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There are four possible ways of saying what it means for a topological space X
to be locally compact:

(1) Every point of X has a compact closed neighbourhood (or, a neighbourhood
whose closure is compact).

(2) Every point of X has a compact neighbourhood.

(3) Every point of X has a base of compact neighbourhoods (i.e., given xe U
open in X, there exists a compact K with x € K < U).

(4) Every point of X has a base of compact closed neighbourhoods.

For Hausdorff space X, there are all equivalent, of course; and many textbooks
on topology, whose authors aren’t particularly interested in compactness in non-
HausdorfT spaces, tent to give (1) or (2) as the definition of local compactness. The
condition (3) is the correct and usual notion of local compactness for not-necessarily-
Hausdorff spaces, because it conforms to the general scheme for defining local
version of topological properties and, as it is well known (see e.g. [4]), locally
compact locales in this sense are exactly the distributive continuous lattices. In this
paper we will study the locale-theoretic analogue of the condition (1) called weak
local compactness.

A locale Lis compact iff L is weakly locally compact and almost compact. Weakly
locally compact locales are closed under closed sublocales and finite products. An
arbitrary product IIL, of locales is weakly locally compact iff each L, is weakly
locally compact and L, is compact for all but finitely many y. A sum ZL, is weakly
locally compact iff each L, is weakly locally compact.

In the second part we investigate almost compact locales. A product IIL, is almost
compact iff any L, is almost compact. A Hausdorff locale Lis compact iff fa is almost
compact for all a € L. If Lis a regular locally almost compact locale then Lis weakly
locally compact.

The notion of the one-point extension may be adapted to locales (for spaces see
[1]) and we consider some connections between locales and their one-point extensions

*) Katedra algebry a geometrie PF UJEP, Jana¢kovo nam. 2a, 662 95 Brno, Czechoslovakia.
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concerning separation axioms. We investigate also the one-point compactification
of locales, which coincides with the Alexandroff extension on topological spaces.
Using the one-point compactification, we can prove that every weakly locally compact
regular locale is spatial. Some of these results are generalized from known results
for spaces (for example, see [1] and [12]).

All unexplained facts concerning locales can be found in P. T. Johnstone [5].
Recall that a frame is a complete lattice L in which the infinite distributive law
a AVS=V{a As:seS} holds for all aeL, S < L. A frame homomorphism
K — Lis a map preserving finite meets and arbitrary joins. Let Frm be the category
of frames. Many facts (see [5]) indicate the importance of the opposite category
Loc = Frm®?. Objects of Loc are called locales. Of course, sublocales correspond
to quotient frames and products of locales correspond to sums of frames. If T is
a topological space then the lattice O(T) of all open sets of T'is a locale. These locales
and locales isomorphic with them are called spatial or topologies. A continuous
map f: S — Tof topological spaces determines a frame homomorphism 0( f): O(T) -
— O(S) sending Ve O(T) to f~*(V). We get a functor O: Top — Loc, where Top is
the category of topological spaces and continuous maps. O has a right adjoint
P:Loc - Top assigning to a locale L the topological space P(L) of prime (i.e.
A-irreducible and #1) elements of L. Open sets of P(L) are £ = {a € P(L): x £ a},
where x € L.

From the topological point of view, we will formulate results in the category Loc,
but proofs, which are mostly carried out in lattice-theoretic terms, in the category
Frm.

Let Lbe a locale. Lis regular ([3]) if a = V(x € L: x <t a) for all a € L, where
x <1 a means x* v a = 1 (where x* is the pseudocomplement of x). Lis Hausdorff
([6])if a,be L, 1 % a £ b implies that there exists ¢ € L such that ¢* £ a, ¢ £ b.
It was proved in [6] that Lis a Hausdorff locale iff @ = \V[a for each a € L\ {1},
where (Ja = {xe L: x £ a, x* £ a}. Lis a T-locale ([10]) if, for each a € L \{1},
there exists an ideal A = [Ja such that a = VA. Lis conjunctive if for each two
elements a, be L with a £ b there is an element ce L such that a v ¢ =1 and
bves%1 Wepu Ol =L.

We say that an element ae L, a # 1 of a locale L is prime (semiprime, resp.)
ifxAySa=>xZaorysa(xAy=0=x=<aorys a,resp.) holds, for
each x, y € L. If we denote D(L) (P(L) resp., S(L) resp.) the set of all dual atoms
(prime elements resp., semiprime elements resp.) in L then D(L) < P(L) < S(L).
We say that Lis a Ty-locale (an S-locale resp.) if P(L) = D(L) (S(L) = D(L) resp.) —
see [9]. Spatial Hausdorff locales (or T;-locales or S-locales) are topologies of usual
Hausdorff topological spaces. A locale Lis dually atomic if for any 1 # a € Lthere
is a dual atom d € D(L) such that d = a.

