
Acta Universitatis Carolinae. Mathematica et Physica

Reinhard Börger
Connectivity properties of sequential Boolean algebras

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 36 (1995), No. 2, 5--18

Persistent URL: http://dml.cz/dmlcz/702020

Terms of use:
© Univerzita Karlova v Praze, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702020
http://project.dml.cz


1995 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 36, NO. 2 

Connectivity Properties of Sequential Boolean Algebras 

R. BORGER 

Hagen*) 

Received 15. March 1995 

Dedicated to the memory of Václav Koutník 

Introduction 

In this paper we study connectivity properties of a Boolean algebra with 
a sequential topology such that the finitary Boolean operations are sequentially 
continuous. On the first glance it may be surprising that such Boolean algebras can 
be connected at all, in contrast to the well-known result that compact Boolean 
algebras are (topological and algebraic) powers of discrete two-element Boolean 
algebras and therefore zero-dimensional. The second surprise is the close relation­
ship between the purely topological property of connectedness and the purely 
algebraic notion of atom. The third surprise might be the relationship between 
path-connectedness and Souslin's Hypothesis. I am indebted to my deceased friend 
Vaclav Koutnfk and also to my friend Roman Fric for valuable discussions about 
sequential spaces, moreover to Bohuslav Balcar for discussions about Boolean 
algebras. Some of the results are taken from the unpublished paper [2]. 

1 Terminology and Basic Properties 

A subset A of a topological space X is called sequentially closed if for every 
sequence (x,.),. eN in A which converges to some x e X in X it follows that x e A. 
Every closed set is sequentially closed, and the collection of all sequentially closed 
sets is closed under finite unions and arbitrary intersections. Therefore we can 
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define a topological space sX with the same points as X, such that the closed 
subsets of sX are the sequentially closed subsets of X. Then sX is called the 
sequential modification of X, and X is called sequential if sX = X, i.e. if every 
sequentially closed subset of X is closed. It is easy to see that sX is always 
sequential. Categorically speaking, sequential spaces form a coreflective subcate­
gory of the category of all topological spaces with coreflection s. Therefore the 
class of sequential spaces is closed under topological sums (= coproducts) and 
quotients. But subspaces, binary products and continuous images of sequential 
spaces need not be sequential. 

For sequential spaces X, Ythe sequential modification XIIY := s (X x Y) of the 
topological product is a product in the category of sequential spaces. A sequential 
Boolean algebra is a Boolean algebra B with a sequential topology such that 
complementation B -> B, x \-> x* and binary meet BUB -> B, (x, y) i—>x A y are 
continuous. The latter condition means that if (x,,),ieN converges to x and (y„)„eN 

converges to y in B, then (x„ A y„),ieN converges to x A y. By an unpublished 
result due to B. Balcar this is strictly weaker than continuity of "A" as a map 
B x B -> B (on the topological product). Note that these conditions imply that all 
finitary Boolean operations (like the binary join " v") are sequentially continuous 
and thus in particular separately continuous (i.e. continuous in each variable). 

In every sequential Boolean algebra B, the intersection of all O-neighbourhoods 
B is an ideal /, which can be equivalently described as the set of all limits of the 
constant sequence (0)neN or of all xeB such that the constant sequence (x)„eN 

converges to 0. Then B/I is a sequential Boolean algebra in the quotient topology 
and for the canonical projection p: B -+ B/I we see that a sequence (x..),,6N in 
B converges to x e B if and only if (p(x,.)),ieN converges to p(x) in B/I. It is easily 
seen that B/I is the T0-reflection of B; in particular we have I = {0}if B is T0 as 
a topological space. On the other hand sequential limits in B/I are always unique 
because the symmetric difference BUB -> B (x, y) \—> xAy - = (x* A y) v 
v (x A y*) = (x v y) A (X V >>)* = (x v y) A (x A y)* is (sequentially) conti­
nuous and B is an abelian group under "A" hence if (x,,),, converges to both x and 
y, then (0),.eN converges to x A y e L In particular, B/I is T1? because limits of 
constant sequences are unique. On the other hand, B is not Hausdorff in general 
(B. Balcar, unpublished). 

So in the sequel we shall restrict our attention to T() sequential Boolean algebras; 
then sequential limits are unique. When we work with sequential topologies, it is 
often convenient to think in terms of convergent sequences rather than open or 
closed sets. Obviously, in a sequential space closed sets and therefore open sets are 
determined by convergent sequences, but in general it is not easy to decide whether 
a notion of convergence (for sequences) is induced by a sequential topology, some 
complicated conditions were given by V. Koutnik [7]. If sequential limits are 
unique, there is the following well-known criterion, which was independently 
proven by Dolcher [4] and Kisynski [6]; An abstract notion of sequential 
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convergence is induced by a sequential topology with unique sequential limits if 
and only if it satisfies the following conditions: 

(CS1) Every constant sequence (x)„6N converges to x. 

