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An important problem in the theory of semigroups of operators is to decide whether 

(1) s(A; U) = to(U) 

for the generator A of a C0-semigroup {U(t)}t^0 of bounded linear operators in 
a Banach space, where s(A; U) = sup {Re(X); X e G(AL)} is the spectral bound of A 
and co(U) = inf {f"1 log [|U(f)||; t > 0} is the growth bound of U; see, for example, 
[16; 17; 21; 22; 28] and the relevant references therein. Semigroups satisfying (1) 
will be called stable. 

Whereas it is always the case that s(A; U) ^ co(U), [12; § 1], it is known that (1) 
is not valid in general, neither for semigroups in Hilbert, [30], nor for positive 
semigroups in Banach lattices, [16]. However, there are many classes of Co-semi­
groups for which (l) does hold; see, for example, [12; 17; 25; 28; 29]. 

A well known criterion guaranteeing stability is the spectral mapping property 

a(U(t)) \ {0} = {etx; X e a(A)} , t = 0 , 

together with eventual norm continuity of the C0-semigroup {U(t)}t^Q; see [22; pp. 
87—88]. This includes all eventually compact semigroups, all eventually differen-
tiable semigroups, all holomorphic semigroups and all uniformly continuous semi­
groups. It may be of interest to note that there are examples of infinite dimensional 
Banach spaces in which every C0-semigroup is stable. Let X be a Grothendieck space 
with the Dunford-Pettis property (e.g. L°°-spaces, H°°(B), certain C(Q) spaces; 
see [20], for example). In such spaces X every C0-semigroup is stable, by the above 
comments, since such semigroups are always uniformly continuous, [20; Theorem 6]. 

We wish to suggest some specific (and rather special) examples of stable Co-semi­
groups coming from (some) areas of analysis, which are stable for very simple reasons; 
see Fact 2 below. If X is a Banach space, then L(X) denotes the space of all bounded 
linear operators from X into itself. 
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Fact 1. Let T:U->L(X) be a l-parameter group with generator A. Define 
semigroups Ul and U2 by Ut(t) = T(t),for t = 0, and U2(t) = T(-t),for t = 0, 
respectively. Then the generator At of Ut is given by Ax = A with D(A^) = D(A) 
and the generator A2 of U2 is given by A2 = —A with D(A2) = D(A). 

A C0-semigroup {U(t)}t^0 is said to be of polynomial growth if there exists a real 
number k ^ 0 such that 

\\u(t)l = 0(t"), t = 0 . 

Fact 2. Let T: U -• L(X) be a C0-group of polynomial growth. Let iA be the 
generator of T, that is, formally T(t) = eitA, t e U. Then 

(i) G(A) 4= 0 , and 
(ii) o(A) c iR . 

In particular, the C0-semigroups U1 and U2 of Fact 1 are stable. 
Property (i) is well known; see [22; p. 91], for example. To establish Property (ii), 

let k = 0 satisfy ||T(f)|| = 0(\t\k), for teU.lt follows that oj(Ut) =" 0. Hence, for 
any X e C with Re(/l) > 0 the integral \0 e~;tUt(t) At exists (as a Bochner integral 
for the strong operator topology in L(X)) and, by semigroup theory, coincides with 
the resolvent operator (iA — M)*1. This shows that [z e C; Re(z) > 0} is contained 
in Q(iA). By considering U2 a, similar argument shows that {z e C; Re(z) < 0} is 
also contained in Q(iA). This establishes (ii). The stability of Ux and U2 now follows 
from the fact that <r(Aj) C iU implies s(Ay, Uj) = 0, forj = 1, 2, that the polynomial 
growth of T implies co(Uj) ^ 0, for j = 1,2, and that s(Ap Uj) ^ co(Uj) always 
holds. D 

Remark 1. For groups with bounded generators Fact 2 is well known and is 
equivalent to several other conditions; [9; p. 160]. We list a few classes of operators 
covered by this criterion. 

(i) Hermitian or Hermitian equivalent operators (that is, | |c ,M | | = O(l), teU). 
This includes all prescalar-type spectral operators with real spectrum, 
(ii) Operators on a Hilbert space of the form A = TRS with R = 0 and ST self-
adjoint. Typically for this class |e i M | | = 0(|f|), teU. 

(iii) Algebraic operators with real spectrum. 
(iv) Well-bounded operators (i.e. for some bounded interval [a, b] there is 

K > 0 such that ||p(-4)|| = K(\p(b)\ + JJP'(w)| dw), for all polynomials p). Again, 
typically for this class | | e ' M | = 0(\t\), t e U. 

(v) Nilpotent operators. Indeed, if Ak + 0 but Ak+1 = 0, then the series expan­
sion of the exponential function shows that \\eitA\\ = 0(\t\k), t e U. 

