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Collapsing of Cardinals in Generalized 
Cohen's Forcing 

MIROSLAV REPICKY*) 

Kosice, Czechoslovakia 

Received 1 March, 1988 

We consider generalized Cohen's forcing C(J) in dependence on an ideal J on co. We prove 
that either C(J) is a dense subset of Col(co, c) or C(J) is an iteration of c^-closed and c.c.c. 
notions of forcing. 

0. Introduction 

Let J be an ideal on co. By generalized Cohen's set of forcing conditions we under­
stand the set C(J) of all 0 — 1 valued functions with domain an element of J. C(J) is 
ordered by the reverse inclusion. 

We shall investigate collapsing of cardinals by C(J). 
In this paper an ideal on co means an ideal containing the ideal fin of all finite 

subsets of co. Let % be a cardinal number. An ideal J is a p*(%)-ideal iff for every set 
X c J of cardinality less than % there is x e J such that for every y e X, y — x is 
finite. A p*(co1)-ideal we call a p*-ideal. An ideal J on co is regular iff for every 
partition {xn; n e co} of co into finite sets there is an infinite set a ^ co such that 
\J{xn; ne a] e J. Notice that the dual filter F to a regular jp*-ideal coincides with the 
notion of coherent filter introduced in [6] in case F is an ultrafilter. An ideal J on co 
is a g-ideal iff for every partition {xn; ne co] of co into finite sets, there is a selector 
from ^(co) - J. 

Let x, y be arbitrary sets. We write x ^* y iff x — y is finite, x = *y iff x e * y 
and y £ * x. 

Let P be a partially ordered set. We say that 0 = {Ha, a e x] is a matrix for P 
if Ha is a maximal antichain in P for all a e %. A matrix 0 is said to be shattering 
for P if for each p e P there is some H e 0 such that p is compatible with two 
members of H at least. A matrix 0 is refining if Ha refines Hp whenever jS < a. 
A matrix 0 is called a base matrix if 0 is refining and \J0 is a dense subset of P. 
An antichain H is a refinement of a matrix 0 if H refines all members of 0. Define: 

*) Matematický ústav SAV, Ždanovova 6, 040 01 Košice, Czechoslovakia. 
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x(P) = min {|<9 ; 0 is a shattering matrix for P}, 
h(P) = min {j0 ; 0 has no refinement}, 
n(P) = min {|0 ; there is no 0-generic filter on P}. 

Of course h(P) = x(P) = n(P). 
The following theorem is well known in case P = ^(o))lfin (see [1]). 

0.1. Theorem. Let x _ co be a cardinal number. Let P be a %+-closed notion of 
forcing of cardinality at most 2*. Let h(P) = x(P). Then 

(i) Base Matrix Lemma: For each shattering matrix 0 = {Ha; oce x(P)} there 
exists a base matrix 0' = {H'a; cc e ^(P)} such that Ha refines Ha for every a e x(P). 

(ii) x(P) = cf (2*). 
(iii) If x(P) < 2* then x(P) = n(P) = x(P)+ and P collapses 2* onto x(P). 

Proof, (i) Let 0 be a shattering matrix. Since h(P) = tf(P), it is enough to find 0' 
such that \J0' is a dense subset of P and Ha refines Ha for all a e x(P). We also may 
assume that 0 is refining. 

Since P is %+-closed and 0 is shattering, for every pe P there is a e x(P) such that p 
is compatible with 2* members of Hr Let a e x(P), denote .Aa the family of all p e P 
which are compatible with 2* elements of Ha. Let cpa: Aa -> Ha be a one-to-one 
mapping such that p, (pa(p) are compatible for all p e Aa. For p e Ha, let Hp be a maxi­
mal antichain below p such that ifp contains some element q = r whenever p = 
= <pa(r). Let Ha = U{#p ; PeHa}. Obviously ifa refines Ha and \J0' is a dense 
subset of P. 