(CS2) Sequential limits are unique. 

(CS3) If a sequence (x),l6N converges to x, then every subsequence of (xn)n6N 

converges to x. 

(CS4) If every subsequence of (xfl)B6N contains a subsequence that converges to 
x, then (x,,),.eN itself converges to x. 

Condition (CS4) is usually called "Urysohn's axiom". In every topological space, 
sequential convergence satisfies (CS 1,3,4) but in general (CS 1,3,4) do not imply 
that the convergence is induced by a topology [4], 

Since different authors use different topological terminologies, we shall fix our 
notations. A topological space is called "totally disconnected" if different points 
can be separated by clopen sets; X is called "hereditarily disconnected" if the 
connected components of X are single points. Then every totally disconnected 
space is hereditarily disconnected and Hausdorff, and every hereditarily disconnec­
ted space is T,. In particular, a sequential Boolean algebra B can only be 
hereditarily disconnected, if the above ideal / is zero. Moreover, B is connected if 
and only if B/I is connected. This justifies our restriction to the case I = {0}. 

Our first observation is that atoms are obstacles against connectedness. 

1.1 Proposition 

For every T() sequential Boolean algebra B the following assertions hold: 

(i) If ae B is an atom, then {x e B : a A X = 0} is open and closed. 

(ii) If B is connected, then B is atomless. 

(iii) If B is atomic, then B is totally disconnected. 

Proof, (i) The map B -> B, x i—• a A x is continuous, hence the inverse images 
Z0 := {xe B\ a A X = 0} and ZY := {xe B\ a A X = a) of 0 and a are closed, 
because B is weakly Hausdorff and therefore T,. But since a is an atom and 
0 < a A x < a for all xe B, we have Z 0 u Z j = B, Z0n Z{ = 0, thus 
Z0 = B\Z{ is also open. 

(ii) If ae B were an atom, for Z0 as above we should get 0 e Z0, 1 $ Z0, hence 
Z0 were open and closed with 0 % Z0 % B. 

(iii) If x, y e B\ {0} with x =f= y, we have x £ y or y ^ x, w.l.o.g. x ^ y. Then 
we have x A y* 4= 0, hence there is an atom a with a < x A y* < x, thus 



a A x = a 4= 0 and aAy<xAy*Ay = 0, thus x $ Z0, y e Z0 as above. In 
particular, no connected subset of B contains x and y. 

In general, the converses of (ii) and (iii) above are not true; every non-trivial 
atomless Boolean algebra with discrete topology is a counterexample to both 
statements. But the converses are true under certain additional conditions. Our 
main tool is the following simple 

1.2 Proposition 

A (not necessarily weakly Hausdorff) sequential Boolean algebra is connected 
if 0 and 1 belong to the same connected component. 

Proof. For any element a the map b M• a A b is continuous, therefore 
0 = a A 0 and a = a A 1 lie in the same component. 

We are also interested in the analogous question about path-connectedness. 
Recall that a topological space is called path-connected if for all x9yeX there 
exists a path from x to j / , i.e. a continuous map / : [0, l ] -> X with /(0) = x and 
/ ( l ) = y9 where [0, 1] cz |R carries the usual topology. 

1.3 Proposition 

For B a sequential Boolean algebra, the following statements are equivalent: 

(i) B is contractible. 
(ii) B is simply connected. 
(iii) B is path-connected. 
(iv) 0 and 1 lie in the same path-component of B. 

Proof, (i) => (ii) => (iii) => (iv) is trivial, (iv) => (i): Let / : [0,1] -> B be a path 
from 0 to 1 in B, where [0, 1] is the real unit interval, i.e. /(0) = 0, f[l) = 1, and 
/ is continuous. Then F: Bll[0, 1] -> B, (x, t) i-> a A f(t) is also continuous with 
F(xy 0) = x A /(0) = x A 0 = 0 and F(x, 1) = x A / ( l ) = x A 1 = x for all 
xeB. But the sequential product coincides wit the k-product (cf.[8]), and since 
[0, 1] is compact we obtain 5II[0, 1] = B x [0, 1]. Thus F: B x [0, 1] -* B is 
continuous and therefore a homotopy between the identity and the constant map 
with value 0, proving (i). 



2 Sufficient Conditions for Connectedness 

The guiding example of sequential Boolean algebras B are those whose topology 
is induced by a strictly positive o-additive measure p. This means that B is 
a a-complete Boolean algebra (i.e. a Boolean algebra in which all countable joins 
exist) and p: B -> IR satisfies the following conditions 

(Ml) p(0) = 0, p(x) > 0 for x 4= 0. 