" Recall that sublocals of L correspond to nuclei on L, i.e., to maps j: L— Lsuch
that a < j(a), ji(a) = j(a) and j(a A b) = j(a) A j(b) for all a,be L. A surjective
homomorphism f: K — L of frames is closed if f(a) = f(b)=>a v f%(0)=b v
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v f%(0) for each a,beK, where f°(0) = V(x e K: f(x) = 0). We denote L, =
={leL: 1= I**}.

1. Weakly locally compact locales

Let us recall that a locale Lis almost compact if each covering of Lhas a finite
dense subset. For a locale Lwe will denote S;, = {l € L: I* & 0}. Then the following
are equivalent:

1. L is not almost compact.

2. An ideal Q in Lexists such that Q = S;,VQ = 1.

3. A proper filter F in Lexists such that V(a*: ae F) = 1.

Such a filter is called an a-filter.

Some properties of almost compact locales are in [10]. Recall that a topological
space T is locally compact iff for each x € T there exists an open set U such that
x €U, U is compact. If Lis a locale then we put F¢ = {a € L: {a is compact}.

1.1. Proposition. Let T be a topological space, O(T) be the locale of all open sets
of T. Then T'is locally compact iff V(a*: a e F¢) = 1.

Proof. =: If x € T then an open set U exists such that x e U, U is compact, i.e.,
T\ U is open, TNUe Fc. Clearly, xe U < (T\U)*, i.e. V(a*: ae F¢) = 1.

=: If x € Tthen a € F exists such that x € a*. Clearly, T\ a is compact and closed.
Now, we have a* = T\ a,i.e., a* = T\ a. Evidently, a* is compact.

Motivated by 1.1, we adopt the following

Definition. Let L be a locale. We say that Lis weakly locally compact or wl-compact
if V(a*:aeF¢) = 1.

Clearly, compact locales are wl-compact. Namely, if L is compact then O € Fg,
ie, 1 =0*=V(a*:aeF).

1.2. Proposition. Let Lbe a locale which is not compact. Then Lis wl-compact iff
F is an a-filter.

Proof. =: Since V(a*: a € F¢) = 1 we have to show that F¢ is a filter. Evidently.
O¢Fcand b=a, acFc=>beF¢ Let a,beF;, Vx; =1, x; Za A b for any

iel
iel. Since 1a, b are compact we have V(x;:ieK)va=1=V(x;:ieK)Vv b
for some finite K = I. Now, wehave 1 = [V(xi:i€K) Vv a] A [V(x;:ieK) Vv b] =
=V(x;:i€eK) v (a A b),i.e.,a A beFc. The rest of the proof is obvious.
As an applcation of 1.2 we have the following characterization of compact

locales.
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1.3. Theorem. A locale Lis compact iff Lis wl-compact and almost compact.

Proof. =: It is evident.
<=: This results immediately from 1.2 by the fact that a frame L is not almost
compact iff there exists an a-filter in L(see [10]).

1.4. Lemma. Let Lbe a locale, a € L. If 1x is compact in Lthen f(x Vv a) is com-
pact in fa.

1.5. Proposition. Every closed sublocale of a wl-compact locale is a wl-compact
locale.

Proof. Let Lbe a frame, a € L. Now, we have 1 = V(x*: 1x is compact in L) =
=V(x* v a:1(x v a) is compact in Ta) < V(y® 2 a:1y is compact in fa),
where y® is the pseudocomplement in 1a. In all we obtain that {a is wl-compact.

1.6. Proposition. Let L be a wl-compact locale. Then for each 1 # a € F¢ there
exists d € D(L) such that d = a. Moreover, Lis dually atomic.

Proof. If 1 & ae F¢ then Ta is dually atomic because {a is compact. Clearly,
D(ta) = D(L). Namely, if d is a dual atom in fa and x > d, x € L then x € fa,
i.e., x = 1. The rest follows from the fact that there exists a € F¢, a # 1. Evidently,
if FeN{1} =0 then 1 = V(a*:a € F¢) = V(a*: ae Fc\{1}) = 0, a contradiction.
If 1 + be Lthen 1b is wl-compact, i.e., there is an element m € D(1b) < D(L).