(ii) If X c P and |X| < 2* then the family H(X) of all conditions p e P such that 
there is no q e X, q ^ P, is a dense subset of P, since below every condition there 
are 2* incompatible conditions. Choose X% ^ P for t, e cf (2*) such that |X^| < 2* 
and U{-^; £ecf(2*)} = P. Let H^ c H(X^) be a maximal antichain. Then the 
matrix 0 = {H%; I e cf (2*)} is shattering. 

(iii) We find an r.o.(P)-name f of a function from x(P) onto 2*. 
Let 0 = {Ha; aex(P)} be a base matrix. For every condition pe\J0 choose 

a maximal antichain {p$; £ e 2*} below p. We define f by 

[f(a
v) = ,r] = V{p<;petfJ. 

For <!; e 2*, D% = {p; p II- 3a f(a) = ^ v} is a dense subset of P. As we assume x(P) < 
< 2X, the existence of a {D^; £ex(P)+} — generic filter would mean collapsing 
of x(P)+ onto x(P). 

Let B be a complete Boolean algebra and let a e B be a positive element of _B. 
Then B | a is the partial algebra. 

*) Throughout the whole paper, the bold-face letters f, c X(H) stand for names/, c 1(H). 
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0.2. Lemma. Let B be a complete Boolean algebra and let D = {b e B; B ~ B \ b] 
be a dense subset of B. Then B is homogeneous. 

Proof. B is atomless. Let a e B, a 4= 0,1 be arbitrary. Choose A = D a maximal 
antichain below a and let X = D be an infinite maximal antichain in B such that 
A ^ X. Then for every fc e A. there is Xb = D a maximal antichain below b such 
that |Xfe| = |X | . Then the set Y = U{-̂ L>; b e A} is a maximal antichain below a, 
Y .=. D and |Y| = |X | . Let f be arbitrary one-to-one function from Y onto X and let 
eb: B | b -• B |f(b) be an isomorphism for every fc e 7. Then the function h from 
£ | a onto B defined by 

h(x) = V{eb(x
 A bY> be Y) fo r a11 x = a 

is an isomorphism. 

1. Approximative forcing 

Now we introduce approximative sets depending on an ideal J on co. Their 
properties reflect the behaviour of the generalized Cohen's forcing. 

Let J be an ideal on co. A = C(J) is said to be a J-approximative set if A satisfies 
the following conditions: 
(1) for arbitrary p, qe A there is fe w2 such that p = * f and q i=.*f, 
(2) A n x2 =t= 0 for every set x e j , 
(3) if p e A and q e C(J) and p = * q then g e A. 
Let 4̂ be ordered by the reverse inclusion 

Let fe w2 and let Af = {p e C(J); P = * f } . -47 is a J-approximative set and it is 
a c.c.c. notion of forcing. 

We give another example of an approximative set in case J is generated by an 
almost disjoint family of subsets of co. Instead of co we take <(02. If fe w2, let xf = 
= {f| n; n e co). Then {xf: fe w2} is an almost disjoint family of subsets of <0)2. 
Let J be an ideal generated by this family. Arbitrary collection of functions pf:xf-> 2, 
few2, can be completed to a J-approximative set A. But choosing functions pf 

carefully we obtain a J-approximative set which is not c-cc. It is enough to define 
Pf(f I n) = f(n) f ° r nec°. The collection {pf; fe w2} is an antichain in A. 

1.1. Lemma. Let A be a J-approximative set. Then 
(a) forcing A does not collapse cox iff A is c.c.c, 
(b) if A is c.c.c. then in the generic extension over A, the cardinality of all reals is 

the same as the cardinality of reals of ground model. 

Proof, (a) If G .=. A is a generic filter then g = \JG is a function from co into 2. 
In the generic extension, A ^ Ag and therefore every antichain in A is countable, 

(b) There are at most |r.o. (A)^ reals in the generic extension. 
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1.2. Lemma. Let J be a p*(c02)-ideal and let A be a J-approximative set. Then A 
is c .c .c 

Proof. Let {pa; a e cox} £ A. There is x e J such that dom pa c * x for all a e a^. 
Let p e A n x2 and let / e w2 be such that p _= / . Then {Pa; a e a^} i= ^ and there­
fore it is not an antichain as Af is c.c.c. 

