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The paper presents a general version of Delta Theorem which helps us to transform probabilistic 
asymptotic laws. The result is based on famous Tops0e's setup (1972) which is shortly recalled in 
Introduction. The introduced Delta Theorem for multifunctions improves that of King (1989). In particular, 
the contingent derivative may be a compact-valued instead of a single-valued multifunction and values 
are allowed to belong into a Hausdorff linear topological space. 

1. Introduction and Tops0e's result 

Probability theory has derived a number of weak convergence theorems. From 
a practical point of view, it is useful to know how these theorems look after 
a transformation by a given mapping. A well-known result on differentiable function 
is traditionally called Delta Theorem (or Delta Method). 

Delta Theorem. Let £„, £ be real random variables x e ffl, xn > 0, tn -» + oo 
such that Tn(£n — x) •--> ̂ . Then for any real function f differentiable at the point 
*, one can derive xn(f(Q - f(x)) A / '(*)£ 

But the theorem does not cover all requirements. There are problems needing 
essentially rich spaces. And moreover, the transforming mapping f can be non 
differentiable and can take several values. For example, this happens when 
optimization programs are studied. 

The crucial question of the setup is how to transform a random variable, generally 
a probability measure, by a given multifunction at the place of f An effective 
construction is due to Tops0e. Let us briefly describe his idea. The following results 
are stated without any proof, the interested readers can see at Tops0e for them. 

A mapping ascribing non-empty subsets of a set Y to points of a set X is called 
a multifunction. The used notation is <p : X =J Y. Since a value of cp may contain 
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several points, there are two different kinds of inverse images, the strong inverse 
and the weak inverse. These are given by 

cpsB = {xeX: cp(x) c B}, cpwB = {xeX: cp(x) n B =# 0} 

for any subset B of Y. Always cpsB <= cpwB and both inverses coincide only if cp is 
a function, i.e. all values of cp are single-point sets. 

In the sequel X and Y are assumed to be Hausdorff spaces because some continuity 
properties of multifunctions are considered. Following a standard notation, &(X) 
(resp. ^(X\ 3f(X), &(X)) denotes the collection of all open (resp. closed, compact, 
Borel) sets in X. 

Definition 1. A multifunction cp : X =J Y is said to be 
(i) upper semicontinous (u.s.c.) if the strong inverse of any open subset of Y is 

open in X\ 
(ii) lower semicontinuous (l.s.c.) if the weak inverse of any open subset of Y is 

open in X\ 
(iii) continuous if it is both u.s.c. and l.s.c; 
(iv) closed-valued if its values are closed in Y; 
(v) compact-valued if its values are compact in Y 

There are some equivalent definitions employing general nets (see Tops0e for 
the proof). 

Lemma 1. Let X, Y be Hausdorff spaces and cp : X =t Y be a multifunction. Then 
(i) cp is l.s.c. o if xae X, xa -> xeX and y e cp(x) then there exist a subnet 

Xp and a choice yp e cp(xp) such that yp -> y\ 
(ii) cp is compact-valued u.s.c. o if a net xa e X, xa -> x e X, ya e cp(xa) then there 

exist a subnet such that yp -> ye cp(x). 
In this case we say that cp preserves compact nets. 

The action of a multifunction can be extended to probability measures. Tops0e 
considered a general case, but for our purpose Radon probability measures are 
sufficient. The set of all Radon probability measures on a Hausdorff space X will 
be denoted by &(X)\ i.e. \i e 2P(X) provided that fi(X) = 1 and 

fi(B) = sup {fi(K) :BZD Ke jT(X)} for each B e ®(X). 

Definition 2. Let X, Y be Hausdorff spaces and cp:X =$ Y be a multifunction. 
We define the mapping cp : 0>{X) -> exp 0>(Y) by v e cp(ii) o v*(B) = fi*(cpsB) for 
every B e 7. 

Recall that the upper star indicates the outer measure and the lower star indicates 
the inner measure. The extension can be equivalently expressed in several ways 
(see Tops0e for the proof). 

Lemma 2. Let X, Y be Hausdorff spaces and fi e SP{X\ v e ^( l ) . Then the 
following conditions are equivalent. 
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(i) vecp(p)\ 
(ii) p.*(cp*B) ^ v*(B)for every B c 7 ; 
(iii) ixJ<pwB) = v*(B)for every B c 7 ; 
(iv) fi*(A) ^ v*(cpA)for every A a X; 
(v) fi*(cpsG) ^ v(G)for every G e &(Y); 

(vi) fi(K) ^ v*(cpK)for every K e JT(X). 

The introduced mapping is not necessarily a multifunction because cp(pL) may be 
empty for some \i e &P(X). Nevertheless, a few nice properties are held (see Tops0e 
for the proofs). 

Corollary 1. For each x e X, one has 

v e cp(5x) o v*(cp(x)) = 1, 

where Sx denotes the probability measure concentrated at the point x. 