1.7. Proposition. Let Lbe a frame, a, b € Lsuch that {a, {b be wl-compact. Then
T(a A D) is wl-compact.

Proof. If 1x is compact in ta, 1y is compact in 1b then f(x A y) is compact in
1(a A b). Now, we have V(x®*: 1x is compact in fa) = 1 = V(y®: 1y is compact
in 1b), where x®', (y®?) is the pseudocomplement in 1a (1b). Clearly, x®* A y®2 <
< (x A y)®, where (x A y)® is the pseudocomplement in f(a A b). Evidently,
1 =V(x®' A y®2: 1x is compact in a, 1y is compact in 1b) < V(z®: 1z is compact
in f(a A b)), ie., f(a A b)is wl-compact.

1.8. Remark. It is interesting to note that wl-compact Hausdorff spaces are regular
but there exists a wl-compact Hasudorff locale which is not regular (see [10], Prop.
2.4).

1.9. Proposition. If Lis a wl-compact regular locale then a = V(x < a: x* € F¢)
for each ae L.
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Proof. Let ae L. Now, we have a = V(x: x < a), 1 = V(y: y* € F¢). Clearly,
a=V(xAy:x<a,y*eFc)=V(z:z2< a, z¥e F).
This suggests the following

1.10. Lemma. Let Lbe a locale. Then it holds:
(i) x< a, x* e Fc = x < a (x is way below a — see [4]).
(ii) If Lis a regular wl-compact locale then x < a iff x < a, x* € F.

Proof. (i) Let x <t a, x*e€ Fc and S < L be a directed set such that a < VS.
Then x* v VS =1, i.e., there is s € S such that x* v s = 1 and we have x < s.

(i) Since Lis a regular wl-compact frame we have from 1.9 and 1.10 (i) that Lis
continuous, i.e., the space (P(L), O(P(L))) is a locally compact Hausdorff space.
Now, let x < a. Then there exists by [5], 4.2 a compact set K = P(L) such that
x € K < a. Clearly, it is easy to check that P(L)\ K € F¢ and we have P(L)\K < x,
ie., x<aa, x*eFg.

1.11. Corollary. Let L be a regular locale. Then Lis continuous iff L is a wl-compact
locale.

Proof. It follows from 1.10 and 1.9.

1.12. Lemma. If Lis a wl-compact locale then for each a € F there exists x € F¢
such that x <a a.

Proof. Evidently, V(x*: x € F¢) = 1. Since fa is compact in L then there exists
x € F¢ such that x* v a = 1,1.e., x << a, x € F.
We call the attention to the fact that the proofs are in the category Frm of frames.

1.13. Proposition. If Lis a locale then L 2 L x 2, where 2 denotes the dyadic
locale which has precisely two elements 0 and 1.

Proof. If i;: L—> L+ 2, i,:2— L+ 2 are the canonical injections then each
element in L + 2 has the form il(x) for some x € L. Namely, if Xe L + 2 then X =
= Viy(x;) A iy(y;), x, € L, y;€2. Now, we have X = V(iy(x;) A iy(y)):y; =0) Vv

J
v V(is(x;) A ix(y;): y; = 1) = Vig(x;) = i1(Vx;) = i4(x) for some x € L. The rest
is obvious.

1.14. Proposition. A finite product of wl-compact locales is wl-compact.

Proof. It is enough to prove that a sum of two wl-compact frames is wl-compact.
The rest follows by an obvious induction.
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Let L, K be wl-compact frames, i;: L— L+ K, i,: K - L+ K be the canonical
injections. Let x € L, y € K, Tx be compact in L, 1y be compact in K. Now, we have
Ix 4+ Ty = 1(iy(x) A i2(»)), ie., T(is(x) v iy(y)) is compact because a sum of com-
pact frames is compact. Evidently, V(a*: 1a is compact in L+ K) = V((iy(x) v
v iy(y))*: 1x is compact in L, 1y is compact in K) = V(iy(x*) A iy(y*): 1x is
compact in L, 1y is compact in K) = i;(V(x*: 1x is compact in L)) A i,(V(y*: 1y
is compact in K)) = 1 because Land K are wl-compact.

1.15. Theorem. Let L,, yeI' be locales. Then the product I(L,:yeT) is wl-
compact iff all L, are wl-compact and L, are compact for all but finitely many ye I'.