(M2) AX(VW6NXW) = X«eN/*(*«) for every disjoint sequence (xn)/ieN, i.e. 
(xn A xm = 0 for n 4- m); in particular the sum on the right converges. 

Here 0 denotes the least element of B; the largest element will be called 1. 
Condition (Ml) is not so restrictive as it might look. If a map p satisfies (M2) and 
p(x) > 0 for all xeB, then I := {xe B\ p(x) = 0} is a cr-ideal in B, and p. induces 
a strictly positive cr-additive measure on B. Moreover, (Ml) and (M2) imply that 
B satisfies the countable chain condition: 

(ccc) If Z <= X and .x A y = 0 for all x, y eZ with .x 4= y, then Z is countable. 

This is clear because for neN, Z can contain at most n elements x with 

p(x) > -------. It is well-known that every cr-complete Boolean algebra with (ccc) is 

a complete Boolean algebra, i.e. every subset admits a join ( = supremum) (cf. e.g. 
[5]). Whenever we say that a sequential Boolean algebra satisfies (ccc) we mean 
it satisfies (ccc) as Boolean algebra (not as a topological space). 

If p is a strictly positive cr-additive measure on B, then we can define a metric 
d on B by d(x, y): = p(x Ay) for all x, ye B. This metric induces a topology, which 
is sequential (because every metrizable space is sequential), and B is a T0 sequen­
tial Boolean algebra in this topology. By the well-known lemma of the connection 
between stochastic and sure ( = certain) convergence, we see that a sequence 
(*/.)neN converges to xeB if and only if every subsequence of (x„),I6^ has 
a subsequence with limes superior x and limes inferior x. Here the limes superior 
and the limes inferior of a sequence (xn)n e N are defined by limsup,. _ ̂  xn: = 
:= /\»»C---V*'=«** anc* l™inf).-->oGx/, -= V'^-iA*^"**- Since these definitions do 
not involve p, the topology does not depend on p. For arbitrary cr-complete 
Boolean algebra, we can define a topology in this way by limes superior and limes 
inferior, but in general this topology need not be Hausdorff, and the binary Boolean 
operations need not be continuous on the topological product BxB (though they 
are always sequentially continuous). 

In the sequel we shall often use 1.2 and 1.3. Thus in order to prove path-connec­
tedness of a T0 sequential Boolean algebra it suffices to find a path-connected 
subset containing 0 and 1. By Zorn's Lemma, B contains a maximal totally ordered 
subset, and each such subset contains 0 and 1. 



2.1 Theorem 

Let B be a a-complete Boolean algebra with the toplogy induced by a strictly 
positive o-additive measure /i. Then the following assertions hold: 

(i) IfB is atomless, then every maximal totally ordered subset ofB (and therefore 
B itself) is path-connected.) 

(ii) If every path-connected subset of B consists of only one point, then B is 
atomic. 

Proof, (i) Let X c B be a maximal totally ordered subset X. For x, ye X with 
x < y we have x A y = x* A y and x v (x* A y) = (x v x*) A (X V y) = 
= 1 A y = y and x A (X* A y) < x A X* = 0, hence /*(y) = /i(x) + p(x* A y), 
thus /j(xAy) = f*(x* A y) = f.i(y) — p(x). Since X is totally ordered, this yields 
\ji(x) — p(b)\ = fi(xAy) for all x,y e X, i.e. the restriction p\^ : X -» [0,1] is an 
isometry and thus particularly injective. 

We claim that p\^ is also surjective. For s e [0,1] define r := sup {//(x)|x e / , 
fi(x) < s}. Then there exists an increasing sequence (y„),l6N in X with 
r = sup {/4y„)| n e M } . By cr-additivity we get fi(y) = r for y:= V ^ i y " - F ° r 

every x e l w e have either x < yn < y for some n e N, or yn < x for all neN, 
hence y = \/„= xyn < x. Thus X u {y} is totally ordered, and by maximality of 
X we have y e X. Analogously, we obtain t: = inf {/f(x) | x e I, p(x) > s = /*(w)} 
for some w e X: then we must have y < w. Assume y < w. Since y is atomless, 
y* A w 4= 0 is not an atom. Then there exists a u e B with 0 < u < y* A d, and 
for z : = y v u we easily get y < z < w. But for every x e l w e have either 
fi(x) < s, hence x < y, or /i(x) > s, hence z < w < x. Thus we have z £ X, but 
X u {z} is totally ordered, contradicting the maximality of X. 