Especially, cp(8x) =1= 0 since 5y e cp(5x) for every y e cp(x) and cp(fi) 4= 0 if the 
support of fi consists of a finite number of points. 

Corollary 2. Let \i e 8P(X) be such that the multifunction cp is a \i-a. s. function, 
i.e. p*(x e X : #cp(x) ^ 2) == 0. Then cp(fi) contains at most one point. (#A denotes 
the cardinality of the set A) 

Corollary 3. Let X, Y be Polish spaces and ^ be a random variable with the 
probability distribution \x. If £ e cp(£,) is a measurable selection, i.e. £ is a random 
variable and £(c0) e cp(£(co)), with the probability distribution v then v e cp(fi) (in this 
case, every probability measure is necessarily Radon). 

The reverse question if every v e cp(p) can be represented by a measurable selection 
£ G cp(£) is difficult. The answer depends on the structure of the probability space 
in question as well as of the Polish spaces X, Y 

The constructed mapping saves the upper semicontinuity, as Tops0e has shown. 

Proposition (Tops0e). Let X, Y be Hausdorff spaces and cp:X =£ Y be 
a compact-valued u.s.c. multifunction. Then cp : &(X) =t 0*(Y) is a compact-valued 
u.s.c. multifunction as well. 

For the proof see the theorem 3.13 of Tops0e. 

2. Delta Theorem 

The presented setup gives an effective tool of investigation of a general Delta 
Theorem employing multifunctions. For that purpose, a notion of multifunction 
differentiability needs an explanation. But this requires a special topological 
structure. Therefore in this chapter the spaces X, Y are assumed to be Hausdorff 
linear topological spaces. 
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There are several definitions of a derivative of a multifunction. All of them are 
constructed by means of special tangent cones of the multifunction graph, see Aubin 
& Frankowska. Our result needs the contingent derivative, cf. the definition 5.1.1 
of Aubin & Frankowska. Moreover, the considered multifunction has to fulfil 
a uniformity condition. 

Definition 3. Let X, Y be Hausdorff linear topological spaces. A multifunction 
(p : X =t Y is said to fulfil the property (L) at the point x e X if 

there is T: X =t Y a compact-valued u.s.c. cone multifunction, 

(L) i.e. T(ocy) = ocT(y) for every oc — 0, yeX, such that 

(p(x + x) a (p(x) + T(x) on a neighbourhood of the point zero. 

If Y is a finite-dimensional Euclidean space then the property (L) is equivalent 
to the local upper Lipschitz property, for definition see Aubin & Frankowska or 
King. The property (L) allows an equivalent definition of the contingent derivative. 

Lemma 3. LetX, Ybe Hausdorff linear topological spaces, x e X, (p : X =?. Ybe 
a multifunction fulfilling the property (L) at the point x and (p(x) = {y}. Then there 
exists the multifunction D: X =t Y uniquely determined by the following two 
conditions 
(i) Ifta > 0,xae X, ya e (p(taxa + x), ta -* 0, xa -» x e X then there exists a subnet 

such that — (yp — y) -> y e D(x). 
h 

(ii) IfxeX,ye D(x) then there exists a net ta > 0, xa e X, ya e (p(taxa + x) such 

that ta -• 0, xa -> x and — (ya — y) -*- y. 
t<x 

The multifunction D is called the contingent derivative of (p at the point (x, y) and 
is a compact-valued u.s.c. cone multifunction, i.e. D(ocx) = ocD(x)for every xeX, 
a = 0. 

Proof. Evidently, there is at most one multifunction fulfilling (i) and (ii). 
Define a mapping D : X -> exp Y by 

y e D(x) O there exist a net ta > 0, xae X, ya e (p(taxa + x) 

such that ta -> 0, xa -> x, — (ya — y) -H• y. 

a) We have to show that D is a multifunction, i.e. D(x) should be always a non-empty 
set. 

Let x e X. Take the sequence tn = - , xn = x, yne (p(tnx + x). Hence, 

yney + T(tnx) for n large enough, because (p fulfils the property (L) at the 
point x. Since T is a compact-valued u.s.c. cone multifunction and 
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— (yn — y) e T(x), there exists a subnet — (yp — y) -> T(x). Consequently, 

y e D(x) and thus D is a multifunction. 
b) We have to verify the property (i) since (ii) holds immediately. 