Proof. =>: a) Let y, € I'. Since XL, is wl-compact then there exists a dual atom D
in L, which has the form D = V(iy(dy): d,is a dual atom in L, y€ I). If we put
x = 1,0(0) vV V(i)(d,): 7 * 7o) then Tx is wl-compact (see 1.6), tx = L, + 2,

where ) 1d, = 2, i.e., L, is wl-compact.
Y¥#7%0
b) Let D be the dual aiom from the part a). Since XL, is wl-compact we have

1 = V(a*: ta is compact in XL,). Now, there exists some a € XL,, Ta is compact
in L, such that a* £ D, i.e., there exist indices yy, ..., y, € I' and elements x; € L,,
(i=1,...,n) such that i,(x;) A ... Ad,(x,) £d, i,(x) A ... Aiyf(x,) =< a*.
Cleatly, [i,(x1) A ... Ady(x)]* =1, () Vv ...vi(x)=b=*1, b2a, ie,
1b is compact in XL,.

Let y + 9, (i = 1,...,n). We show that L, is compact. If y;e L,, Vy; = 1 then
Vi(y;) = 1,ie,V™i(yp) v b = 1. Now, we have 1 = i,( V™ y;) Vv i, (x]) v ...

k=1 k=1

.V i, (x7). Sincey # y;(i = 1, ..., n), we have that 1 = V™ y, i.e., L, is compact.
k=1

<=: Let each L, be wl-compact. We denote I'y the set of indices of all non-compact
L,. Clearly, I' is finite and we have ) L, = Y L, + ) L,. From 1.14 we know that

yel yelo 1¢lo
Y. L, is wl-compact and from Tychonoff theorem we have that ) L, is compact and
yelo y¢lo
hence wl-compact. Finally, L, is again wl-compact.

1.16. Theorem. Let L, (y € I') be locales. Then the sum L, is wl-compact iff L,
are wl-compact for all yeI.

Proof. =: Let n,: IIL, — L, be the canonical projections (in the category Frm) and
let us put x,, = V(y e IIL,: m,(y) = 0) for each y, e I'. Then 1x,, & L,, and Tx,,
is wl-compact (see 1.6).

<=: Let each L, be wl-compact and 7y, be compact in L,. Then y, = V(y eIIL,:
n,(y) = y,) is such that 1y, is compact in TIL, which can be easily verified. Now,
we have 7,(5¥) = Ofor B % y, n(7;) = 5. Evidently, V(y*: 1y is compact in I1L,) =
= V(yy: 1y, is compact in L,) = 1 because all L, are wl-compact.
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2. A note on almost compact locales

2.1. Lemma. If Lis a locale and Q < Lis an ideal maximal with respect to the
property Q < S; then

(i) xe @ = x**e Q,

(ii) Qis primein Id(L),i.e.,x A ye Q=>xeQorye Q.

Proof. (i) If xe Q, x** ¢ Q then y € Q exists such that 0 = (x** v y)* = x* A
A y* = (x Vv y)*, a contradiction with the fact that x v ye @ = S.

(i) fx A ye Q,xe L\ Q,y e L\ Qthen x,, y; € Q exist such that (x v x,)* =
=0=(y v y,)*. Now, we have 0= (x* Axl)V(y Ay*)>(x* v y¥) A
A (x} A y}). If we put z; = x, V y; then z; € Q, z1 = X7 A y}. Clearly, x* v
v y* £ z¥*eQ, ie, x* v y*e Q. Now, we have that a = (x A y)** v x* v
v y*eQ and a* = (x A y)* A (x A y)**=0, a contradiction with with ae
eQ<=S;.

2.2. Theorem. Let L, (y € I') be locales. Then the product ITL, is almost compact
iff L, are almost compact for all ye I'.

Proof. =: Let i,: L, —» XL, be the canonical injections, yo €I’ and S,, € L,, be
such that VS,

We put S = {i,(5): s € S,,}. Clearly, S = £L,, VS = 1 and by almost compactness
there exists a finite set F < S such that V(F )* = 0. Now, we have that there exists
a finite set F,, S S,, such that 0 = [V(i,(s): s € F,)]* = [i,(V(s: s € F,)))]* =
= i,([V(s: s € F,,)]*). Since i, is dense then there exists a finite dense subset
F, <= 8S,,ie., L, is almost compact.

<: If L, (y € I') are almost compact frames and if L, is not almost compact then
there exists a maximal ideal Q with regard to the property Q = S;; such that
VO = 1 Let Q, = {x,€ L, i(x,) € Q}. Since Q is an ideal, each Q, is an ideal,
0, < S.,. We put g, = VQy Clearly, g, # 1 because L, is almost compact. If
X = V(zy(qy) yel) then X # 1, Q < 1X. Namely, if tvl(xl) Ao Ay (x)eQ
then y, exists such that i,(x;)€ Q because Q is prime. Now, we have i, (x;) <
<i,/(ay,), i€, iy (x1) A ... A Dy (x,) € LX. On the other hand, 1 = VQ S V|X =
= X, a contradiction. Finally, ZL, is almost compact.