It is natural to ask whether previous lemma holds for every p*-ideal. This question 
can be equivalently reformulated into: 

1.3. Problem. Is there a sequence {pa; a e cox} of 0—1 valued functions such that 
(1) dompa .= co, (2) pa £ * pp whenever a < /? and (3) for every a 4= j? there is 
n e dom pa n dom pp such that pa(n) 4= P^(n)? 

Notice, that such a sequence cannot have its length coi + 1. 

2. Decomposition of the generalized Cohen's forcing 

Let M be a transitive model of ZFC, C(J) e M and let G ^ C(J) be an M-generic 
filter. In the following we are working in M. 

Let P(J) = [c(p); p e C(J)} where c(p) = {q e C(J); p = * q}. On P(J) we put 
the ordering defined as follows: c(p) ^ c(q) iff q c * p. It is not hard to verify that 
c: C(J) -> P(J) is a normal function. Therefore, H = c(G) is an M-generic subset 
of P(J) and G is an M[H]-generic subset of c - 1(H). In fact C(J) is a dense subset 
of PfJ^c-^H). 

C(fin) is the Cohen's forcing while |P(/w)| = 1. If J is the ideal generated by one 
subset of co over the ideal fin then r.o. (C(J)) is locally equal to the Cohen's algebra 
and r.o. (P(/)) is atomary. The next lemma describes the final case. 

2.1. Lemma. Let J be an ideal which is not one generated over the ideal of finite 
sets. Let P = C(J) or P = P(J). Then r.o. (P) is homogeneous. 

Proof. By Lemma 0.2 it is enough to prove that for every p e P, r.o. (P) cz 
£-. r.o. (P) | p. This follows from the fact that whenever xe J then (since J is not 
one generated over fin) there is a one-to-one function / from co onto co — x such that 
/(J) = {y c co - x; ye J} where /(J) = {y £= co - x; f~\y) e J}. Therefore P 
is isomorphic to the set {q e P; q fg p} for every peP. 

2.2. Lemma, (a) x(P(J)) = h(P(J)). 
(b) If J is a p*-ideal then P(J) is co^closed and [Jv is a p*-ideal and c'1^) is 

a Jv-approximative set] = 1 in r.o. (P(J)). 

Proof. Trivial. 
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Lemma 2.2 shows that if J is a p*-ideal then Theorem 0.1 holds for P(J) in case 
X = CO. 

In the following we denote x(J) = ^(P(J)) and Add*(J) = min {|X|; X _ J and 
Vy e J 3x eX y — x is infinite}. If J is the ideal fm or the ideal generated by 

one set over the ideal fin then we put Add*(J) = c. 

2.3. Theorem, (a) Forcing P(J) collapses c onto Add*(J). 
(b) x(J) = Add*(J). 

First we prove the following lemma. Let x e J be infinite. Denote 

A = {p e C(J); dom p _ x and x — dom p is infinite}, 

B = {c(p); peA} and C = {c(p); Pe*2}. 

2.4. Lemma. There is a one-to-one function F from c x B to C such that F(a, p) ^ 
^ p for all p e B and a e c. 

Proof. Let {(a^, c(p^)); { e c} be an enumeration of c x B. We construct F(a^, c(p$)) 
by induction on <!;. Let ^ e c . Every element of C is a countable set and there are c 
extensions of P* into a function with domain x. Therefore, there is a function r e x2 — 
- \J{Ffa, c(pc)); C e {} such that ^ _ r. Put F(a^, c(^)) = c(r). 

Proof of Theorem 2.3. Denote x = Add*(J). 
(a) We find a name/ of a function from a subset of x onto c. 
Let {x^; £ e x} be a family of infinite members of J such that for every xe J there 

is an £ such that x% — x is infinite. For every set x% find A%, B%, C%, F% such that 
Lemma 2.4 holds. Denote a^a = y{F^(oc, q); q e Bj computed in r.o.(P(J)). Since 
elements of C^ are pairwise incompatible, a^a A a^tP = 0 for all a =j= /?. Let f be 
defined by {f(C) = a v ] = a^. We show that [nig f = c] = 1. 

