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Packing Measures on Euclidean Spaces 
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0. Summary. Packing measures were introduced in [8] to calculate the exact measure of sample 
paths of a Brownian motion in Rd for a suitable packing measure. Recently, these measures 
became interest for the actual geometric measure theory [9], since a density theorem holds, 
which we have further improved. Our interest for packing measure was stimulated by [2]. Indeed, 
packing measures seem to be an interesting new class of measures, which is in the general case 
completely different from that of Hausdorff measures. With respect to questions concerning sets 
of non-c-finite measure they have some advantages. Proofs are only sketched. 

1. Some notations. Let Ud (d e N) be the Euclidean space with the usual norm 
||-||. Let H be the family of all Hausdorff functions, i.e. h e H iff h: [0, +00] -* 
-> [0, + 00] and 

(1) q > 0 => h(q) > 0, h(0) = 0. 
(2) qt < q2 => h(qx) = h(q2). 
(3) Km h(q) = 0. 

In [8] a very general notion of packing for a set E g Rd was introduced, packings 
by open balls centred at E seem to be a good kind, but we will use closed balls, i.e. 
a set {B(xn. rn)} of closed balls is called a packing for E g lRd (E * 0) iff 

(4) xn e E for all n. 

(5) n * m => B(x„ rn) n B(xm> rm) = 0. 

For general metric spaces (X, Q) it will be usefull to replace (5) by 

(6) n =N m => Q(XH9 xm) > rn + rm. 

This holds obviously in Euclidean spaces. For heH and E g R* a pre-measure xh [8] 
is defined by 

(7) T*(E) = inf sup {£h(2rn); B(xn.> rn) is a packing for E with rn ^ 8 for all n). 
d>0 n 

We remark that it is enough to consider finite packings for E and that xh(E) = + 00 

*) E.-M. Arndt Universität, Sektion Mathematik, F.-L. Jahn Str., 15 A Greifswald, DDR— 2200. 
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for all unbounded sets E. For a nonempty set E §j Rd 

(8) diam (JB) = sup {||x - yj \ x9 y e E} 

denotes the diameter of E. For A9 B g Rd (A # 0, B =f= 0) 

(9) dist(^,B) = inf{||a - b\\;aeA9beB} 

is called the distance of A and B. It is well-known that for E g Rd and ft e H 

(10) nh(E) = sup inf {£ft(diam (En)); E g U-5n, diam (£.,) ^ 5} 
S>0 n n 

is the h-Hausdorff measure of E [7], We consider here the h-packing measure 
o f £ g ^ [ 8 ] 

(11) p*(E) = inf{Zi*(E.);Es U-U-
n n 

A map/: £ -> _R* of some E g R^JS 4= 0) is called non-expanding iff 

(12) for all x9yeE9 \\x - y\\ = \\f(x) - f(y)\\. 

A Borel measure \i on R* is strongly metrically invariant iflF 

(13) n(E) = li(f(E)) for every non-expanding map / of E. 
For a bounded positive Borel measure \L on RJ and h e HI we define the lower h-density 
of some x e Rd w.r.t. £ g R* and \i by 

(14) Dl(E, , ) = sup i n f p 2 f < * , r ) ) ; r < *} . 

A Borel measure \i on Rd is called representable as a HausdorfiF measure ifiF there is 
some heU and a metric Q generating the Euclidean topology such that 

(15) [1 = 111 (fih
Q means the HausdorfiF measure w.r.t. Q and h). 

A Borel measure \i is called tight ifiF 

(16) \i(B) = sup {\i(K); K = B9K compact} for all Borel sets B. 

£ e ^ has cx-finite measure for an arbitrary positive outer measure \i ifiF 

(17) E = \JEn9 ii(En) < + co for all n. 
B 

A measure n on R̂  is ff-finite iff R* has <r-finite measure. 

2. Properties of T* and p*. 

Theorem 1 

(i) A s B => T*(/1) ^ T*(B). 

(ii) T*(^ u B ) ^ T*(^) + T*(B). 

(iii) dist (A, B) > 0 => T*C4 U B ) = T*(A) + T*(B). 

(iv) h, g e H, lim - ^ = 0 and T*(£) < + oo => T»(£) = 0. 
«.o h(fl) 
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(v) ForallxeRJ,T*({x}) = 0. 
(vi) T*(£) - T*(_) (_ c/oswre of_). 

(vii) A e H, 1/ open, U * 0 and 

lim_i!L_0-=>^(l7)= +co. 
«io % ) 

(viii) 7/ E is bounded Lebesgue measurable subset of positive measure, h(q) = 
_- g' => 0 < T*(_) < + 00. 

Proof: see [8], for zh(E) = T*(_) to prove (vi) use the following argument: If 
{B(xn, rn); n = 1, . . . , m} is a finite packing for _ then ||xn — xfc| > rn + rk for 
n + fe. Choose e such that 0 < £ < mfn (Ix., — xfc|| - r „ - r k ; n + fc}/2. Since 
the balls B(xn, e) cut _, take yn e _(xn, e) n _ to obtain {B(yr, rn);n = 1, . . . , m} 
as a packing for _. 

(viii) and (vi) => (vii).// 

Theorem 2 

(i) p* is a metric outer measure. 
(ii) All Borel sets are ph-measurable. 

(Hi) ph is Borel regular, i.e. for E g Rd there exists a Borel set B ^ E such that 
ph(B) = ph(E) holds. 

(iv) _ = Rd => ph(E) = T*(_), ph is atomless, i.e. ph ({x}) = 0. 
(v)En1E^ph(En)]ph(E). 