Thus the isometry p\^ is bijective, hence the inverse is also an isometry and 
therefore continuous. Then the map f:[0,1]-> £ with f(t) := (n\^)~\t) is 
continuous with \i o f(0) = 0 and \i o f(l) = 1, hence f(0) = 0, f(l) = 1. Then 
for every y e B the map gy: [0,1] -* B9 11—> y A f(t) is continuous with 
9y(0) = y A f(0) = y A 0 = 0 and gy(l) = y A f(l) = y A 1 = y. This proves 
that B is path-connected and thus in particular connected. 

(ii) Assume that y e B and there exist no atom x < y. Then 
B' := {XG B\ x < y} is a Boolean a-algebra with 0, A , V as in B with new top 
element y and new complementation x h-> x* A y. Moreover, p\B> is a strictly 
positive tr-additive measure on B'. By our hypothesis about y, B' is atomless and 
thus path-connected. Since B is hereditarily pathwise disconnected (maybe even 
hereditarily disconnected) it follows that B' consists of only one point. Since 0, 
y e B' this gives y = 0, proving that B is atomic. 

Note that the hypothesis of 2.1 can be formally generalized: Instead of (M2) 
assume p.(x v y) < p(x) + f.i(y) for all x, y e B and lim..^^ /i(x„) = 0 for every 
decreasing sequence (X,.)(16N with /\,f=1xM = 0. These conditions follow easily 
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from (M2), and together with (Ml) they give rise to a metric. It is quite easy to 
find a complete Boolean algebra B and a strictly positive continuous submeasure 
satisfying (Ml) and the above weaker condition, but not (M2). It is a well-known 
open problem due to D. Maharam whether the existence of a strictly positive 
continuous submeasure implies the existence of a strictly positive cr-additive 
measure. Moreover, in order to generalize 2.1, we have to replace the second part 
of (Ml) by the stronger condition (x < y => fi(x) < ji(y)). This condition is 
equivalent to (x > 0 => ii(x) > 0) in the presence of (M2), but under the weake­
ning of (M2) it is strictly stronger; just consider B finite with at least four elements 
and define fi(0) := 0 and p(x) := 1 for x > 0. Under this weakening of (M2) and 
the strengthening of (Ml) we do not get that JU|!?'1-' is an isometry, but it is strictly 
order preserving and also preserves countable joins and meets. This suffices to 
make its inverse continuous. 

Next we consider a more general situation. We say that a T0 sequential 
Boolean algebra B is monotonely complete if every increasing sequence (x,,)neN 

converges to some x e B. In this case, for every m e N the sequence (xn A XW)„ 6 N 

converges to x A xm. But (x„ A xw)n e N is eventually constant and thus convergent 
to xm. By uniqueness of sequential limits we obtain x A xm = xm, i.e. xm < x. 
Now assume y e B with x„ < y for all n e N. Then (xn v y)n6N = (y)n€N conver­
ges to x v y = y, hence x < y. This proves that x is a join of {x„ | n e N). This 
means that every increasing sequence convergence to its join; in particular 
monotone convergence implies cr-completeness. Moreover by complementation 
we see that every decreasing sequence (xn),.6N with f\n=\Xn = 0 converges to 0. 
Conversely, assume that B is cr-complete and every decreasing sequence with 
meet 0 converges to 0. Then for every increasing sequence (xn),,eN the join 
x'.= V?=ix« exists and the decreasing sequence (x AX*) , 1 6 N converges to 0, 
therefore (x,,)neN = (x A (x A x*)*)neN converges to x A (X A X*) = x. This 
means that B is monotonely complete if and only if B is cr-complete and every 
decreasing sequence with meet 0 converges to 0. But note that these two 
conditions are independent. An infinite cr-complete Boolean algebra is not 
monotonely complete in the discrete topology. In 3.3(2) below we shall give an 
example of a non-cr-complete. Boolean algebra in which every decreasing 
sequence with meet 0 converges to 0. Note that every monotonely complete 
T0 sequential Boolean algebra B with (ccc) is a complete Boolean algebra, 
because B is cr-complete and this together with (ccc) implies Boolean complete­
ness. 

2.2 Theorem 

Let B be a monotonely complete T0 sequential Boolean algebra with (ccc). Then 
the following assertions hold: 
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(i) If B is atomless, then every totally ordered subset ofB and hence B is itself 
connected. 

(ii) If B is hereditarily disconnected then B is atomic. 

Proof. Let X a B be a maximal totally ordered subset and let Z c X be 
relatively clopen; without loss of generality assume 1 $ Z (otherwise replace Z by 
X\ Z). For s := \fxeXx there exists a sequence (x„).I6^ with xn e X for all n e N 
and s = \/neNxn = \JneNyn for yn := ViUi** e {*i, •••, *„} <= X. Now the increa­
sing sequence (y,,),,^ converges to s, thus seZ, because Z is closed, in particular 
s * 1. 

