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Cartesian Subdirect Irreducibility in Graphs
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There is characterized subdirect irreducibility for cartesian products of graphs.
V préci je charakterizovana subdirektni ireducibilita pro kartézské soudiny grafi.

B paGote xapakrepm3yeTcs HOANpsSMAasi HENPHBOAUMOCTH IS JEKAPTOBHIX IIPOM3BENCHHUM
rpados.

Introduction

Throughout this paper, the topic “graph’ is used for undirected graphs without
loops and multiple edges. The concept of subdirect irreducibility was introduced for
algebras by G. Birkhoff in [1] and extended for concrete categories by A. Pultr and
the author of this paper in [2]. Roughly speaking, the motivation for studying
subdirect irreducibility is to construct general objects from simple ones using products
and subobjects. For the case of graphs, it is useful to considetr induced subgraphs
as subobjects in order not to lose some good properties of graphs. Categorical
theorems from [2] can be applied to the case of categorical (direct) products of
graphs. Subdirect irreducibility with respect to categorical products is studied e.g.
in [4] and [5]. Categorical products have many advantages but also some dis-
advantages — e.g. they do not save connectivity of graphs, they are not good
for constructions of cubes etc. This is the reason why also subdirect irreducibility
with respect to cartesian products became been studied. In [3] some examples of
subdirectly irreducible and subdirectly reducible graphs with respect to cartesian pro-
ducts were given but the full characterization was open. In the present note there is
given the asked characterization.

1. Conventions and notations

Given a graph G, we denote V(G) its set of vertices and E(G) its set of edges.
In the case of an indexed family of graphs {G;; i € I} we shall put V(G;) = V,, E(G;) =
= E‘-.

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovsk4 83, Czecho-
slovakia.
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A cartesian product C = |:| G; is a graph defined by: V(C) = H Vi, E(C) =

={{(x), )}; @Fiel) ({xj, yreV) & (Viel) (ij=>x;= y)} The i-th
projection p;: V(C) » V, is a mapping defined by p,(xy, ..., x,) = x;.

2. Cartesian subdirect irreducibility

Let us recall the following:

2.1. Definition. A graph is cartesian subdirectly irreducible (abbreviated CSI) if,
whenever G is embedded as an induced subgraph (with an embedding m) into a carte-
sian product [J G; of graphs G; (i e I) such that all p;m are mappings onto, then at
least one p;m is an isomorphism of graphs.

2.2. Remarks. We shall usually omit a notation of the embedding and write v
instead of m(v) etc.

In [3] there was proved that any complete graph is CSI. But there are also in-
complete CSI graphs (see [3]).

3. Basic equivalences

We are going to characterize cartesian subdirect irreducibility via equivalences
on E(G) =
3.1. For any edge e € E define a relation R, on V(G) x V(G) as the smallest equi-
valence satisfying the following conditions:
(i) if{b,c},{a,c} e Eand(e,{a, b}) € R, then ({a, b}, {a, c}) e R,, ({a, b}.{b,c}) e
€R,;
(ii) if a,b,c,a’,b’,c’ are 6 dlstmct vertices of G such that {a, b}, {b, ¢}, {a,c},
{a’, b}, {b' '}, {a,a'}, {b,b'}, {c,c'} €E, {a’, '} ¢E, (e, {a, b}) € R, then
(e;{x,y}) eR, for any x, ye{a, b,c,a’, b, c'}, x * y.

3.2. Definition. For any edge e € E define a relation B, 2 R, on V(G) x V(G) as
the smallest equivalence satisfying the following conditions:
(a) if a, b, c are 3 distinct vertices of G, e, f, {b, ¢} € E, (e, {a, b}) e R,, (f, {a, c}) €
€ R,,then B, 2 R, U Ry;
(b) if a, b, ¢, d are 4 distinct vertices of G, e = {a, b}, f, g, heE, {c,d} ¢ E and
(f.{b,c}) eRy, (9,{c,d}) e R,, (h,{a,d}) €R,, then B, 2 R, U R; U R, URy;
(¢) ifa,b,c,d,d are5 distinct verticesof G, e, f, g, b, {¢,d},{c,d’} € E, (e, {a, b}) €
eR,, (f.{b,c})eR;, (g9,.{a,d})eR,, (h,{a,d'})eR, then B,2 R, U R, U
VR, UR,UR 4V R
The equivalence B, defined above will be called a basic equivalence (generated by e).
Before proving the characterization theorem we are going to prove some lemmas:
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3.3 Lemma. Let G=(V¥, E) be an induced subgraph of (JG,,{x, y}, {y, u}, {x,u} € E
Then there exists jeI such that p,/{x, y, u} is one-to-one and py(x) = pi(y) =
= pj(u)foranyiel,i + j.

Proof. There exist j, kel such that p,(x) % p;(y) and p,(x) = pi(y) for any
iel, i+ j, p(x) + pu) and p,(x) = p(u) forany iel, i + k.If j + k then p(y) +
+ p;(u), p(») * p(u) which contradicts the assumption {y, u} € E. Hence, j = k,
q.e.d. .