2.3. Proposition. If Lis an almost compact locale, a € L, then the closed sublocale
ta is almost compact.

Proof. If x; € fa, Vx; = lthen(Vx,J)** = 1 for some finite set of x;;, 1 < j < n.

If z A Vx,.j < athen a* < (z A Vx,.j)*** = [z** A (Vx--)**]* =z* ie, z <
Jj=

< z¥* < a** = g. Now, we have (V xl)®® = 1, where ® denotes the pseudo-
complement in Ta.
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2.4. Proposition. If Lis a locale, j;: L— L;,, i € {1, ..., n} are nuclei on Lsuch that
the locales L;, are almost compact then the locale L; is almost compact, where

Jj= /\111

Proof will be done for n = 2. Let (j; A j,)(V(aw: kel)) =1, a, € L. Since
L; and L;, are almost compact then a finite set K < I exists such that j(x) A
A j{V(a.: ke K)) = j,(0) implies j(x) = j(0) for each xe L, i = 1,2.

If (i Ada)(x) A (i A J2) (V(a: keK)) = (j; A jy)(0) then ji(x) A
A jV(ai: k € K)) = j(0), ie., jfx) = j(0) for i =1,2. Now, we have that
(ji A j2)(x) = (j1 A j2)(0)and L;, ,;, is almost compact.

2.5. Lemma. ([5]). If Lis a locale, j < k are nuclei of L, a, b € L then
(i) k(a) + k(b) = j(a) + j(b),
(ii) k(a) > k(0) = j(a) > j(0) hold.

Proof. j(a) = j(b) = k(a) = k(j(a)) = k(j(b)) = k(b).

Now we introduce a generalization of [8] on locales.

2.6. Proposition. Let L be a locale; A be a chain of nuclei of L such that each nuclei
jeAis not 1 and L; is almost compact. Then the set G = {g € L: j(g) is dense in L;
for some j € A} has the finite intersection property.

Proof. Let gy,...,9,€G, jg;) is dense in L;, 1 <i<n, ji £j2 S ... Sn
Then j,(g,) > j.(0) and from lemma 2.5 we have j,—1(g,) > jn-1(0). Since ju(ga-1)
is dense in L;_, we have j,_4(gu-1) A Ju-1(9n) > ju-1(0). Consequently,
jn—2(9,.—1 A gn) > j”_z(O).NOW, wehavej,,_z(g,,_z ANGp-1 A gn) >j"'2(0)'Fina“y’
we obtain ji(g; A ... A g,) > j1(0), i.e., gy A ... A g, £ 0.

2.7. Lemma. If Lis a Hausdorff locale, 1 + a € Lsuch that {a is almost compact
then for each dual atom de D(L) such that d v a = 1 there exists he L with
d Vv h* =1,a v hisdensein ]a.

Proof. Clearly, 1 = a v d = a v V(x: x < d), i.e., there exists h << d such that
a v his dense in {a.

2.8. Lemma. If Lis a dually atomic almost compact Hausdorff locale and 4 < L
is a chain such that a € 4 implies 1 # a, Ta is almost compact, then VA =+ 1.

Proof. From 2.6 we know that G = {ge L: a v g is dense in fa for some a € 4}
has the finite intersection property, i.e., V(g*: g € G) + 1. Now, there exists a dual
atom d € D(L) such that d = g* for all g € G.
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Let 1 = VA. Then ae A exists with a v d = 1, i.e., h € L exists such that
dv h* =1, avVv his dense in 1a. Evidently, he G, i.e., d = h*, a contradiction.
Recall that a locale Lis compact iff for each chain {a;}.;, a; + 1 for each i €1,
is Va; + 1.
iel
2.9. Theorem. Let L be a Hausdorff locale. Then L is compact iff fa is almost
compact for each a € L.

Proof. =: It is evident.

<=: Clearly, Lis almost compact and dually atomic. Namely, L= 10 and fa is
almost compact for each 1 & a € L, i.e., there exists an element d such thata < d e
€ D(1a) = D(L) (see [10], 2.13). The rest follows from 2.8.

Recall that a topological space T is locally almost compact if for each xe T
there exists a neighbourhood U(x) of x such that U(x) is almost compact. Equi-
valently, T is locally almost compact iff for each x e T there exists an open set U
such that x € U, U is almost compact.

Let Lbe a locale. We put F, = {x € L: tx** is almost compact}. Clearly, D(L) =
< F, and each dense element lies in F,.

