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Let (X, |-1), (y, [[•[|) be real normed linear spaces. A mapping F: X -> yis said 
to be strictly differentiable at aeX if there exists a continuous linear operator 
A: X -> y such that for any e > 0 there exists S > 0 such that 

(1) JF(y) - F(x) - A(y - x)\\ £ e\y - x| 

whenever |x — a\ < 8 and \y — a\ < 8. In this case the operator A is called a strict 
derivative of F at a. Of course, .A is a Frechet derivative of F at a. 

The natural and useful notion of a strict derivative is very old and well-known 
(cf. e.g. [5] for F: R - R9 [1], [2], [4]). 

It is well-known (see [3] or [6], p. 138) that for a continuous function F: R -> R 
the set of points at which F is differentiable and is not strictly differentiable is of the 
first category. 

The aim of the present note is to prove that this assertion holds for quite arbitrary 
possibly discontinuous mappings F: X -> Y. 

We shall need the following essentially well-known lemma. 

Lemma. Let (X, | • |), (Y91 • ||) be real normed linear spaces and F: X -*• ya mapping. 
Suppose that A: X -> yis a linear mapping, ceX, s > 0, S > 0 such that \\F(c + h) -
— F(c) — A(h)l < e\h\ whenever |h | < 8. Then the inequalities \x — c\ < 8, 
\y — c\ < 8 and \x — y\ ^ \x — c\ imply the inequality 

\\F(y) - F(x) - A(y - x)|j < 3e\y - x| . 

Proof. By the assumptions we have ||F(x) — F(c) — A(x — c)\\ < e\x — c\ and 
\\F(y) — F(c) - .A(y - c)|| < e\y - c|. Consequently 

lF(y) - F(x) - A(y - x)|| < e(|x - c| + |y - c|) ^ £(|x - c | + |x - c| + 

+ |y - *|) ^ 3e|y - x| 

The open ball with center xeX and radius r > 0 will be denoted by U(x, r). 
Further observe that the inequality (1) from the definition of strict differentiability 
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is equivalent to 

II \y - *| My - x\J\\ 

Theorem. Let (X, |-|), (Y, ||*|) be real normed linear spaces and F:X -> Y be 
a mapping. Then the set Vof points xeX at which F is Frechet differentiable but 
is not strictly differentiable is of the first category. 

Proof. Denote by V„tP the set of all points aeVfor which 

(2) ||F(a + h) - F(a) - (F'(a)) (h)\\ < \h\\p whenever |h| = \\n and 

(3) for any 5 > 0 there exist points x, y e U(a, S) such that 

||F(y) - F(x) - (F'(a)) (y - x)\\ > (8/„) \y - x\. 
CO 

It is easy to see that V = \J VntP. Thus it is sufficient to prove that all sets Vnp are 
ntp— 1 

nowhere dense. Suppose on the contrary that for some fixed n, p the set V„tP is dense 
in a ball U(a, Q), a e V„tP. Put 8 = min (Q\4, l/(8n)). By (3) we can find points x, ye 
e U(a, S) such that 

(4) \Fiy) - F(x) - (F'(a)) (y - x)\\ > (8/p) \y-x\. 

Since |a — x\ < Q\4 and \y — x\ < Q\2 we obtain U(x, \y — x|) c U(a, Q); conse­
quently we can choose a point aeU(x, \y — x\) f)VntP. Since \y -- x\ < l/(4n) and 
\a- x\<\y - x\< l/(4n), we have |y - a\ < l/(2n). Clearly |x - j;| = \x - a|. 
On account of (2) we see that the assumptions of Lemma are satisfied for c = a, 
e = l\p, 8 = \\n and A — F'(a). Consequently Lemma implies 

(5) |F(j.) - F(x) - F'(a) (y - x)\ < (3/p) \y-x\. 

Put o = (y - x)Hy - x\\ and b = a + vj(2n). By (2) we obtain 

(6) \F(b) - F(a) - F'(a) (b - a)\ < (\\p) \b-a\. 

Clearly \a - a\ <\a - x\ + \x - a\ < l/(4n) + l/(8n) = 3/(8«) and \a - b\ < 
<\a- a\ + \a- b\< 3/(8n) + l/(2n) < 1/n. Further \a - b\ = l/(2n) > 
> 3/(8n) > |a - a\. Since a e V„tP we obtain by (2) and the above inequalities that 
the assumptions of Lemma are satisfied for c = a, e — ljp, S = 1/n, x = a, y = b 
and A = F'(a). Consequently Lemma implies 

(7) \\F(b) - F(a) - F'(a) (b - a)\ < (3jp) \b-a\. 

The inequalities (4) and (5) clearly imply 

(8) |F'(a) (y - x) - F'(a) (y - x)\\ > (5\p) \y - x\. 
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On account of (6) and (7) we obtain 

(9) \\F'(a) (b-a)- F'(a) (b - a)\\ < (4/p) \b - a\. 

Now (8) implies \\F'(a) (v) - F'(a) (v) fl > 5/p and (9) implies \\F'(a) (v) -
— F'(a)(v)\\ < 4/p. This is a contradiction which completes the proof. 

References 

[1] BOURBAKI N.: Eléments de Mathématique, Variétés diférentielles et analytiques, Paris 1967, 
1971. 

[2] CARTAN H.: Calcul différentiel, Forms différentielles, Paris 1967. 
[3] JUREK B.: Sur les nombres dérivés de fonctions discontinues, Ceskâ Spol. Nauk Th'da Math. 

Pfirodovëdeckâ, Vëstnik 1 (1937), 1-22 . 
[4] NIJENHUIS A.: Strong derivatives and inverse mapping, Amer. Math. Monthly, 81 (1974), 

969-980. 
[5] PEANO G.: Sur la définition de la dérivée, Mathesis, (2) 2 (1892), 12—14. 
[6] THOMSON B. S.: Real functions, Lecture Notes in Math. 1170, Springer-Verlag 1985. 

159 


		webmaster@dml.cz
	2012-10-05T23:53:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




