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All (7-fields of sets always contain all singletons if we do not say differently. By 
a nontrivial measure on a a-field stf of subsets of a set S is mean a countably additive 
real valued nonnegative finite function \i which vanishes on each of the singletons 
which are in stf and such that fi(S) 7-= 0. If S is a set then &>(S) denotes the power 
set of S and [S]=Ko: = {X s S : cardX = X0}. If ^ £ &(S) a n d l g s then 
/ n I : = { F n I : . F e « f } . If ^ is a <7-field of sets, then we denote by l(stf) 
the (7-ideal of all A est such that ^(Al) c .*/. 

For an arbitrary set S consider the following properties: 

(a) there is a nontrivial measure on ^(S)\ 

(b) there is a (7-field srf on S such that there is a nontrivial complete measure 
on s4 and there is X e0>(S) \ s/ with stf nX = ^ (X ) ; 

(c) there is a (7-field «a/ on S such that there is a nontrivial nonatomic complete 
measure on s/ and there is Xe0>(S)\ j / with s/ nX = &>(X). 

It follows from Theorem 1 and Remark 5 in [1] the following 

Theorem A. For an arbitrary set S with card S = 2No there is a o-field stf on S 
such that there is a nontrivial nonatomic measure on srf and there is X e&>(S) \ stf 
with s4 nX = 9>(X). Additionally s4 can satisfy l(s/) = [S]-*°. 

Later we will prove the following easy: 

Remark 1. For every c-field stf on S we have (a) if and only if (j3), where 

(a) there isX ^ S withl(s/ n X) # l(s/) n X; 

(p) there is X s S with X £ stf and stf n X = ^(X ) . 

*) Institute of Mathematics, University of Gdaňsk, Wita Stwosza 57, 80—952 Gdaňsk, 
Poland. 
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Remark 2. In Theorem A the measure \i cannot be complete even if we drop the 
assumption that \i is nonatomic. 

In connection with Remark 2 it is worthwhile to mention that in Remark 1 in [1] 
we meant Theorem 1 there but without „l(stf) = [ S ] - X o " which was not written 
precisely. The proof of Remark 1 in [1] shows that assuming e.g. Continuum 
Hypothesis the real line does not have property (b). 

The following theorems go further than the above remark about the real line. 

Theorem B. For S with card S _ 2**° or more generally for S on which there 
are no 0 — 1 valued nontrivial measures we have that properties (a), (b) and (c) are 
all equivalent. 

Theorem C. For an arbitrary set S we have (a) if ardonly if (b). Of course (c) 
implies (b). 

It is worthwhile to observe the following 

Lemma. If non (a) for the real line R then non (c)for every set S. 

It follows from Theorem C and the Lemma the following 

Corollary. Assume that there is a nontrivial measure on 0>(S) but there is no 
such measure on 0>(R) (i.e. that S satisfies (a) but R does not). Then for such S 
we have (b) but non (c). 

Proofs. 

Proof of Remark 1. First we prove that (/?) implies (a). Let X be such that X $ srf 
and stf n X = &(X). Hence X el(stf n X) and X $l(st?) n X and so l(srf n X) ± 
7- l(stf) n X. Now we prove that (a) implies (ft). For every Y _ S we have l(s/) n 
n Y _ I(sf n Y). Hence by (a) we have l(s4 n X) $ l(stf) n X. Therefore there is 
X* such that X* el(s4 n X*) and X* $l(stf) n X*. The first property of X* implies 
stf n X* = £P(X*) which with the second property of X* implies X* <£ srf. 

Proof of Remark 2. Let j / b e a tr-field on 5 such that l(stf) = [S]=No and there 
is X e£P(S) \ stf with stf n X = 0>(X). Suppose, a contrario, that there is a nontrivial 
complete measure fi on stf. We have [S ] - K o = {Ae stf : fi(A) = 0}. Let <Kf>r<o)i 

be a pairvise disjoint family of uncountable subsets of X. Since stf n X -= &(X) 
we have that for every t < co1 there is At e stf such that At n X = Xt. For every 
t < (DY define A* = At\ [){AS: s < t}. We have that <^4*>f<Wl is a pairwise disjoint 
family of sets in A. Since for every teT,Xt _ A* we have that for every t < a)t A* is 
uncountable and hence fi(A*) > 0. The existence of such family <-4*\<ct)1 con­
tradicts with the assumption that \i is finite. 

Proof of Theorem C. First observe that (b) implies (a). Let A be as in (b) and 
let X be such that X $ stf and $4 c\X = 0>(X). We have fie(X) > 0, where fie is the 
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outer measure induced by a nontrivial complete measure \i on s/. For every Y*~ S 
define v(Y) = fie(Yn X). Since s/ nX = £P(X) we have that v is a nontrivial measure 
on 0>(S). Now we prove that (a) implies (b). Assume that a set S satisfies (a). Let 
<Xf : t e T> be a partition of S such that card Xt = 2 for every t e T. Let X ~ S 
be such that card (Xt n X) = 1 for every f e T. Let ^ = {U{-^r -1 e Tt} : Tx s T}. 
Observe that ^ is a c-field which does not contain singletons. Let v be a nontrivial 
measure on 0>(X). For every fieJ define fit(B) = v(B n X). Let s/ be the family 
of all A - 5 such that there are £1? B2e@ with ^ .= A _ 5 2 and ^(-Bi) = fii(B2). 
Let /i be the completion of //-. It is clear that /i is a nontrivial complete measure on 
s/. It is evident that for every nonempty B e 8$ we have B £ X. We have also that 
for every Bs^ifB^X then B = S and hence /^(B) = fix(S) = v(X) > 0. Hence 
X $ s/. Since s/ nX^M nX = 9>(X) we have sf nX = 0>(X). We have proved 
that our s/, jx and X are as in (b) which ends the proof that (a) implies (b). It is 
evident that (c) implies property (b). 

Proof of Theorem B. It follows from Theorem C that in order to prove Theorem B 
it is enough to prove only that (a) implies (c) for S with card S ^ 2**°. Let 5 be such 
that card S ^ 2*°. Let X, v, jii9 0&, s/ and \i be as in the proof that (a) implies (b) 
in the proof of Theorem C. Since as it is easy to see (and is well known, compare 
[2]) there are no nontrivial 0 — 1 valued measures on &(X) for X with card X _ 2Ko 

we have that the measure v on^(X) is nonatomic. Since <X,0>(X), v> and <5, $1, /ix> 
are isomorphic measure spaces (For every xeX letf({x}) = {x, y}, where y is such 
that there is t e T with {x, y} = Xt. Then f is a measure preserving isomorphism.) 
the measure ^i1 is also nonatomic. Hence its completion \i is nonatomic. 

Proof of Lemma. Assume that there are no nontrivial measures on^(K ) . Suppose, 
a contrario, that there is a set S such that there is a cr-field s/ orvS such that there is 
a nontrivial nonatomic complete measure JX on s/ and there is X e&(S)\ s/ with 
s/ nX = 0>(X). Let \ie be the outer measure on S induced by \i. Let v be the restric­
tion of \ie to the <7-field s/ n X. Then it is easy to check that v is a nontrivial non-
atomic measure on s/ n X and hence on 2P(X). Hence, as Ulam has observed and 
proved, see [2], there is a nontrivial measure on^(.R), a contradiction. 
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