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1. Preliminaries 

The word "function" will mean a bounded real function of a real variable. We 
consider functions f defined on a non-empty (metric subspace) D cz R. If x e D 
is an isolated point of D, we put limf_x f(t) := f(x). 

Definition 1. For each function f:D^>R,we denote 

C(f) = {xeD;\\mf(t)=f(xj\; 

U(f) = {xeD;limf(t)±f(xj\; 

L(f) = \xeD; there exists l im f(m; 

Definition 2. A point x0 e U(f) is called an improvable point of discontinuity 
of the function f. 

It is easy to see the following fact: 

Remark 1. Let f: D -+ R. Then U(f) n C(f) = 0 and L(f) = U(f) u C(f). 
The following proposition is well known (compare to [1]). 

Proposition 1. The set U(f) is countable. 
We define the function fa as follows: 

f(x)-íf(
x) vxФЩf). 

J{i)[X)-Ьimt^f(t)ifxeU(f). 
The following easy remark will be very useful in the paper. 

*) Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland 
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Remark 2. Let f: D -> R. Then 
(i) {xe D; f{1)(x) * f(x)} = 17(f), 

(ii) if xeL(f), then lim,^xj"(t) = f{l)(x), 
(Hi) L(f) cz C(f(1)). 

Definition 3. We denote 

^{ = {f:D^U;C(f(l)) = D}. 

Of course, all continuous functions defined on D are in sf{. 

Definition 5. Let f:D^U. For each interval I = (a, b) n D 4= 0, the quantity 
co(f I) = supX6/f(x) — infX6/f(x) is called the oscillation of f on I. For each 
fixed XE D, the function co(f, (x — 5, x + 3) n D) decreases with 8 > 0 and 
approaches a limit co(f, x) = lim^o co(f (x — 5, x + 5) n D) called the oscilla­
tion of f at x. 

Theorem 1. Let D cz U be closed and f:D^U.If C(f(i)) = D, then the set 
C(f) is a dense subset. 

Proof. Suppose that C(f) is not a dense subset of D. Then there is an open 
interval (a,b) such that (a,b)nD =# 0 and (a,b)nDn C(f) = 0. Thus (a,b)nD cz 

00 

[j {xeD; co(f x) >n}- Since (a,b)nD is the set of the second category in 
n = l 

[a,fc] n D, and {xeD; co(f, x) > n} is closed, there exists an positive integer n0 and 
an open interval (c, d) such that (c, d) n D #= 0 and (c, d)nD cz {XE D; co(f, x) > ^ } . 
Thus (c,d)nD czD' L(f). Since U(f) cz L(f), C(f(l)) n (c, d) = 0, a contradic­
tion. 

Definition 2. Let K cz D. We shall denote 

Kd = {.xeD; x is an accumulation point of K in D} 

and K* = K\Kd. 

Definition 7. For A cz D cz U, let 

Jt(A) ={f:D-*U; f(A) = {0} andt for each XED, f(x) > 0}. 

The following auxiliary theorem is not difficult to prove. 

Theorem 2. Let D cz U, let Abe a dense subset ofD and let f be 1-improvable 
function on D such that C(f) = A. Then g = \f — f(1)| e Jt(A), U(f) = U(g), 
C(g) = A and g is 1-improvable. 

2. 1-Improvable discontinuous functions 

First, we shall give examples of discontinuous functions defined on IR and 
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belonging to the class stfx and one example of a function which does not belong 
to this class. 

Example 1. Let W = {\/n;n eN] and let / be the characteric function of the 
set W. Then U(f) = W, and 0 is not an improvable point of discontinuity of / 
Note that f(\)(x) = 0 for each xeU, so fe $$x. Observe that fa is a continuous 
function also at the point, which does not belong to the set U(f). 

Example 2. Let K a [0,1] be the Cantor set. Let K{ be the set of all midpoints 
of all contiguous intervals of the Cantor set. Let h be the characteristic function of 
Kx. Observe that U(h) = Ku and no point of K is an improvable point of 
discontinuity of h, but h^(x) = 0 for each x e U, so h e $4X. 