3.4. Lemma. Let G = (V; E) be an induced subgraph of 01 G;, {x, y}, {x, v},
{y,v}, {x,2}, {y, w}, {v,u}, {z,w}, {w,u} € E, {z,u} ¢ E. Then there exists jel
such that p;/{x,y, z,u,v,w} is one-to-one and p/(x) = p(y) = piz) = piu) =
= p{(v) = p(w)foranyiel,i + j.

Proof. By 3.3, one has for any i €1, i # j: p/(x) = p/(y) = pi(v). Since {x, z} € E
there exists k €I such that p,(x) + p,(z). Then p/(x) = pi(z) for any iel, i k.
Similarly there exists nel such that p,(y) % p,(w), p((y) = p(w) for any i€l,
i%n.

If k+n=+j+kthen p(z) + p(x) = p(y) = p(W), pu(2) = p(x) = P(¥) *
% p,(w) which contradicts {z, w} € E. :

If k+ n=j then again p(z) + p(x) = p(y) = pu(w); since pi(x) = piy) =
= pyw) for any i j there is p(x) + p;(w) and p;(z) = p,(x) + p;(w) which
contradicts {z, w} € E.

If k = j % n then p,(y) = p,(x) = pu(2); since p,(y) = p{(z) for any i + j, there
is pj(y) # pj(z) and p;(w) = p;(») + p;(z) which contradicts {z, w} € E.

If k = n + j then one can prove by a similar technique that p,(u) + p,(v). Since
(x, z}, {u, v} € E we have py(x) = p(z), pi(u) = p,(v) for any i + k. Hence, {p;(2),
p,(4)} € E;, p(z) = py(u) for any i + j, k and p,(z) = p(w) = p,(u) as well. There-
fore, {z, u} € E which is a contradiction.

The results above imply that k = n = j and p;/{x, y, z, u, v, w} is one-to-one,
q.ed.

3.5. Lemma. Let G = (¥, E) be an induced subgraph of [ G;,e, f, g € E, (e, {x, y})€
eR,, (f,{y.z}) e Ry, (g9, {x, z}) € R,. Then there exists j €I such that p;/{x, y, z}
is one-to-one and p;(x) = pi(y) = p((z) forany iel, i + j.

Proof. Lemmas 3.3 and 3.4 imply that there exist j, k, m such that p,(x) + p,(¥),
P(*) * pu(2), Pm(Y) * Pu(2), Pi(x) = p(¥) for any i+ j, pix) = pz) for any
i + k, p(y) = pi(z) for any i + m. If j + m then p;,(x) + p;(y) = p(z) and j = k.
Hence, p(y) = pi(x) = pi(z)foranyi + j, and j = m. Itis a contradiction. Similarly,
the assumptions j + k and k + m imply a contradiction, too. Thus, j =k =m
q.ed.

3.6. Lemma. Let G = (V, E) be an induced subgraph of [1Gy, e,f,g,heE,
(e.{a,b})eR,, (f.{a,c})eRy,, (9,{b,d})eR,, (h,{c,d})eR,. Then there exists
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j €I such that p;(a) #+ p;(b), p;(c) * p;(d) and p(a) = pi(b), pi(c) = pi(d) for any
iel,i+].

Proof. Lemmas 3.3. and 3.4 imply that there exist j, k, m, n €I such that p,(a) *
pi(b), (@) * Pi(c), Pu(b) * Pu(d), Pu(c) * p.(d), Pi(a) = pi(b) for any i+,
pi(a) = pi(c) for any i % k, p/(b) = pi(d) for any i + m, p(c) = p(d) for any
i%n

If j = k + m then p,(c) = pn(a) = pu(b) + pa(d). Hence, m = n and pj(c) =
= p,(d) = p,(b) which contradicts j = k.

Similarly, j = m =% k implies a contradiction, too.

If k # j + m then p;(c) = pj(a) + p;(b) = p;(d); hence, j = n, q.e.d.

3.7. Lemma. Let G = (V, E) be an induced subgraph of 0 G, a, b, ¢, d be 4 distinct
vertices of G, e ={a,b},f,g,heE, {c,d}¢E, (f,{a,c})eR,, (g9.{c.d})eR,,
(9.{c.d}) eR,, (h,{b,d})eR,. Then there exists jeI such that p,/{a, b,c,d} is
one-to one and p,(a) = p/(b) = pc) = pi(d) for any iel,i + j.

Proof. Lemma 3.6 implies that there are j, k €I such that p(a) # p;(b), p;(c) +
# pi(d), pda) = pib), pi(c) = pi(d) for any i+ j, pa) * plc), pia) = pic),

pi(b) = pi(d) for any i + k, and p,(b) + pi(d), If j + k then {p,(c), p(d)} = {p;(a),
p;(b)} € E;and {c, d} € E which is a contradiction. Hence j = k, q.e.d.