(vi) Many Fourier multiplier operators generate C0-groups of polynomial 
growth. For some simple examples consider the setting of If(U), 1 < p < oo, 
and real-valued functions m e BV(U). In this case, if A(m) = m( — i djdx) denotes 
the corresponding multiplier operator and |[[ • IJĵ , the p-multiplier norm, then the 
inequalities 

]<.'"<»>|| = III^UI, = Xp|e""||Bv = K,(l + 2\t\, H B K ) , 
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valid for each teR, show that (typically) we have [|eIM(m)|| = 0(\t\), teR. This 
holds for all p e (1, oo). However, for a particular p such an estimate is surely not 
optimal (consider already p = 2). For, choose p e (1, 2), say, and let q satisfy 
1 < q < p. By interpolation, for fixed t e R, it follows that 

\\eitA(m\P = \\eitA(m)\\jx • \eitA(m%, ^ [ Q | \ 
where IT1 = q"U + 2_ 1(1 - X), that is, I = q(l - p)jp(2 - 4). Since A < 1, 
for all 1 < q < p, we see (still crudely) that a better estimate is f|elM(m){|LP = 0(|f|A), 
t e R. Of course, another point is that such an estimate holds, for a given p, for 
all m e BV(R) with m being R-valued. For a particular IR-valued m e BV(R) this 
estimate may be improved. For instance, if m = /[0>oo), then 

eitm(x) = ef V o o ) M = eltm(x) , x e R , 

and so \eitA(m)\ = \eil\ . \A(m)\ = 0(1), teR, for every pe(l, 00). It is also easy 
to exhibit multipliers not in J3V(R) which also generate C0-groups of polynomial 
growth. Fot instance, the Marcinkiewicz theorem implies that m = Yd=-«> (~1) J 

XE(j) 1s a P-multiplier, for every p e (1, 00), where E(j) = (2s, 2 y + 1 ] , j = 0, ± 1, ± 2 , . . . 
Since eitm(x) = ei%{x) + e_ i%{x) + ^ ( x ) ? x e R ̂  

where F = m_1({l}), G = m ^ d - l } ) and H = m_1({0}), it again follows from 
the Marcinkiewicz theorem that ||efM(m)| = 0(1), teR. 

Remark 2. Property (i) of Fact 2 may fail if the group (necessarily with unbounded 
generator) is not of polynomial growth, [18; p. 664]. Examples of C0-groups, with 
unbounded generators, which are not of polynomial growth arise typically as purely 
imaginary powers of certain closed operators; see [8; 13; 23; 24; 27], for example. 

The point of Fact 2 is that it also covers stability for various classes of groups 
with possibly unbounded generators (as noted, groups with bounded generators are 
always stable). We begin with the simplest case, namely uniformly bounded groups. 
For example, if T: R -> L(X) is any strongly continuous group of isometries 
and A is its generator, then — L4 is a Hermitian operator (c.f. [11; Ch. 8, § 2], for 
example). This includes the translation groups in If(R) and U(T), 1 ^ p < oo, 
where J = {zeC; \z\ = 1} and T(t)f: eiu v-+f(e

i(t+u)), t e R, eiu e J and fe Zf(T). 
Groups of isometries in certain Banach spaces are very special, even if their generator 
is bounded. For instance, in the spaces Cx([0, 1]), Lip([0,1]), AC([0, 1]), H°°(0) 
or lipa (for 0 < a < 1), the only (bounded) Hermitian operators are multiples of the 
identity, [4]. Of course, in such spaces there may exist unbounded generators of 
isometric C0-groups, [5]. In F, 1 = p ^ oo, the only C0-groups of isometries are 
those with a generator of the formfi->fg, forfe lp, for some R-valued function g, 
[15]. For contraction semigroups in Hilbert space, see [14]. 

Let T: R^>L(X) be a Stone group. That is, there exists a spectral measure 
P : B(R) -> L(X), necessarily unique and defined on the c-algebera B(R) of Borel 
subsets of R, such that 
(2) T(t) = $ReitsdP(s), teR, 

123 



is its Fourier-Stieltjes transform, [2]. The theory of integration with respect to 
spectral measures implies that such groups are always of class C0 and are uniformly 
bounded: they are natural analogous of unitary groups in Hilbert space. 

There is a larger class of groups, introduced in [1] and [7] which, although not 
necessarily Stone groups may, nevertheless, be considered as analogues of Stone 
groups since they can still be represented via (2), [1; Theorem 4.20], where now P 
is no longer a spectral measure but a spectral family of projections {P(X);Xe U} 
in L(X) and the „integral" in (2) is not with respect to a <r-additive measure but 
exists, in a well-defined sense, by taking limits of certain Riemann-Stieltjes sums 
(c.f. [1] for the definitions). More precisely, let us call a C0-group T: R -> L(X) 
a Stone-like group if, 

(i) for each t e R we have T(t) = elA(t\ where A(t) is a well-bounded operator 
of type (B) with c(A(t)) .= [0, 2TT], and 

(ii) sup {||Pf(^)||; t, XeR} < oo, where Pt(
%) is the spectral family of A(t), for 

each t e R. 

