bf) = Hj such that
lim,_,,, x, = x,. Therefore x,€ (H})' = {d, b}}, a contradiction.

Now, let x, € D\E,. Then x, € D\E and there exists a sequence (x,,);‘;, cCc
E, c | Ji (af, b}) such that lim,_, . x, = X,. If there exist p, ko € N such that, for
each p > p, x, € (aj,, b}, then x€ cl(C N (af, b)) and x, = af, or xo = bj,.
Thus x, € ( L‘o)d < F4 Otherwise, there exist subsequences ((af, bf))i=: and (x,,)i%,
such that, for each le N, x,, € (af, b,’;,) and lim,_ . x, = X,. Therefore, for each
leN, (af, bi)nC + 0 and there exists z € F,n (af, b}) =+ @. Then x, =
lim, ,, af, = lim,, b}, = lim,_, , z and x, € Fa Thus F = D\E,.

We can suppose C = 0§, then we can write C = | J ,{c,,} For each ne N, let
B, = clF, U {c,}. Then

D\A=CU(D\E)=Cu |J(D\E) = Cu | JFi = UB

n=1 n=1
Since B! = F¢ = D\E, and F, U {¢,} < E,, we have that
B¥=F,u{g}c=C.
Then ()72 Bs = D\E, | ;,Bf = C = Eand | J;2,:Bi n | J=:B¥ = 0.

Let xe D\A. If xe C = () Bf = (JZcIBF and if xe D\E = | J=,F¥,

then there exists n € N such that
x € Fé = (BX\{c}} = (B}) < cIB}.
Thus D\A < | )= ,cl B*.

Let, for eachne N, 4, = | J;_,B,. Then (4,)<, is ascending sequence of closed
sets. We observe that, for each ne N, A% = (| Ji-1By)* = Ji-,Bt. Therefore, for
each ne N, A¥ = ( Ji_,B}. Hence U ,A" N Ui dr = 0.

Since Bf <= A, we have D\A4 c U”_,clA* Since D\ 4 = U,T;,A,,, the proof
of the theorem is completed.
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