Let q G P(J) and let a e c. Let q = c(p) for some p e C(J). There exists £ e x 
such that x^ — x is infinite. The conditions q and F^(cc, c[p | x^)) are compatible. 
Let reP(J) be their common extension. Then r _ a^ a and therefore r lh f(£v) = 
= a v . 

(b) The M-generic set H _ P(J) is not in M. Therefore h(P(j)) = c. Moreover, 
if x < c then P(J) collapses x+ onto x and therefore h(P(J)) _ %. 

2.5. Theorem. Let J be an ideal on co. The following are equivalent: 
(i) forcing C(J) does not collapse coi9 

(ii) C(J) is an iteration of o^-closed and c.c.c. notions of forcing, 
(iii) in the generic extension over C(J), every ideal generated by a p*-ideal of the 

ground model is a p*-ideal, 
(iv) C(J) is not a dense subset of Col(co, c). 
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Proof, (i) -> (ii). C(J) is a dense subset of the iteration P(J) * c'1^). Since cot 

is not collapsed, P(J) is a^-closed and [c_ 1(H) is c.c.c] = 1 (Lemma 2.2(b), 
Theorem 2.3(a) and Lemma 1.1(a)). 

(ii) -> (iii). Every countable subset of M which is an element of the generic 
extension is covered by a countable set of M. Therefore, if K e M is a p*-ideal then 
the ideal K generated by K in the generic extension is a jp*-ideal. 

(iii) -> (iv). An ideal which is countably generated and is not one generated 
over the ideal fin cannot be a p*-ideal. Therefore C(J) does not collapse c onto co. 

(iv) -> (i). Assume that C(J) is not a dense subset of Col(co, c). Then C(J) does 
not collapse c onto co (see [5], Lemma 25.11). By Theorem 2.3 it means that J is 
a p*-ideal. If x(J) = cot then C(J) collapses c onto coL (because P(J) does) and 
therefore it cannot collapse cox. If x(J) > cot then J is a p*(co2)-1deal in M[H] and 
c-1(H) is c.c.c in M[H] (Lemma 1.2). Therefore co1 is not collapsed. 

2.6. Corollary. Let J be a regular p*-ideal. Then 
(a) C(J) is an iteration of ct^-closed and c.c.c notions of forcing, 
(b) in the generic extension over C(J) every ideal generated by a regular p*-ideal 

of the ground model is a regular p*-ideal. 

Proof. If J is a regular p*-ideal then forcing C(J) does not collapse cot (see [ 7 ] / 
Now (a) follows from the preceding theorem. 

(b) Let K e M\G\ be an ideal generated by a regular p*-ideal of M. By 2.5, K is 
a p*-ideal. We prove that K is regular. 

Let [xn; n e co} be a partition of co into finite sets (in M[G]). As wco n M is a do­
minating family in ^co n M^G] (see [7]), there is an increasing function fe wco n M 
such that for every n e co there is a k such that xk "_: (f(n),f(n + 1)). Therefore, 
there is an infinite set a ". co such that \j{xn; ne a} e K. 

2.7. Corollary, (a) If J is not a p*-ideal then M[G] If- 2W = (2C)M. 

(b) If off = cof[G] then M[G\ \Y 2" = x(J). 

In these two cases a cardinal x is collapsed iff x(J) < x g c. Always %(J) ^ 
^min{cf(c), Add*(J)}. 

Proof follows immediately from 0.1, 1.1(b) and 2.3 since C(J) is c + - c c . 

2.8. Remark. If in 1.3 "no" is provable then for every p*-ideal all conditions in 
Theorem 2.5 hold because in this case [c_ 1(H) is c.c.c] = 1 in r.o.(P(J)). Here 
we can observe something more: 

Claim. If 1.3 does not hold then C(J) collapses col just in case J is not a p*-ideal. 

