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We construct a subgroup of Zc, where Z is the group of integers, which does not have the Suslin 
property. This answers a question of A. V. Arhangel'skii. 

The Suslin number c(X) of a topological space X is defined as folow: if K is 
a cardinal, then c(X) < K if and only if any family of pairwise disjoint non-empty 
open sets in X has cardinality < K. We denote by Z the discrete group of integers. 

If G is topological group and c(G) = K, then for every subgroup H of G we have 
c(H) < 2 \ and this bound can be attained [Ul]. In particular, if G is a subgroup 
of the product of countable groups, then c(G) < c = 2°. There exists a subgroup 
G of Ac, where A is the discrete free abelian group on a countable set, such that 
c(G) = c [U2]. A. V. Arhangel'skii asked if there exists a subgroup G of Zc such 
that c(G) = c. The aim of this note is to answer this question in the positive. 

Example. There exists a subgroup G ofZc such that c(G) = c. 
The proof is based on the following lemma: 

Lemma. Let I be a set of cardinality c. There exists an I x I-matrix (a,>) with 
integer coefficients (in other words, a map I x I -> Z) such that for any distinct 
ij e I there exists a prime p such that aXJ ^ a}\ (mod p) and aih = a}h (mod p) for 
every heI\ {ij}. 

Proof. We may assume that / = 2°. Let T = 2<u) be the set of all finite 
sequences with values 0 or 1. For any distinct ij e I let n(ij) e co be the smallest 
integer n such that i\n 4= j\n9 and set w(ij) = i\n e T. We shall construct a function 
f: T -> Z such that the matrix (ij) \-> aXJ = f(w(ij)) has the required property. 

We denote by s"t the concatenation of sequences s,teT. For every s e T define 
by induction on the length of s an integer f(s) and a prime p(s) so that: 
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(1) f(sV) = /(slit)(modp(s)) and / ( s i ) = f(sVJ)(modp(s)) for every seT 
and every teT\ {0}; 

(2) /(s^0)^/(sl)(modp(s)); 
(3) the primes p(s) are pairwise distinct. 
Pick /(0) e Z arbitrarily. Suppose that f(t) and p(s) have been defined for every 

t of length < n and every s of length < n. Let s e T be a sequence of length 
n, to = s"0, U = s i . We must define p(s), /(to), /(ti). For every k < n let Sk = s|k 
be the restriction of s to k, and let u/t = Sk\l — s(k)) be the sequence of length 
k + 1 such that u(i) = s(i) for all i < k and u(k) #= s(k). The system of n congruen­
ces 

x = f(uk)(modp(sk)), k = 0, ..., n - 1 

has an integer solution, since the primes p(sk) are pairwise distinct. Let /(to) and 
f(t\) be any two distinct solutions of this system. Let p(s) be any prime which is 
not a divisor of /(to) — f(t\) and which is distinct from all the primes of this form 
which have already been defined. 

The functions / and p are constructed. The properties (2) and (3) obviously hold. 
Let us check the property (1). Let c = a"0, d = a"Vb for some a,b e T, b 4= 0. 
Denote by l(u) the length of a sequence ueT. If 1(d) = n + 1, 1(a) = k and 
s = d\n, then in the notation of the preceding paragraph we have d = sD or 
d = s i , a = Sk and c = u*. Thus the congruence f(d) = f(uk)(mod p(sk)), which 
holds by the construction, can be rewritten in the form f(d) = f(c) (mod p(a)), and 
this is the property (1). The case c = al, d = a"0"b is similar. 

We show that the I x /-matrix (a,,), where a,, = f(w(i,j)), has the property 
required by the lemma. Let i and j be distinct elements of / = 2". Let 
k = n(ij) — 1 be the greatest integer r such that i|r = j\r, and let s = i|k = j\k. 
Let p = p(s). Since {^(ij\^(jj)} = {s*0,sl}, the property (2) above implies that 
a,j-^ ay,; (mod p). Let us show that an, = a/h (mod p) for every hel\{i,j}. If 
n(i,h) < n(i,j), then w(i,h) = w(j,h) and hence a,/, = ay/,. If n(i,/i) = n(ij), then 
n(/,/i) > n(i,j) and we have w(i,h) = s% w(j,h) = s\l — e)"t for some s,teT, 
ee {0,1}, t 4- 0. Similarly, if n(i,/i) > n(i,j), then w(/,/i) = s% w(i,h) = 
s"(l — &ft. The property (1) implies that a,/. = ay/, (mod p). • 

We now construct our example. Let 4̂ be a discrete free abelian group of rank 
2, and let {v,w} be a basis of A Let I be a set of cardinality c. The topological 
group A1 is isomorphic to Zc. Let (a/,) be an ineger (I x /)-matrix satisfying the 
condition of the Lemma. Define an (/ x J)-matrix B = (b,y) with coefficients in the 
group A by b/y = a,,v if i 4= j and b„ = w for every i e /. Let G be the subgroup 
of A1 generated by the columns of the matrix B. We claim that c(G) = c. 

For every i e I let U, = {/ e A1: f(i) = w}, and let c, e A1 be the ith column of 
B, considered as the function j i—> by,. Set V = U, n G. Each V is non-empty, since 
d e Vi. We claim that the family {V:ie 1} of open sets in G is disjoint. 
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Let ij e I be distinct. To prove that V n Vj = 0, we must show that there is no 
f eG such that f(f) = /(/) = w. Assume the contrary. Let f e G be such that 
/(0 = f(j) = w- There exists a family {/̂ : h e 1} of integers such that m, = 0 for 
all but finitely many he I and f = £n/ C/,. Since a(f) = 0,7,1; for every h =t= J* and 
c,(i) = w, we have 

w = /(0 = niCii) + X m a ( 0 = n'vv + \Yjnhaih)v' (^ 
h*i ^h±i ' 

It follows that m = 1. Similarly, n, = 1. Set H = I\{ij}. Now (A) implies that 

/16H 

similarly, we have 

ap + ^w.aj/. = 0. (C) 
/J6H 

Subtract (B) from (C). We obtain 

aji — an = ^nh(aih — an). (D) 
heH 

Since the matrix (a,,) satisfies the condition of the Lemma, there exists a prime 
p which divides a,/, — a,/, for every heH and does not divide a>, — a,>. This 
contradicts (D). 

We have thus proved that the sets V are pairwise disjoint. Hence c(G) > c. The 
reverse inequality is obvious. • 

Let A be a free abelian group. Let J5" be the family of all subgroups H c A 
such that the quotient group A/H is finitely generated. Equip A with the group 
topology 3T for which J^ is a basis at 0. The topology 2T is the weakest group 
topology on A for which every homomorphism A -> Z is continuous. Our main 
result can be reformulated as follows: the Suslin number of the topological group 
A equals max(|A|,c). Indeed, A embeds as a topological subgroup in a power of 
Z, hence c(A) < c according to [Ul]. On the other hand, if \A\ > c, then A admits 
a continuous homomorphism onto the group G constructed in the Example above, 
and hence c(A) > c(G) = c. 
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