On the other hand for t := f\zeX,z>sz we get t = s, because s < t would imply 
that there exists a vv e B with s < \v < t, since s* A t 4= 0 is not an atom. But then 
X u {vv} would be totally ordered, thus vv e X by maximality, leading to the 
contradiction t = /\zeX,s<zz < w. 

So we have s = t = /\zeXyS<zz, hence s is a meet of countable many zeX with 
s < z, and as above there exists a decreasing sequence (zw)lieN with s = /\ne^zn 

and s < zn e X for all x e N, and then (zn)neN converges to s. But for all n e N we 
have /\xeXnz

x = s < zne X, hence zn $ Z. Since Z is open, this implies s$Z, 
a contradiction. Thus B is connected. 

(ii) follows from (i) as in 2.1. 

2.3 Remarks 

We obtain a stronger result under Souslin's hypothesis (SH). Usually (SH) is 
formulated as a characterization of the natural order of IR; we use an equivalent 
formulation characterizing the unit interval [0, 1], which is more convenient for 
our purpose: 

A totally ordered set X is order-isomorphic to [0, 1] provided X 
has the following properties: 

(i) X has at least two elements. 

(ii) Every subset of X has a supremum. 

(iii) For all x, z e X with x < z there exists a y e X with x < y < z. 

(iv) If (]x„ z,[)ie/ is a family of pairwise disjoint non-empty open intervals of 
X i.e. ]x„ z,[ := {ye X: x, < y < z,} and ]x„ z,[n]x7, z7[ = 0 forj 4= /, then 
I is (at most) countable. 

Note that both (SH) and its negation are relatively consistent in ZFC; for further 
discussions see [3]. 
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2.4 Theorem 

The following statement is equivalent to (SH): 

Let B be an atomless monotonely complete weakly Hausdorjf sequential 
Boolean algebra with (ccc). Then B is path-connected. 

Proof. First assume (SH), let a e X and let X cz B be a maximal totally ordered 
subset with a e X, which exists by Zorn's Lemma. Then we have 0, 1 e X for 0 the 
least and 1 the largest element of B, and we assume 0 4= 1, because otherwise 
JB = {0} is trivially path-connected. As above, every Z czX has a join, and if 
Z 4= 0 there exists an increasing sequence (z„)weN in Z with s := \/ne^zn = \JzeZz. 
Now Z u {s} is also totally ordered, hence s e Z by maximality, i.e. Z is closed 
under joins. Moreover (zn)n converges to s in B by monotone completeness. 
Similarly, X is closed under meets; non-empty meets can be represented by meets 
of decreasing sequences, and every decreasing sequence converges to its meet. 

For r,seX with r < s there exists a w e l with r < w < s because r* A S is 
not an atom. In particular, every open interval of X is non-empty. If (]r„ 5/[)/6/ is 
a family of pairwise disjoint intervals in X, then for every i #= j in / we get either 
st < rf or Sj < r, by disjointness. In the first case we get r* A S, A rf A S} < st A r* = 
0, and in the second case we have r*A s, A r*A sf < r*A sf = 0. Thus (r*A s)iel 

is a disjoint family of non-zero elements. Thus I is countable because B satisfies 
(ccc). 

Now from (SH) we see that there exists an order-isomorphism / : [0, 1] -> X, 
where [0,1] cz U is the real unit interval. By convergence of increasing and 
decreasing sequences, the composite / : [0,1] -> X c> B is even continuous, and 
we have /(0) = 0, / ( l ) = 1. From 0, a e X we see that 0 and a belong to the same 
path-component. Since a e B was arbitrary, X is path-connected. 

The converse will be proved indirectly. Let X be a Souslin continuum, i.e. 
a counterexample to (SH). Then X has a least element 0 and a largest element 1. 
Consider the (Hausdorff) topology on X, one of whose bases consist of all open 
intervals ]x, y\_ (x, y e X, x < y) and all semi-open intervals of the form [0, x[, 
]x, T] (x e X). Recall that a subset U cz X is called regularly open, if 
U = int cl U, i.e. U is the interior of its closure. Let B be the set of all regularly 
open U cz X. Then we have 0, X e B. For U, Ve B we easily see U n Ve B, and 
for any U e B we obtain 17* := int (X\U) = K\cl U eB.lt is well-known and not 
too difficult to prove that B is a Boolean algebra under these operations. Moreover, 
B is even complete (as a Boolean algebra), in particular ^-complete. 

Indeed, for Z cz B, int cl \JueZu is a join (supremum) of Z in B. But note that 
even finite joins in B are in general not set-theoretic unions; for x e -K\{0, 1} we 
have [0, x[, ]x, 1] e B, but int cl ([0, x [ u ] x , 1]) = int X = X =f= [0, x [ u ] x , T] . 