3.8. Lemma. Let G = (V, E) be an induced subgraph of (] G;, a, b, ¢, d,d’ be 5
distinct vertices of G, e, f, g, h, {c,d}, {c,d’} €E, (e,{a, b})eR,, (f,{b,c})eR,,
(9.{a,d}) eR,, (h,{a, d’}) € R,. Then there exists j €I such that p;/{a, b, ¢, d, d'} is
one-to-one and p;(a) = pi(b) = p,(c) = pi(d) = p,(d’) for any i =* j.

Proof. Lemma 3.6 implies that there are j, k € I such that p,(a) + p;(b), p;(c) +
* p;(d), pj(c) * p,(d), p(a) = pi(b), pi(c) = pi(d) = pi(d’) for any i * j, p(b) +
* Pk(C), Pk(a) * Pk(d), Pk(a) + Pk(d,), Pi(b) = Pi(c), Pi(a) = Pi(d) = Pi(d’) forany i+
# k. If j % k then p,(d) = p/(d’) for any i el which contradicts d + d’. Hence,
Jj =k, qe.d.

3.9. Proposition. Let G = (¥, E) be an induced subgraph of (] G,, e = {x, y} € E,
f={z,u}leV x Vand (e, f) € B,. Then there exists j eI such that p;[{x, y, z, u}
is one-to-one and p,(x) = p/(y) = pi(2) = pi(u) forany iel, i * j.

Proof. Follows from 3.2, 3.5, 3.7 and 3.8.

3.10. Proposition. If a connected graph G = (¥, E) is CSI then it has just one basic
equivalence.

Proof. Suppose that there are at leasf two basic equivalences on V x V. Put
(B., By) € Q if there exist {a, b}, {u, v} € E such that (e, {a, b}) € B,, (f, {u, v}) € By,
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{a,u}, {b,v} € E, and define ~ as the smallest equivalence generated by Q on the
set of all basic equivalences. According to 3.2(a) whenever there is an x € V'such that
(e, {x, y}) e B., (f,{x, z} ) € B, for some y, ze Vand B, ~ B, then B, = B,. Thus,
connectivity of G implies that there are at least two different classes of basic equi-
valences.

For any equivalence class C = [e] of basic equivalences define an equivalence U,
on V putting (x, y) € Uc whenever there is f € E such that ({x, y},f) € By and [f] *
* [e]. Put Vo = V|U¢, Ec = {{a, B} € Ve X V¢; « + B, Jaea, bep, {a,b} €E},
Ge = (Ve» Eo).

We are going to prove that G is an induced subgraph of [J G¢. For any class C
of basic equivalences and xe V put xc = {x" e V; (x,x") e Uc}. If {x,y} = e€E
then {X., ¥} € Erey and x¢ = yc for any C + [e]. Hence, {x,y} e Ec. If
{x,y} ¢ E but ({x, y}, e) € B, then xc = y¢ for any C + [e] and x, * y,;. By
3.2(b), there is {X(ep, Ver} ¢ Erey- Hence, {x, y} ¢ O Ec. In the case ({x, y},e) ¢ B,
for any e E the connectivity of G implies that there is f = {x, z} € E; then, by
3.2(c) xgsy * yisy and hence {x, y} ¢ O Ec.

Thus, G is not CSI, q.e.d.

3.11. Proposition. Any CSI graph is connected.

Proof. Suppose G = (V,E), V=V, UV,, En(V; x V) =0,a€eV,, beV,.
Put G' = (V',E') with V' =V —{b}, E' =En(V'xV') v {{a,x};{b x}eE},
G" = {0,1}, E" = 0. For any ve V; put m(v) = (v,0) and for any veV, — {b}
put m(v) = (v, 1); further, put m(b) = (a, 1). Clearly, m is an embedding of G into
G’ [0 G". Hence, G is not CSI, g.e.d.

3.12. Proposition. If a connected graph G = (V, E) is not CSI, then it has at least
two different basic equivalences.

Proof. Suppose that G is an induced subgraph of G, O G, (G; % G #% G,) and
that there is only basic equivalence on G. For any edge e = {x, y} and an edge
f = {z, u} there exists — by 3.9 — je{1, 2} such that p;/{x, y, z, u} is one-to-one.
Connectivity of G implies that p; os one-to-one which contradicts the assumption
G + G;, q.ed.

3.13. Theorem. A graph is CSI iff it is connected and it has just one basic equi-
valence.

Proof. follows from 3.10—3.12.

3.14. Corollary. Any complete graph is CSI. A graph with just one edge missing
(to completeness) is CSTiff it has at least 4 vertices.

3.15. Remark. Cartesian subdirect irreducibility is not closed toinduced subgraphs —
e.g. any graph with n = 4 vertices and with just one edge missing to completeness
is CSI, but its induced subgrouph (2, & )is not CSL
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