It turns out that a Stone-like group is necessarily uniformly bounded and so, its 
generator has spectrum in iR, [7; pp. 157—158]. Any Stone group is necessarily 
a Stone-like group, but not conversely. Many important 1-parameter groups of 
operators from classical analysis, such as translations in U(R) or LP(T), 1 < p < oo 
(note that p 4= l), [1; § 4], strongly continuous groups of isometries (with unbounded 
generator) in HP(D), 1 < p < oo, [^; 7], and C0-groups of isometries in Hp of the 
torus, 1 ^ p < oo, [6], for example, are Stone-like groups. There are classes of 
Banach spaces in which every uniformly bounded C0-group is a Stone-like group; 
this is the case for any closed subspace X of a space Lp(v), 1 < p < oo, with v an 
arbitrary c-additive measure, [31; Theorem 4.21]. 

Stable C0-semigroups also arise as other integral transforms of spectral measures. 
For instance, let P : B([0, oo)) -> L(X) be a spectral measure and 

(3) 17(0 = J ^ e ^ d ^ s ) , t = 0. 

Then U is a stable C0-semigroup. That U is strongly continuous (and uniformly 
bounded) again follows from the theory of integration with respect to spectral 
measures. Moreover, the generator A, of U, is given by ( — A) x = lim,..^ Jj s dP(s) x, 
for each x e D(A) = {y eX; {JJJ s dP(s) y}^°=1 converges}. If 5 denotes the support 
of the measure P, necessarily a subset of [0, oo), and a = inf {w; w e S}, in which 
case a e S, then a(A) = — S and hence, s(A; U) = —a. Since 

U(t) = e~tx Jo° *-'<*-•> dP(s) , t = 0 , 

and the family of operators {Jj ^_^s_a> dP(s); t = 0} is uniformly bounded (as 
S c [a, oo)) it follows that there is K > 0 satisfying ||(7(f)|| = Ke~ta, t = 0. Ac­
cordingly, co(U) = — a and hence, s(A; U) = co(U) = — a follows. 

Remark 1. If {U(t)}t^0 is a uniformly bounded semigroup of positive selfadjoint 
operators in a Hilbert space, then U always has the form (3) for some spectral 
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measure P. For semigroups of scalar-type spectral operators in Banach spaces see 
[2; 26]. 

Examples of groups, with unbounded generators, which are of polynomial growth 
(but not necessarily uniformly bounded) often occur in the theory of Fourier multi­
pliers. We restrict ourselves to very simple examples, namely on the group R and 
for 1 < p = 2. The first „curiousity" is the production of unbounded functions 
m : R -> R for which each function x i-» eitmix)

9 xeU and t e R, is indeed a (bounded) 
p-multiplier. Of course, m(x) = x gives rise to the translation group in If(U). How­
ever, this is essentially the only polynomial m giving rise to bounded operators. 
Using the van der Corput lemma and arguments along the lines of the proof of 
Lemma 1.3 in [19] it can be shown, for p 4= 2, that the bounded function x i-* eim(x\ 
x e R, is a p-multiplier if and only if m(x) = a + fix9 xeU9 for some a, p e U. 
Similarly, if m is an R-valued rational function, then it can be shown that x i-> eimix)

9 

xeU, is a p-multiplier if and only if m(x) = a + fix + r(x) for some a, /? e U 
and r : R -> R is a bounded rational function. So, to produce groups from u n ­
bounded multipliers" it is necessary to get away from rational functions. The next 
simplest example to try might be m(x) = \x\. But, then the identities 

« M x ) = «lttZ|o.co)W + «" toZ(-ao.o)(*) , x e U , 

valid for each *eR, show that \eitAim)\ = \\\eitm\\\p = 0(1), for teU. Or, if m = 
= ET—• kXEik) with E(k) = (2*"\ 2*], k = 0, ±1 , ±2, ..., then 

00 

e ~ A(-oo,0] ^ ZJ e %E{k\ J 
fc=-oo 

for each teU, and it follows from the Marcinkiewicz theorem that [|e,M(m)| = 
= |||e'<i|, = o(l),.eR. 

However, if m(x) = In [x|, for x e U \ {0}, then the Mihlin theorem shows that 

(4) l ^ ( m ) | | = |||e"1||p = o(|t[), ( 6 R . 