2.10. Proposition. Let T be a topological space. Then T is locally almost compact
iff V(x*:xeF,) = 1.
Proof is similar as for wl-compact spaces.

Definition. We say that a locale Lis locally almost compact if V(x*: xe F,) = 1.
Clearly, each wl-compact locale is locally almost compact and each almost compact
locale is locally almost compact.

2.11. Lemma. Let L be a locale, I € L,. Then 1l is almost compact iff for each
S < Lsuch that VS = 1 there exists S’ = S, S’ finite such that (I v VS')* = 0.

Proof. =: If S = L, VS = 1 then there is S’ = S, S’ finite such that (I v Vs’)
is dense in I, i.e., y A (I v VS') <l implies y < L. If y A (1 v VS’) = 0 then
y=(vVS)=1*AV(S)* Now, we have y =y AL ST A I* A (VS)* =0.

<: If S = L, VS = 1 then there exists S’ = S, S’ finite such that (I v VS§')*
=0.If y A(IVVS)=<1Ithen I* < (y* v (I A VS)¥)** = y*, ie, y < y**
S =1,

A1l

2.12. Proposition. Let Lbe a locale which is not almost compact. Then Lis locally
almost compact iff F, is an a-filter.
Proof follows from 2.11.

2.13. Lemma. Let Lbe a regular locale, Ie L,. Then le F,iff I € F,.
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Proof. F, < F,. If l € F, then 1l is almost compact and regular, i.e., 11 is compact
(see [10], 2.7). Now, we have that le F,.

2.14. Proposition. If Lis a regular locally almost compact locale then L is wl-
compact.

Proof. Evidently, 1 = V(x*: x € F,) = V(x*: x** € F,) == V(x*: x** € F,).

2.15. Proposition. If Lis a locally almost compact locale then Lhas at least one
semiprime element. Moreover, for each 1 & xe L,, x€ F, there exists peS(L)
such that x < p.

Proof. The Proposition can be proved similarly as 1.4.

3. The one-point extensions

Definition. (1) Let K be a locale and Lbe a dense sublocale in K. Then we say that K
is an extension of L.

(ii) Let Lbe alocale, F = L be a filter on L. The sublocale Ly < L + 2, generated
by the set {(1,0): 1e L} U {(a, 1): a € F} is called a one-point extension of L.

This construction is a special case of the ‘““Artin glueing” construction for locales
(see [12]).

Evidently, Lis a dense sublocale of Ly. We shall denote ¢, = V(e: (a, €) € L) for
each ae L.

3.1. Lemma. If Lis a locale then (a, &)* = (a*, ¢,+) holds in Lj.

Proof. We have (a,¢) A (a*, &) = (0, 0) because 0 ¢ F. If (a, &)* = (b, B) then
b=<a*and B £ ¢ < g,
Now, we give an explicite description of the sets P(Ls) and D(Ly).

3.2. Proposition. Let L be a locale, F = L be a filter and (a, ¢) € Ly. Then the
following propositions hold:

1. (a,e)e P(Ly)iffa = 1,6 = 0 or ae P(L), ¢ = &,

2. (a,e)e D(Lg)iffa = 1,e = Oorae D(L), e = 1.

Proof. 1. =: If (a, )€ P(Ly) then ae P(L)u {1}. Namely, if a + 1, a ¢ P(L)
then x, y € L exist such that x A y < a, x £ a, y £ a. Clearly, (x,0) A (y,0)
é ((l, 8)’ (x’ 0) $ (as 8)9 (ya 0) $ (a, 8), a contradiction.

If a=1then e =0. If a + 1, ae P(L) then (1,0) A (a,¢,) < (a,¢), ie., &
<e=Ze,.
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<: Evidently, (1,0)e D(Lg) < P(Lg). Consider (a,e,) for some ae P(L). If
(x,B) A (»,7) S (b,g,) then x S aory < a,ie., p<¢gory < g Now, we have
(a, e,) e P(Ly).

2. The proof is similar.

3.3. Corollary. Let Lbe a locale, F = L be a filter of L.Then Lg is a T;-locale
iff Lis a T,-locale and D(L) < F.

Proof. «: Clearly, Lis a T-frame. If d € D(L) then (d, &;) € P(Ly) = D(Ly); i.e.,
g =1. We have de F.

=: Let (a, &) € P(Lg). Clearly, (1,0)e D(Lg) and if a # 1, ae P(L), ¢ = ¢, then
ae D(L) S F, ie., (a,¢) € D(Lg).