Example 3. Let W be as in Example 1. Let g be the characteristic function of 
W\J {0}. Note now that U(g) = W, and 0 is not an improvable point of 
discontinuity of g, but g^ is the characteristic function of {0}.The function g does 
not belong to s/{ because g^ is not continuous at the point 0. 

Now, we establish necessary and sufficient conditions under which A is the set 
of all points of continuity of some 1-improvable discontinuous function. First, we 
give the conditions when A is an open subset of a complete space D and, next, 
when A is a &d subset of a complete space D. 

Lemma 1. Let D cz U be a closed set, A a D be open in D and let 
fe M(A) n s/Y be a function such that C(f) = A. Then F* = F\Fd is dense in 
F, where F = D\A. 

Proof. If A = D, then f(x) = 0 for each xeD, and F = 0. Assume that 
A + D and let/fulfils the assumptions. Since, by Theorem 1, A is a dense subset 
of D and fe M(A), we have that, for each xeF, lim inff_x/(t) = 0. Therefore, 
U(f) = {xeD; f(x) > 0} and we conclude that, for each xeD\(U(f) u A), 
f(x) = 0 and lim supt_x f(t) > 0. 

We suppose that c/{xeF;/(x) > 0} #= F. Then there exists an open interval 
(a, b) such that (a, b) n F * 0 and (a, b) n F n {xe F;f(x) > 0} = 0. Therefore, 
for each x e (a, b) n D, f(x) = 0 and (a, b) n D c C(f) = A. This is impossible 
because F n (a, b) 4= 0. Thus cl{xe F;f(x) > 0} = F. 

Suppose now that F* is not a dense subset of F. Then there exists a closed 
interval [a, b] such that F* n [a, b] = 0 and F n (a, b) 4= 0. We may assume that 
f(a) > 0 and f(b) > 0. Let, for each neN, Fn = {xe [a, b]; f(x) > ^}. We 

claim that F n [a, b] = (J clFn. Let x0 e F n [a, b]. If /(x0) > 0, then there 

exists neN such that /(x0) > n and x0 e clFn. If /(x0) = 0, then x0 e (a, b) n F 
and lim supx_Xo/(x) > 0. Then there exist neN and ( x ^ = 1 cz D n(a, b), such 
that l im^^ xk = x0 and, for each k e N, f(xk) > n. Thus (xk)™=l cz Fn, and 
x0 e clFn. 
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Since F n [a, b\ is closed, it follows that there exist an open interval 
(c, d) c: (a, b) and n0 e N, such that 

(c, d) n F =1= 0 and (c, .i)nfc (c, d) n c/Fno. 

Therefore, for each x e (c, d) n F, 

lim sup f(t) > — and (c, d) n F c D\(,4 u C/(f). 
t->x n 0 

Since (c, d) n F 4= 0, there exists x0 e (c, d) n F such that f(x0) > 0. Therefore, 
x0 e f/(f), a contradiction. 

Theorem 3. Let A be an open subset of a complete space D. Then the following 
conditions are equivalent: 
(1) there exists a function f es/{ n Ji(A) such that C(f) = A\ 
(2) clA = D and if F = D\A, then the set F* is dense in F. 

Proof. First we assume thatf: D -> R satisfies condition (1). Thus the function 
/ satisfies the assumptions of Lemma 1, so the set F* is dense in F. Additionally, 
by Theorem 1, clA = D. 

Now, we assume that condition (2) holds. If F = 0, then we can put f = 0 on D. 
Assume that F =1= 0. Let f be the characteristic function of the set F*. Since 

D\F is dense in D, we have that, for each xeF , liminfr_xf(t) = 0. Clearly 
A <z C(f). 

Let x0 e F. We shall consider two cases: 
1. X06F*. 

Since x0 is an isolated point of F, lim supx_Xof(x) = 0 and f(x0) = 1. 
Therefore x0 e U(f) and x0 $ C(f). 

2. x0eFd. 
Since F* is dense in F, there exist (xn),f=1 c: F* such that 

lim xn = x0 and lim f(x„) = 1. 
n->x> n—>30 

Therefore lim supx_>Xo f(x) > 0 and x0 £ U(f) u C(f). 
Thus C(f) = A. Since 17(f) = F*, we obtain a function faiD-tR such that 
f(i)(x) = 0 for each x e D, so C(f^ = D. Hence the function f satisfies condition 
(1) and the proof is completed. 