The same discussion (via interpolation) as for the case of bounded multipliers m 
shows that the estimate (4) is not optimal. For example, given p e (1, 2) and any 
qe(l,p) it aagin follows that X = q(2 - p)\p(l - q) < 1 satisfies ||e,M(m)|| = 
= 0(|f|A). Of course, for p = 2 we have [e'M(m) | = 1, t e U. However, for p =t= 2, 
it is known that 

sup{\\\eitm\\\p;teU} = co. 

For more precise information on the norms |||^,f,n|||p, t e R, we refer to [10]. 
Fourier multiplier operators also provide a direct means of producing examples 

of C0-groups of polynomial growth to an arbitrary high order. For, suppose that 
mt : U -> R and m2 : U -> R are measurable functions (not necessarily bounded) 
such that A(m^) and A(m2) generate C0-groups in LP(U)9 for some p e (1, oo) with 
p 4= 2, satisfying |||eftm^|||p = 0(|f|)*') for some k} > 0 with kj minimal, Ie{l, 2}; 
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for example, mx(x) = m2(x) = In \x\, x e R \ {0}, suffices. Then 

(x9 y) 1-4 ^»i(*)+»2Cy)) 9 (x> y)eu
2

 9 

is a p-multiplier for the group IR2, for each te U9 [19; Theorem 1.13]. For general 
^-multipliers Tt and T2 in Z?(lR2) it is the case that |[ 7"x 7"21[ ^ Jr-J . ||-T2||. However, 
if Tx corresponds to a ^-multiplier fuhction <pt depending just on x and T2 cor­
responds to a p-multiplier function <p2 depending just on y9 then actually 

[ | 7 1 7 2 1 L P ( R - ) = |MI||L-»<R2) [172[|LP(R-) 

and so, by [19; Theorem 1.13] again, 

||^1^2||l.P(R2) = |HI | |LP(R) U^2||LP(R) • 

Using this observation it follows that 

[ | e»c*—)>fl„ ( R 2 ) = ||e'"<->|I^R) \\eUA(m*\\LHR) = O f l l f + » Y 
By repeating this procedure it is possible to produce C0-groups in Lp(Un)9 with n 

large enough, such that |̂ ,"M(m)||n'(R») = 0(|*|*) w ^ ^ > 0 as large as desired. 
We now discuss two small points addressing the question of whether such groups 

{eltA(m)}teR of multiplier operators in LF(U) really are strongly continuous and whether 
the domain of the generator iA(m)9 as given by semigroup theory, coincides with the 
natural domain given via multiplier theory, namely (for 1 < p ^ 2) 

{fe LP(U); imf = § for some g e U(U)} 

with iA(m)f = g; here • denotes the Fourier transform. Since limt_0 e
itm(x) = 1, 

for a.e. xeU9 and sup{||e'M(m)||; |f| ^ 1} is finite (under the hypothesis that the 
group is of polynomial growth) it follows from multiplier theory that eitA(m) -> I, 
as t -» 0, for the weak operator topology. Then classical semigroup theory implies 
that eltA{jn) -> I9 as t -> 0, for the strong operator topology. Accordingly, we do have 
a Co-group. That the two (possibly) different descriptions of the domain of iA(m) 
coincide can be argued as in the proof of Theorem 21.4.2 of [18]. 

We conclude with a brief discussion about matrix multiplication semigroups, 
[32]. Let (Q919 v) be a ovfinite measure space and fix 1 ̂  p < oo. For an integer 
n = 1 let U(Q9 Cn) be the space of functions f : Q -> Cn such that [|f([ = (JfJ |[f(w)[|p . 
. dv(w))1/p is finite, where Cn has its standard Hilbert space norm. The space of all 
(n x n)-matrices with entries from C is denoted by M/J(C). Given a ^-measurable 
function Q: Q -> M„(C) we define a closed, densely defined operator Ap(Q)9 with 
domain 

D(AP(Q)) = {feLp(Q9 Cn) ; Qfe LP(Q; Cn)} , 
by Ap(Q)f = Qf for eachfe D(Ap(Q)). If the resolvent set of Ap(Q) is non-empty, 
then 

o(Ap(Q))= 0 V<r(R(co)), 
Re[0J me'i 

where a(R(co)) is the spectrum of R(co) e Mn(C) and [ g ] is the equivalence class of 
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all matrix-valued functions coinciding v-a.e. with Q. Then Ap(Q) is the generator of 
a C0-semigroup if and only if 

sup {ess-sup {||erc(w)||; <o e Q}; t e [0,1]} < oo , 

where || • || denotes the usual norm in Mn(C). Under this condition the weak spectral 
mapping theorem 

a{e^^ = {e^Xsa{Ap(Q))}, t^O, 

holds, from which it follows that {eiAp(Q)}t^0 is stable. 
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