Now endow B with the sequential topology from given by limes superior and 
limes inferior. As we saw there, B is a monotonely complete weakly Hausdorff 
sequential Boolean algebra. 
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Now finite meets in B are set-theoretic intersections, every l/eB\{0} contains 
anon-empty open interval and every sequence of pairwise disjoint non-empty open 
intervals is countable; thus B satisfies (ccc). Moreover, for U e B\{0} there exist 
w, w e X with u < w, 0 #=]w, w[cz U, and for v e]w, w[ we have ]u, v[e B and 
0 =f=]u, u[g U. Thus £ is atomless. 

It remains to be shown that B is not path-connected. The main idea is due to 
A. Bella [1], who used it in a different context. Assume that f: [0,1] -» B is 
continuous with f(0) = 0 and f(l) = X. For every t e [0, 1] n Q, f(t) cz X is 
regularly open and therefore a union of open intervals, which can even be chosen 
pairwise disjoint. By our hypothesis about X, this set of open intervals is 
countable; hence its set Zr of endpoints is also countable. If the countable set 
Z := \Jte[o, i]no2f were order-dense in X (i.e. Zn]u, i;[#= 0 for all w, v e X with 
u < v), then it would follow that there exists an order-isomorphism X = [0, 1], 
contradicting our assumption on X. Thus Z is not order-dense, i.e. there exist 
u,ve X with u < v and Z n K = 0 for K := ]u, v\_. By definition of Z, this 
implies f(t) f] K = 0 or K cz /(f) for all t e [0,1] n Q. 

Now f:[0,1]-• B and "n": BUB^B are continuous; thus the map 
[0,1] -> 5, £ i—>f(t) n K is also continuous, and for all t e [0,1] n Q we have 
f(t) n Ke {0,K}. Since B is weakly Hausdorff, {0,K} c 5 is closed, we obtain 
f(t) n Ke {0,K} for all te [0,1]. But since [0, 1] is connected and (0,K} is 
discrete, it follows that the continuous map [0,1] -> B, t \—> f(t) n K is constant. 
But this is not true because f(0) n K = 0 - # K = XnK= f(l) n K. 

3 Necessity of (ccc) and Monotone Completeness 

Up to now we only proved connectedness for monotonely complete T() sequen­
tial Boolean alogebras with (ccc); note that in 2.1 (Ml) implies (ccc) and (M2) 
implies monotone completeness. It will turn out that connectedness of all 
maximal totally ordered sets implies (ccc) and "almost" implies monotone 
completeness. On the other hand, there exist T0 sequential Boolean algebras 
without (ccc) or monotone completeness, in which some maximal totally ordered 
sets are connected; consequently these sequential Boolean algebras are con­
nected. 

We like to introduce two more notions. We call a sequential Boolean algebra 
B exhaustable if every disjoint sequence in B converges to 0. Every monotonely 
complete sequential Boolean algebra B is exhaustable, because for a disjoint 
sequence (.x,,),,^ the increasing sequence yn:= (\/k=\xk)neN converges to some 
yeB, thus (xfI)/ieN = (yn A y*_i) converges to y A y* = 0 (where y0 = 0). On the 
other hand, an infinite Boolean algebra endowed with the discrete topology is not 
exhaustable. 
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Furthermore, we call a sequential Boolean algebra B solid if it satisfies the 
following condition: If (x„)weN, and (yn)neN are sequences in B such that (yw)neN 

converges to 0 and such that xn < yn for all M, then (x.,)II6N converges to 0. If B is 
(/-complete, then B is obviously solid in the sequential topology given by limes 
superior and limes inferior. Moreover, if the topology of B is given by a (not 
necessarily continuous) submeasure, then B is also solid because the discrete 
topology is given by the submeasure fi with p(0) := 1 for x + 0. 

3.1 Example 

Consider the interval algebra B :-= lnterval([0, l[) of the interval [0, 1[ cz U. 
Elements of B are all finite unions of intervals [a, /}[, where a, jS e IR, 0 < a < 
P < 1; we have 0 e B since 0 is the nullary union. The Boolean operations are set-
theoretical. Let X: B -+ U be the restriction of the Lebesgue measure, i.e. X is the 
unique measure with 2([a, /}[) = /? — a whenever 0 < a < jS < 1. Moreover, for 
a e B let v(x) be the least non-negative integer such that a is a union of n intervals; 
equivalently, v(x) is the number of connected components of x. Then for all 
x, y e B we have v([0, l]\>c) < v(x) + 1 and v(x v y) < v(x) + v(y). We define 
a sequential topology on B with unique sequential limits in the following way: 
a sequence (xn)n6N converges to 0 if (X(xn))neJ^ converges to 0 and 
sup {v(^)| n e N) < oo. Moreover, (xn)nG^ converges to xeB if and only if 
(xn Ax)neN converges to 0. It is readily checked that this notion of convergence 
satisfies (CS1— 4); thus it is induced by a sequential topology with unique 
sequential limits. It is easy to see that complementation and binary meets are 
sequentially continuous. Therefore B is a T{) sequential Boolean algebra. 