3.4. Corollary. Let Lbe a locale. Then L is dually atomic iff for each 1 + fe F
there exists d € D(L) such that f < d.

Proof. =:1f 1 + fe F then (f, 1) € Ly and (d, 1) € D(L) exists such that (f,1) £
<(d,1), ie., f£d, de D(L).

<: Let (a,¢) % (1,1), (a,¢) € L. If & = 0 then (a,¢) < (1,0)e D(Lg). If & = 1,
1 # aeF then d e D(L) exists such that a £ d, i.e., (a, &) < (d, 1) € D(Lg).

3.5. Proposition. Let Lbe a locale, F be a filter of Land (a, ¢) € Ly then the fol-
lowing propositions hold:

1. ae S(L) = (a, &,) € S(Lg).

2. (a,€) e S(Lg) = ae S(L)v {1}.

3. (a, &) € S(Lg), F is an afilter of L=>aeS(L),e=1ora=1,&=0.

Proof. 1., 2. are evident.
3. Let (a,e)eS(Lg). If a =1 then ¢ = 0. If a # 1, ae S(L) then xe F exists
such that x* £ a. We have (x,1) A (x*,0) < (0,0), i.e, (x,1) £ (a,¢) and ¢ = 1.

3.6. Corollary. Let F be an a-filter on a locale L. Then Lg is an S-locale iff Lis
an S-locale.

Proof. =: Lis a homomorphic image Ly, i.e., Lis an S-frame. <=: If (a, &) € S(Lg)
and a # 1 then a e S(L) = D(L), ¢ = 1, i.e., (a, &) € D(Lg).

3.7. Proposition. L is spatial iff Lis spatial.

Proof. =: If 1 + ae L then (a,0) = (1,0) A A{(p,¢,) = (a,0): pe P(L)}, ie.,
a = A{p 2 a: pe P(L)}.

61



<:If (a,¢) *+ (1,1), (a,€) € Ly then (a,&) = A{(p,¢,) = (a,8) : (p, &,) € P(Lg)}
because a = A{p =2 a:pe P(L)}.

3.8. Proposition. L is conjunctive iff for arbitrary two elements a, b € Lsuch that
1+ a £ b there exists ce F such that a v ¢ =1,b v ¢ + 1 and F\{l} is cofinal
in L\{1}.

Proof. =: If 1+ a £ b, a,beL then (1,1) % (a,0) £ (b,0), ie., (c,e)e Ly
exists such that (a,0) v (c,&) = (1,1), (1,1) % (b,0) v (c,&). We have ¢ =1,
avec=1,bvc*+1and ceF.

If 1+beL then (1,1) % (1,0) £ (b,0), ie., (c,¢) € Ly exists with (1,0) v
Vv (c,e) =(1,1), (1,1) # (b,0) v (c,e) and we havee=1,b<cv b+1,cV
vV beF.

<: If (a,¢), (b,B)eLy, (1,1) =+ (a,¢) £ (b, B) then we have the following
cases:

a) If 1+ af£bthenceFexistssuchthatav c=1,bV c*1,ie., (a,¢) v
v (e, 1) = (1,1),(b, B) v (c, 1) * (1, 1).

b) If1 =a £ bthene =0,b & 1 and 1 # c e F exists such that b £ c. We have
(1L,o)v (e, 1) =(1,1),(b,B) v (c, 1) = (c, 1) £ (1, 1).

c)Ifl1+a<bthene=1, 8 =0and we have (a,¢) v (1,0) = (1, 1), (b, p) v
v (1,0) = (1,0) + (1, 1).

Finally, L is conjunctive.

3.9. Lemma. If Lis a locale, F < Lis a filter of L, x € L, then x € F <> (x*, 0)<
< (1,0).

Proof. =: If xe F then (x,1) v (1,0) = (1, 1), (x*,0) £ (1,0), ie., (x*,0)<
< (1, 0).
<: If (x*,0)< (1,0) then (x,¢,) v (1,0) = (1, 1), ie., &, = 1. We have x € F.

3.10. Corollary. F is an o-filter iff (1,0) = V(z € Ls: z < (1, 0)).
Proof follows from 3.9.

3.11. Theorem. If Lis a locale and F is a filter of Lthen the following propositions
are equivalent:
1. Ly is a Hausdorff locale.
2. Lis a Hausdorff locale and F is an a-filter.
3.()a=V(xOa:x*eF)foreachaelL,
(ii) For each 1 % a € F there exists x € F such that x J a.