Proof. Let J be a p*-ideal and assume that C(J) collapses cox. Then |c _ 1 (H) is 
not c.c.c] = 1 in r.o.(P(J)). Therefore, there is an r.o.(P(J))-name f of a function 
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from co1 into c~l(H) such that all values off are mutually incompatible elements 
of C(J). Therefore 

(1) VWq ) A [f(av) = q v ] ; q e C(J)} = 1 for all a e a>lf 

(2) V{[f(av) = Pv] A [f(j3v) = qv]; p, q e C(J) are incompatible} = 1 for all 

a < p < co1. 

As all values [f(av) = gv], q e C(J), are disjoint, by (l) we have: 

(3) [f(av) = q v ] = c(q) for all a e c^. 

For every aeco1, the set Da = ( r eP (J ) ; r decides f(av)} is a dense subset of 
P(J). Since P(J) is c^-closed, we can find a sequence ra, aeco l 5 of elements of P(J) 
such that ra e Da and r^ _ ra for all a < /} < a^. For every aeco1 there is a ga e C(J) 
such that ra | r f(av) = ga

v. If a * jS then [f(av) = qv] A [f(j3v) = gj] * 0 and 
so by (2), ga, qp are incompatible. According to (3), ra ^ c(qa). Let pa e C(J) be an 
extension of ga such that ra = c(pa). Then the sequence {pa; a e cOi} is just such as 
1.3 requires. A contradiction. 

3. Collapsing of category 

If an ideal J is a p*-ideal and is not regular we can say nothing about collapsing 
of tot. But sometimes we can say something about collapsing of category. 

Let us consider the following two ideals on co: 

J0 = {x _ co; X{l/(n + 1); n e x} < oo} , 

J1 = {x _ co; lim,,.^ |x n n\\n = 0} . 

Both the ideals are p*-ideals and they are not regular. Moreover they ar;e not 
q-ideals. 

3.1. Theorem. If an ideal J is not regular and is not a q-ideal then the set of reals 
of the ground model is meager in the generic extension over C(J). 

Proof. Let us denote R = "2, Q = <co2. As J is not regular and is not a g-ideal, 
there is a partition {xn; ne co} of co into finite sets such that 

(1) if a _ co and \j{xn: ne a} e J then a is finite, 

(2) every selector of the partition is in J. 

For proving the theorem it is enough to find a family ant, n e co, t e Q, of elements 
of r.o.(C(J)) such that (see [3]): 
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(a) A A V A a„tt = 1 and 
neco reQ s = r t = s 

(b) V A V A «„,. = o. 
/eR neco fceco f = /|fc 

If s e g put b(s) = V{s | *„; *« --- dom s}, computed in r.o.(C^J)), and let ns be 
a function from Q into Q defined by ns(t) = s u (t | (dom f — dom s)). Of course, 
if s _ f then b(s) ^ b(f). Let {nn\ neco] be an enumeration of the set {ns\ s e Q}. 
We put an>s = b(nn(s)). Now we verify (a) and (b). 

Let ne co and reQ. There are veQ and meco such that izv = nn and xm n 
n (dom r u dom v) = 0. Then 

V A antt = V b(nj(s)) = V{fc(^,(s)); s _ r and xm _ dom s} ^ 
s 2 r O s s 2 r 

= V{s I Xm\ s — r a n ( l *m — dom s} = 1 . 

Now assume that (b) does not hold. Then there is fe R and p e C(J) such that 
p ^ V{anj\k; fee co} for all n e co. As (l) and (2) hold, there are ne co nad x e J 
such that x n dom p = 0 and x n xk =# 0 for all fc = m. Therefore, there is a con­
dition q _ p such that x _ dom q and xk _ dom q for all fc < m and q | xk $ /1 xfc 

for all fc ̂  m. Let s e Q be such that dom s = U{x/t; fc < m} and s(k) 4= g.(fe) for 
all fee dom s. Then q A V{b(ns(f\ fe)); fceca} = 0 and therefore there is n e co 
such that p $ y{anj\k\ keco}. A contradiction. 
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