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Pro z&dnou spojitou bijekci h redlne" pHmky na sebe neexistuje homogennf podgrupa A c Rt ktera* 
by tvofila spolu s h(A) rozklad R na dvfc disjunktaf ££sti. 

For an arbitrary continuous bijection h of the real line onto itself there exists no homogeneous 
subgroup A of R such that A u h(A) — R is a decomposition into two disjoint parts. 

In [2], J. Menu proved that the real line R can be decomposed in two homogene­
ous homeomorphic subsets. In [3], J. van Mill showed that there exists a homeo-
morphism h: R -> R and a subset A of R such that R — A u h(A) is 
a decomposition of R into two disjoint homogeneous parts. Moreover, he proved 
that such a decomposition is not topologically unique and that h can be chosen as 
a shift of real line. In [4], J. van Mill found an example of a decomposition 
R -• A v (R \A) such that R \A homeomorphic to A, A is homogeneous and it 
does not admit the structure of a topological group. There were also other types 
of decompositions of R into two homogeneous homeomorphic parts constructed 
— e.g. a decompositon of R into two homeomorphic rigid parts in [1]. 

These results led to the question whether there exist a homeomorphism 
h: R -* R and a decomposition of R ==* A v h(A) such that A n h(A) — 0 
and A is a homogeneous subset of R satisfying A = A + A, A = —A (i.e. A is 
a subgroup of R). The goal of this note is to shgow that one cannot find not even 
a continuous bijection with this property. 

Theorem. / / R = A v B with A n B — 0, A, B homogeneous, A a 
subgroup of R (with the usual additive structure), and h: R -* R is a bijection 
satisfying h(A) — B, then h is not continuous. 

We shall prove this theorem by three lemmas: 
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Lemma A. Let R = A u B (A ^ B =* 0) be a decomposition of R into two 
homogeneous parts such that A is a subgroup of R. Suppose that h: R -+ R is 
a bijection satisfying h(A) = B. Then A, B are dense in R. 

Proof. Since A is a subgroup of R, there is 0 e A. Suppose that inf {x e A; 
x > 0} > 0. Then A is a discrete set, hence countable which contradicts the 
assumption A u h(A) = R. Thus, there exists a sequence {an e .A \{0}; n = 1, 
2, ...} such that lim 0n = 0. For any k = 1, 2, ... there exists n(A:) such that 
lfl«(*)l < fc-1- If 6 e -5 and fc is a positive integer then there exist an integer/? such 
that Z> — A:"1 < pan(Jt) < 6 + fc""1. Hence, .4 is dense in R. 

If b0£ B then 6„ — 6 0 /n e B for « = 1, 2, ... For any a £ A there is 
a + bn* B, a = lim (a + Z>w). Hence, B is dense in R. 

Lemma B. Let the assumptions of Lemma A be satisfied If a ^ b, 
h(x) — x = /*(#) — a for any x e (a, b), then a = b. (In other words, h is not 
a shift on any non-degenerated interval.) 

Proof. Suppose that a < b. Let there exist d e R such that h(x) = x + d 
for any x e (a, b). According to Lemma A, there exists c e (a, b) n A, /*(c) = 
= c + d e .8. Hence, t i -B. Moreover, there exists a positive integer n such that 
a < c - rf/(2n) < c + d/(2ri) < 6. Clearly, c - d/(2n) e B, c + d/(2n) e 
e B, h(c - d/(2n)) = c + d(2n - l)/(2ri) e A, h(c + d/(2n)) = c + 
+ d(2n + l)/(2n) e 4̂. Therefore, d/n e .4 and rf € A which is a contradicti­
on. 

Lemma C. Let the assumptions of Lemma A be satisfied, a < b. Then h is not 
continuous on (a, b). 

Proof. According to Lemma B, there exist u, v € (a, b) such that u < v, 
h(u) — u ¥^ h(v) — v. Without loss of generality, assume that h(u) — u > 
> h(v) — v. By Lemma A, there is p e A such that h(u) > u + p, 
h(v) < v + p. Denote s = sup {x e (u, v); h(x) > x + p}. Ifh is continuous at 
s, then h(s) = s + p. Since s e A <=> h(s) e B, there is p e B which is 
a contradiction. 

Lemma C finishes the proof of theorem. 
Of course, there remains a following 

Open problem (J. van Mill). Does there exist a homogeneous subgroup of 
R which is homeomorphic to its complement? 

According to the result presented above, in the case of a positive solution the 
homeomorphism f: A -+ R\A cannnot be extended to a continous function on 
any interval. 

156 



References 

[1] VAN ENGELEN, E, Topology Appl. 171984, 275. 
[2] MENU, J., preprint. 
[3] VAN MILL, J., Comp. Math. 46 1982, 3. 
[4] VAN MILL, J„ Indag. Math. 44 1982, 37. 

157 


		webmaster@dml.cz
	2012-10-06T02:01:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