Theorem 4. Let A be an open subset of a complete space D. Then the following 
conditions are equivalent: 
(3) there exists a function fe s/{ such that C(f) = A; 
(4) clA = D and if F = D\A, then the set F* is dense in F. 

Proof. Assume that condition (3) holds. Then, by Theorems 1 and 2, we have 
that there exists a function g e Jf(A) n stfx such that C(g) = A. Thus, by Theo­
rem 3, we have condition (4). The reverse implication is obvious. 
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Lemma 2. Let A a D, where D is a complete subspace of M. The following 
condition are equivalent: 
(5) there exists a function fe Ji(A) n s/{ such that C(f) = A; 
(6) clA = D and there exists an ascending sequence of closed sets (An)n*L\ such 

that 

D\A = [JAm [JA*n \}A* = 0 and D\A c \JclA, 
0 0 

n=\ n=\ n=\ 

Proof. First, we assume that fe Ji(A) n s/u where A = C(f). Then, by 
Theorem 1, clA = D. Thus we have that 

D\A c íxeD;liminf f(t) = OJ 

A = | JC e D; lim f(t) = 0 and f(x) = ol 

U(f) = Ix e D; lim f(t) = 0 and f(x) > ol 

D\U(f)= {xeD;f(x) = 0} 

Let An = cl{xe D\A; f(x) > £}, for each n e N. We observe that x 0 eD\ .4 if 
and only if there exists n e N such that f(xo) -̂  n or lim supf_>xo f(t) > n. 
Therefore D\A = U-?-i-4ir 

We suppose that there exists x0e \Jn=lA*n \Jn=\Ad
n 4= 0. Let nhn2e N be 

such that x0 e A*t and x0 e Ad
nr Then 

f(xo) -̂  ~~ a nd lim sup f(t) > — . 

Since x0 e D, we have that x0 e U(f) and lim sup,_>Xo f(t) > 0, a contradiction. 
Therefore {J?=lA*n [j^Ai = 0. 

Let x0e D\A. Then lim supf_>Xo f\u(/)(t) > 0 or x0 e U(f). Thus 

00 00 

x0e \JclA* or x0e \JA*. 
n=\ n=\ 

Hence D\A cz \J^LX clA* Thus condition (6) holds. 
Now, we assume that condition (6) is satisfied. If A = D, then we can put f = 0 

on D. Assume that A #= D. Let 

{0 if {meN; xeA*} = 0, 

1/n if xeA* 
where n = min {wieN; xe A*}. 

Since Un°=i^*n \J?-iAd
H = 0, D\A = \J^=\An and D\A cz [j^clA* we have 

that D is the following union of three disjoint sets 
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D = Au \JA*U \JAÍ, 
n = \ 

US-ii4i c D\A c= U»"-icM*= U"=iA*u U " - i W and Uif-iA.. <= U»"-iW-
Thus Uf - i (Ay = U"-!-4"- W e observe that 

{xeD;f(x)>0}= \JA* 
00 

* 
n=\ 

and {xe D; lim sup f_ f(t) > 0} = U"-i(A-T = D\{A u U-"-iAiJ). 
Therefore A = {xe D; limf^x f(t) = 0 and f(x) = 0} and 

00 

JA* = fxeD ; l im f( t ) = 0 and f(x) > o ) . 
n=\ ^ t^x J 

Now, we know that 
00 

U A* = \ x e D; lim sup f(t) > 0 and f(x) = o) . 
n=\ l ' - * J 

Hence C(f) = _4 and U(f) = J™=1A* Therefore, for each xeD, f{l)(x) = 0, and 
the proof is completed. 

Theorem 5. Let A cz D, where D is a complete subspace of 1R. Then the 
following conditions are equivalent: 
(7) there exists a function fe s/x such that C(f) = A; 
(8) clA = D and there exists an ascending sequence of closed sets (An)n=l such 

that 

D\A = jAn, jA*n jAd
n = 0 and D\A a JclA*. 

n=\ n=\ n=\ n=\ 

(9) clA = D and there exists a &s set E such that A cz E and the set C = E\A 
is countable and dense in D\A. 