Let ta > 0, xa e X, ya e cp(taxa + x), ta-+0,xa^> xeX. Hence, ya e y + T(taxa) 
for a large enough, because <p fulfils the property (L) at x. Since T is 

a compact-valued u.s.c. cone multifunction — (ya — y) e T(xa) and there exists 

a subnet — (yp — y) -• y e T(x). Consequently, y e D(x). 

c) We have to prove that D is a compact-valued u.s.c. cone multifunction. 
Evidently, D is a cone multifunction and D(x) _ T(x) for every xe X. 
Let xaeX, xa -> x e l , yaeD(xa). There exists a convergent subnet 
^ -• y e T(x) since ya e D(xa) _ T(xa) and T is compact-valued u.s.c. The 
spaces X, Y are Hausdorff linear topological spaces, therefore one can find 
another net ty > 0, xy e .K, yy e cp(tyx'y + x) such that ty -> 0, xy -> x, 

— (yy — j)) -• y. Consequently, j;el)(x) and D is compact-valued u.s.c. 
ty 

Q.E.D. 

Theorem. Let K, Y be Hausdorff linear topological spaces, x e X, cp : X =$ Y 
be a compact-valued u.s.c. multifunction fulfilling the property (L) at the point 
JS and cp(x) = {y}. Let £a be a net of random variables with values in X and 
Ta(£a — ^) ^ £ for some standardization xa > 0, xa —• + oo and Ca e ^(^a) ^e 
measurable selections. Assume that the probability measures induced by £a9 £ and 
£a are Radon probability measures. Then there exists a subnet such that 
*/?(£/? — 9) ^ C and the probability measures \i of £ and v of ( satisfy v e -^(JU), 

where D^ is the contingent derivative of cp at the point (x, j>). 

Unfortunately, it is not sure that £ can be found as a measurable selection of Djfy. 

Proof. Consider the multifunction ij/ :R+ x X zt R+ x Y given by 

[j/(t9 x) = f t, - (cp (tx + x) — y) J if t > 0, x G X , 

tA(0, x) = (0, D^x)) if x e l . 

Our task is to show that i// is a compact-valued u.s.c. multifunction. The assertion 
of the theorem immediately follows this fact. 

It is sufficient to verify that \j/ preserves compact nets. Let ta ^ 0 , xaeX, 
ta -• t = 0, xa -> x e X and ya e Y such that (ta, ya) e il/(ta9 xa). We are looking 
for a convergent subnet yp -* y e Y and (t, y) e \j/(t, x). There are three different cases, 
a) Suppose t > 0. 
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Hence, ya e — (cp(taxa + x) — y) and therefore taya + y e cp(taxa + x). Since 

t«xa -* tx and cp is compact-valued u.s.c, there exists a subnet such that 
tftp + y -* ty + y e <p(ta + x). Consequently, y/? -> y and (t, >!) e i/f(t, x). 

b) Suppose ty = 0 for a subnet. 
Hence, yy e Dj^Xy) and xy -> x. Dy is a closed-valued u.s.c. multifunction 
according to Lemma 3. Therefore, one can select a convergent subnet 
yp -> y e D^x) and (0, j;) e tfr(0, x). 

c) Suppose t = 0 and ta > 0 for all a large enough. 

Hence, ya e — (<p(taxa + x) — y) if a is large enough and ta -> 0, xa —> x. Since 

D^ is the contingent derivative of <p, there exists a convergent subnet 
yp-+ ye Djx) and (0, y) e i/r(0, x). 

We have verified that xj/ is a compact-valued u.s.c. multifunction. This concludes 
the proof as follows. 

We have 

( - , T«(í« - ў)j Є «A í - , T«(£« - *)) • 

Denote by fi'a (resp. va) the probability distribution of ra(£a — x) (resp. Ta((a — y)). 
These measures are evidently Radon measures because £a, («are assumed to induce 
Radon measures. Hence, we derive <5j_ (x) va e i£ (<5j_ (x)/xa). Since $ is com-

pact-valued u.s.c, there exist a subnet 

<5± ® v ^ Q e ij}(50 (x) /i), 
rp 

where /i denotes the probability distribution of £ (which is Radon, too). From the 
definition of {ji we obtain 

e({0} x Y) = {8Q <g> n)*{P{{0}x Y)) = 5Q® /i({0}x X) = 1. 

Hence, Q = <50 (g) v for some probability measure ve0*(Y). Moreover, 
v(G) = e({0}x G) = (<50 ® A^)*(f ({0} x G)) = <50 (x) /i({0}x I^G) = rfpifi) for 
every Ge^(Y). This gives vefl^/i) according to Lemma 2. If Ge^(Y) , then 
-TV+ x G is open in R+ x Y and thus the weak convergence yields 

lim inf v'p(G) = lim inf <5j_ (x) v (̂.R+ x G) = e(fl+ x G) = v(G), 
/? P *p 

which is v̂  ^ v e -%(/*). Consequently, — ((/? — y) ^ C where the probability 
TP 

distribution of £ is the measure v, note that such random variable always exists. 
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The above theorem improves the theorem 4.3 of King. In particular, the target 
space Y is allowed to be a Hausdorff linear topological space instead of 
a finite-dimensional Euclidean space and the assumption that the contingent 
derivative is a.s. single-valued is removed, too. But one cannot expect any better 
answer than a convergent subnet, in such a general case. 
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