We claim that B is not solid. For n e N define xn := (J£l,;[l/(2k + 1), l/2k[e 5, 
yn :=[0, l/2n[e B. Then for all n e N we have xn cz ym X(yn) = l/2w, v(yn) = 1; 
hence (yn)neN converges to 0 in B. But (xn)neN does not converge to 0 because 
v(xn) = n + 1 for all n e N, hence sup {v(xn)\ n e N) = oo. This shows that B is 
not solid. 

3.2 Theorem 

Let B be a T0 sequential Boolean algebra such that all maximal totally ordered 
subsets of B are connected. Then the following assertions hold: 

(i) B is o-complete. 

(ii) If (an)neN is an increasing sequence in B, then there are a strictly or­
der-preserving map cp : N -> r\l and a sequence (bn)neN such that a^ < bn < 
a(p{n+i)for all neN and such that (b„)n converges to \/neNbn = \/neNa<p{n) = 
\JneMan-
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(iii) IfB is solid or exhaustable, then B is monotonely complete. 

(iv) B satisfies (ccc). 

Proof, (i): It suffices to show that every increasing sequence (an)neN has a supre-
mum, and w.l.o.g. we can assume that (an)n is even strictly increasing, i.e. 
an < an+i for all n e N. By Zorn's Lemma, there exists a maximal totally ordered 
subset X a B with {ojn e N} cz X, and X is connected by hypothesis. Moreover, 
we have 0, 1 e X by maximality, because X u {0,1] is still totally ordered. For 
Z : = {xeX\3nx < an} we see that X\Z := {xe X\Vnxn > a} is relatively 
sequentially closed and hence relatively closed in X (by continuity of Boolean 
operations and uniqueness of sequential limits). Since O e Z and 1 e X \ Z , con­
nectedness of X yields that Z is not closed in X and thus not sequentially closed 
in X. Therefore there exists a sequence (bn)neN in Z that converges to some 
s e X \Z. Then for every xeZ there is an n e N with x < an < s. For each x e 
X\Z, we have bn < x for all n e N, hence s = lim,,^xb,. < x. Thus X u {s} is 
totally ordered, hence x e l b y maximality. 

We claim that s is a supremum of {afl \ n e N} in B and we already proved an < s 
for all n e N. Assume ceB with an < c for all n e N. For every xeZ there is an 
neN with x < an < c, hence x < s A C. For x e X \ Z we have s A C < s < x. 
Thus X u {s A c} is totally ordered, and by maximality we have s A ce X. Since 
an < s A c for all n e N, we have s A C e X \ Z , thus s < s A c < c, proving our 
claim. 

(ii): W.l.o.g. assume that (an)n is strictly increasing, and define s := \fneNan. As 
shown above there exists a sequence (c„)„6N converging to s such that {atl | n e N} u 
{(^ | n £ N} is totally ordered and such that for every neN there is an m e N with 
cn < am < s, hence cn < ak for all k > m. 

Now we define cp : N -> N and (bn)neN by induction. Let <p(l) := 1 and bx := cx. 
If cp(l),..., (p(rc) have already been defined, define cp(n + 1) as the smallest keN 
with k > cp(n) and bn. If we had c, < a^,,) for all / > cp(n), we should get the 
contradiction s < a^ < a(p{n+x) < s. Thus we can choose bn+x := c, for the smallest 
/ 6 r\J with C\ > max (a^,,), b„) and a^ < ch Then has the required properties. 

(iii): Let (an)n be a strictly increasing sequence and let s := \fneNan. By (CS3) 
it suffices to show that for every strictly increasing cp : N -> N there is a strictly 
increasing o : N -* N such that (a(pon{n))n converges to s. So let cp be fixed and note 
that s = \Jne\a<p(ny By (ii) there are a strictly increasing o: N -> N and a se­
quence (bn)n converging to s such that a(poa{n) < bn < a(po(T{n+l) for all neN. Then 
(b* A s)ne N converges to s* A s = 0, and for every n e N w e have a*oa{n+x) A 
s < b* A s. If B is solid, it follows that (a*oa{n+l) A s)n and hence (a^ , , ) A S)„ 
converges to 0; therefore (a^o ,̂,)),, = (s A (a*oa{n) A S)*)„ converges to s A 0* = s, 
and we are done. 