Proof. 1 = 2: Clearly, Lis a Hausdorff frame and (1, 0) is a dual atom in L.
Since (1, 0) = V(z: z < (1, 0)) we have that F is an o-filter.
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2=3: (i) If aeL then a =V(xeL:xOa)=V(y A x:y*eF, x[a) =
=V(zeL:zOa,z*eF).

(ii) If 1 & a € F then x £ a exists with x*e F. If we put z = a A x* then z < q,
z* £ a because a* v x** £ a,1ie.,z€eF,zJa.

3=1: Let (1,1) # (a, &) € Ly. If & = 0 then (a,0) = V((x,0): x O a, x*€ F) =
= V((x,0): (x*,1) £ (a,0)). If ¢ = 1 then z € F exists with z [] a. Clearly (a, 1) =
= (a,0) v (z,1) = V((x, B): (x, B) O (a, 1)), i.e., Ly is a Hausdorff frame.

3.12. Theorem. If Lis a locale, F is a filter of Lthen the following are equivalent:
1. Lgis regular.
2. (i)a = V(x< a:x*€ F) for each a € L.

(i) For each a € F there exists x € F such that x <1 a.

Proof. 1=2: (i) If aeL then (a,0) = V((x,¢):(x,¢)<(a,0)) = V((x,¢):
t(x* &) vV (a,0) = (1,1)) = V((x,8) : x < a, x*eF). Now, we have a =
= V(x:x < a, x*€F).

(i) If ae F then (a, 1) = V((x, &) : (x*, &s) v (a,1) = (1, 1)). Clearly, (x,1) <
= (a, 1) exists such that x* v a = 1, i.e., x € F exists with x < a.

2=1: Let (a,e)eLy. If ¢ =0 then (a,0) = V((x,0): x<a, x*eF) =
= V((x,0) : (x, 0) < (a, 0)). If ¢ = 1 then x € F exists with x < a. We have (a, 1) =
— @0V (5, 1) = V(. 9: (29 = (a, ).

4. The one-point compactifications
4.1. Proposition. If Lis a non-compact locale then the locale Ly_ is compact.

Proof. If \V/((x;, &): i € I) = (1, 1) then there exists i, € I with g;, = 1,i.e., x;, € F.
Clearly, a finite set K = I exists such that V(x;:ieK) v x;, = 1, ie. V((x;, &):
ieK) v (x,1)=(1,1).

Definition. Let L be a non-compact locale. We say that Lg_ is the one-point com-

pactification of L.
Evidently, if Lis spatial then Lg_ is the Alexandroff extension of L.

4.2. Proposition. Let L be a non-compact locale. Then Lg_ is a Tj-locale iff L

is a Ty-locale.
Proof follows from 3.3 because D(L) < F.
The following is a locale analogy of the Alexandroff compactification for

Hausdorff spaces.
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4.3. Proposition. Let L be a non-compact locale. Then Lg_ is a Hausdorff locale
iff L is a wl-compact Hansdorff locale.
Proof follows from 3.11.

4.4. Corollary. A wl-compact Hausdorff locale is a T;-locale.

Proof. Clearly, Lg_ is a compact Hausdorff frame, i.e., Lp. is a T;-frame (see [10],
1.4) because Ly, is dually atomic. Since Lis a homomorphic image of Ly, we have
that L is a T,-frame.

4.5. Proposition. Let L be a non-compact locale. Then L, is regular iff Lis wl-
compact and regular.

Proof. =: It follows from 4.3 and from the fact that homomorphic images of

regular frames are regular.
<: It follows from 1.9, 1.12 and 3.1.

4.6. Corollary. A wl-compact regular locale L is spatial. Moreover, L is completely
regular.

Proof. If Lis non-compact then Lg_ is spatial and completely regular, i.e., Lis
spatial and completely regular.

4.7. Proposition. If Lis a locale which is not almost compact then thr locale Ly,
is almost compact.

Proof. If V((x; &): iel) = (1,1) then i, el exists with ¢, = 1, ie., x}, € F,.
Further, a finite set K = exists such that [V(x;:ieK)]* A x;, =0, ie,
[V((x5> &): i€ K) v (x5, )]* = A(XT, 200) A (x5, 0) = (0, 0).

Definition. Let L be a locale which is not almost compact. We say that Lg_is the
one-point almost compactification of L.

4.8. Proposition. Let L be a locale which is not almost compact. Then it holds:

1. Lg, is a Ty-locale iff Lis a Ty-locale.

2. Lg, is a Hausdorff locale iff L is a Hausdorff locale which is locally almost
compact.

Proof. 1. It follows from 3.3 because D(L) < F,. 2. It follows from 3.11.

The proposition 4.8.2 is well known for spaces (see [8]).
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