Proof. By Theorems 1 and 2, we may assume that fes/^n Ji(A). We observe 
that, by Lemma 2, conditions (7) and (8) are equivalent. 

Put C = Jn=iA* and E = _4 u C = D\U^=i^n. It is easy to see that the 
condition (8) implies (9). 

Now, we assume that there exists a &s
 s ^ E z> A such that the set C = E\A 

is countable and dense in D\A. Then E = P),f=1£nwhere each of sets En is open 
in D. 

Let neN and En = D n Un, where Un = Jn*Li(ak, *̂) *S a n °P e n SUDSet of 
IR and ((ak, bk))k=l is the sequence of components of the set Un. 

We shall define three sets P\>n, Pk
2>

n, Pk^n for each k e M. 
FixkeN. 
If an

k <£cl(C n (an
k, bn

k)), then P\>n = 0, otherwise there exists 
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(zn
p)f=x c C n (an

h bl) such that lim zn = an
k, so we choose P\>n = {tp\ p e N\. 

p—>00 

If bn
k $cl(Cr\ (an

h bl)), then Pk
2>

n = 0, otherwise there exists 

( z^ = 1 cz C n (an
h bl) such that lim zn = b\, so we choose P\n = {fp\ p e N]. 

p—>00 

If C n (an
h bl) = 0, then P\>n = 0, otherwise Pk

3>
n = {f}where zneCn (an

h bl). 
Let Hn

k = P\nKJ Pkin u P5'". Then (Hn)d cz {4, bn}. 
Put Fn = J?=lH

n
k. Then, for each k e N, Fn n (a?, ftj) = Hn

k. 
We shall show that Fd

n = D\En. Suppose that x0eFd
nr\ En. Since x0 e En, there 

exists k e N such that x0 e (ah bl). 
Thus x0 e Fd

n n (a£, b£). Then there exists (xp)f=l cz Fn n (a£, b£) = #2 such that 
limp-00 X

P = *o- Therefore x0 e (Hl)d cz {aj[, fa£}, a contradiction. 
Now, let x0 eD\En. Then x0e D\E and there exists a sequence (xp)x--i c C c 

£„ cz [jk=l(ah fcjj) such that lim/7_>x xp = x0. If there exist p0, k0eN such that, for 
each p > p0, xp e (an

ko, bn
ko), then x0 ecl(Cn (an

ko, bn
ko)) and x0 = an

ko or x0 = bn
ko. 

Thus x0 e (Hl0)
d cz Fd

n. Otherwise, there exist subsequences ((#£,, &£,))/=! and (xp)fLi 
such that, for each leN, xpie(alt, bl) and lim,.^ xpi = x0. Therefore, for each 
leN, (an

kl, bn
k) n C =t $ and there exists ZjeFnn (an

kl, b
n

k) -# 0. Then x0 = 
lim/̂ oo a% = lim/̂ oo bn

kl = l i m ^ z? and x0 e Fd
n. Thus F^ = D\En. 

We can suppose C =1= 0, then we can write C = Ux=i{<^}- F° r e a ch H e N, let 
£„ = clFnu {c^}.Then 

00 00 00 

D\A = C u ( D \ £ ) = CKJ \J(D\En) = Cu [jFd
n= [JBn. 

n=l n=l n=\ 

Since Bd
n = Fd

n = D\En and F„ u {<̂ } cz £n, we have that 

B* = FnKj{cn}a C. 

Then U x = i ^ c D\£, U»x=i-3* = C c= £ and U«x=i^ n U*-A* = 0. 
Let xeD\A. If xeC = UX=A* cz [j^clB* and if x e D \ £ = J^Fi 

then there exists n e N such that 

xeFd
n = (B^^})1 = (B*)d cz clB*. 

Thus D\A cz U„x=ic/-5*. 
Let, for each n e N, An = U*=A- Then (̂ 4„)̂ °=1 is ascending sequence of closed 

sets. We observe that, for each n e N, Ad
n = ((jn

k=lBk)
d = \Jn

k=lB(. Therefore, for 
each neN, A* = \Jn

k=lB*. Hence U"=i^n n [j^A* = 0. 
Since B* cz A*, we have D\A cz \J^=lclA*. Since D\A = | J„X

= 14 the proof 
of the theorem is completed. 
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