If B is exhaustable, we get b*A a(po<T{n+x) A b*+x A a(po(T{n+1) < a^o^+i) A b*+x = 0, 
because a^^+i) < bn+x. By exhaustability, (b*A a^o^+i)),, converges to 0, hence 
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koH»+i))« = {bn v {b*A a^o^+i))),, and thus also {a(poff{n))n converges to 8 v 0 = s, 
because {bn)n converges to s, proving our claim. 

(iv): It suffices to show that there is no family (a^<Ml with a? e B, ac- #= 0 for 
all ^ < co{ and with a^ A an = 0 for £ < rj. Assume the existence of such a family. 
Then by (i), b^ := \/c<^ac exists for all £ < (ou and for £ < Y\ we have a^ A b^ = 0, 
a^ < bv hence b^ < bn. In particular, {fy \ £ < a>{} is totally ordered (in fact, even 
well-ordered). 

By Zorn's Lemma, there exists a maximal totally ordered set X a B with 
{%{£ < c0i} c X. Then for Z : = {xeX|3(.; < cou x < b^} we see that OeZ, 
1 <£Z and X\Z = {xe X|V£ e Wb^ < x} is relatively sequentially closed and 
therefore closed in X. On the other hand, if (z„)n6N is a sequence in Z, which 
converges to some ce X, then for every neN there is a £,. e JV with z„ < bcV But 
there is also an r\ < a>x with t;n < r\ for all n e N we get zn < b^t < b„, and this 
yields c <bn< bn+l and hence ceZ. This proves that Z is also relatively 
sequentially closed and thus closed in X, contradicting our hypothesis that X be 
connected. 

4 Examples 

(1) Let the T() sequential Boolean algebra B be as in 3.1. Then B is not solid 
and thus not monotonely complete. B is not even cr-complete because 
\Jn={\l/{2n + 1), 1/2H[ does not exist in B. Therefore, by 3.2 not all maximal 
totally ordered sets are connected. It is even quite easy to give a concrete example. 
For the set a:= (J,f=1[l/(2n + 1), l/2n[c: [0,1[ we easily see a $B but Y:= 
{au [0, t[\ t e]0,1]} c B and Z := {an]t, 1]| t e]0,1]} c B. Moreover, we see 
that X := YKJ Z is maximal totally ordered but not connected because YnZ = 0 
and both Y, Z are closed in B and therefore relatively closed in X. 

On the other hand, B is even path-connected because the map [0, 1] -* B, t \—> 
[0, t[ is a path from 0 to 1 in B, and {[0, t[\ t e [0,1]} is a path-connected totally 
ordered set. Moreover, B satisfies (ccc), because X as in 3.1 is a strictly positive 
measure. 

(2) Let B be as in (1) as a Boolean algebra, but endow it with the metrizable 
topology induced by the measure fi. Then B is solid, but by the same arguments 
as above B has a path-connected maximal totally ordered set, but the maximal 
totally ordered set X as in (1) is not connected. Moreover, B satisfies (ccc), 
because X as in 3.1 is a strictly positive measure. 

(3) Let B be a connected T0 sequential Boolean algebra and let I be a set. Then 
the sequential modification £, := s(B7) of the topological power B1 (with compo-

)} 
and I is uncountable; B{ does not satisfy (ccc). If B0 is monotonely complete 

nentwise Boolean operations) is also a T0 sequential Boolean algebra. If B0 =f= {0} 
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(c-complete resp.), then so is Bx. The diagonal map 5:B0\-^Bh X H ( X ) | 6 / is 
sequentially continuous and therefore continuous. If B0 is (path-)connected, then 
8\B0_\ CZ B{ is a (path-)connected subset containing 0 and 1, thus Bx is (path-) 
connected by 1.2 or 1.3. If X cz B0 is a maximal totally ordered set, then <5[X] <=-" 
Bx is also a maximal totally ordered subset, namely S[3~\ for X a B0 maximal 
totally ordered. We can even choose B + {0},X such that X is path-connected. On 
the other hand, in case B0 + {0} and I uncountable we see from 3.2 that not all 
maximal totally ordered subsets of Bx are connected because Bx does not satisfy 
(ccc). If I is an ordinal cc > a>x we even can give an example. For X cz B0 as 
above, define Z^ cz B as the set of all families (sn)n < a such that x^ e X and 
moreover xn = 0 for r\ < £ and x̂  = 1 for r/ > C. Then for £ + 1 < a the set 
Z^ n Z{+x has a unique element (z^ e N , where zn = 0 for rj < /; and z,. = 1 for 
rj > d;. For £ + 1 < r\ we have Z^ n Zn = 0. Now we see that Z := (J^<aZ<, cz Bx 

is a maximal totally ordered subset of Bu which is not connected because (J^<miZ^ 
is relatively clopen in Z. 
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