(vi) If E = Rd is ph-measurable with finite measure => ph(E) = sup {ph(K); 
K g E,K compact} 

(vii) ph(E) = in/{ lim Tft(Fn); _„ T £}• 

(viii) ph(E) = supinf {2AJB.); -E S U^„, diam (_,) = S}. 
3>0 n n 

(ix) If for heM there is some c e U, c > 1 such that h(2q) g ch(q)for all q ;> 0 => 
=> $ _ P*. 

(x) ph is strongly metrically invariant. 

Proof: (i) —(vii) (ix) [8], (viii) [6]. (x) Use: If {B(yn, rn)} is a packing for f(_) 
then {-B(xrt, r.,)} is one for £ where yn = /(*„).// 

3. A Density Theorem. 

We improve the version of [8] making some constant At and a restriction to h 
superfluous. Our proof is based on two lemmas. 

Lemma 1 ([4, Besicovitch Covering LemmaJ) 

Let E _ Ud be a bounded set, (B(x, r(x)))xeE a family of closed balls centred in E 
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b > sup DҺ

Џ(F, x) => џ(F) ś Ь-ŕ(F) 

and with radius r(x)e(0,l) Then we can find a sequence (Bk) of selected balls from 
the given ones that 

(0 E S UBk 
k 

(ii) There is some cdeM such that (Bfc) can be distributed to cd subsequences (#£), . . . 
..., (Bc

k
d) of disjoint balls. 

Lemma 2 ([4, special case of Theorem 6.2.3]) 

Let [i be a c-finite positive Borel measure on Ud. If V is a Vitali class of closed 
balls for E, i.e. for each xeE and 5 > 0 there is a B(x, r) e V with r ^ <5, then there 
is a sequence (V„)from V of disjoint elements such that [i(E — \J Vn) = 0. 

n 

Theorem 3 

If fi is a Borel measure on Ud
9 E g Rd a Borel set of finite measure then for all 

a, b with a < inf D*(£, x) = sup D^E, x) < b it holds aph(E) = fi(E) = bph(E). 
xeE xeE 

Proof. For the second inequality it is enough to prove 

xeF 

for Borel subsets F g E. Take for 5 > 0 

V, = {*(*. r); x e F. ^ ^ n ^ < b, r * s} 

as a Vitali class for F. Apply Lemma 1 and 2 to obtain a packing {B(xn, rn)} from 
Vd for F satisfying fi(F - \JB(xn, rn)) = 0. This gives us by fi(F) ^ b. Xh(2r„) the 

n n 

demanded inequality. For aph(E) the arguments of [8] can be applied.// 

4. Sets of non-d-finite measure 

Theorem 4 

Let K g IRJ be compact. Then there are equivalent 

(i) K has non-c-finite measure for ph. 
(ii) There is some K0 g K such that for each open set U with U n K0 4= 0 

^ ( U n K o ) = +oo. 

Proof: [5, 8].// 

Theorem 5 

If A ^ Ud is analytic and of non-o-finite measure for ph then there is a compact 
subset K g A of non-a-finite measure for ph. 

Proof: [5].// 
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Remark. In [5] this result was proved for general separable complete metric 
spaces and continuous h9 since open packings were used. The use of closed ones makes 
the continuity of h superfluous because of Theorem 1 (vi). In the general setting 
we must take the packing notion with (6) instead of (5) to yield the same. 

Theorem 6 

ph is a tight Borel measure. 

Proof: Theorem 5 and Theorem 2(vi) give us the result.// 

Theorem 7 

Every analytic set A ^Ud of non-a-finite measure for ph contains 2Ko pairwise 
disjoint compact sets each of non-a-finite measure. 

Proof: [5].// 

Theorem 8 

If Ud has non-a-finite measure for ph then ph is not representable as a Hausdorff 
measure. 

Proof: Take a closed set X g Ud satisfying that for open U with U n X 4= 0 
^h(U n X) = +oo. For each Hausdorff measure \i9

Q on Ud we can find a dense G5 — set 
of X, say Y9 such that p?Q(Y) = 0 [7], but ph(X) = + oo by the Baire Category 
Theorem.// 

Remarks. 

1. Hausdorff and packing measure differ by the property to be G^-regular [7]. 
2. If IRJ has (7-finite measure for ph then we can find an open dense subset Z g Ud 

such that ph restricted to Z is representable as a Hausdorff measure [1]. 

Theorem 9 

If he H fulfils lim (qd/h(q)) = 0 then Rd has non-a-finite measure for ph. 
«uo 

Proof: Theorem 1 (vii) and the Baire Category Theorem.// 

5. Subsets of finite positive packing measure but Hausdorff measure zero — 
a discussion of ideas 

For x e Ud let un(x) denite the unique cube of side length l/2n containing x9 which 
projections in the i-th axis (i = 1, . . . , d) is a half-open interval of the form [fci(l/2

n), 
(kt + 1) (l/2")|[ with 1ct e Z, un(x) is called a dyadic cube. We call a cube semidyadic 
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iff its projection in the z-th axis have the form [(1/2) fci(l/2n), ((1/2) kt + 1) (l/2")[. 
Each x e Ud belongs to 2d such cubes. A unique semidyadic vn(x) for x is defined by 

(18) dist(Ud) - *„(*), un+2(x)) = 2"""2. 

For sufficiently large k0 e N let I = {ik0; ieN} and define then 

(19) G(I) = {vtt(x); xeUd
9neI}. 

The notion of semidyadic packing for I = N is due to [8] as well as the related 
notion of packing measure ph pre-measure is f}. Note that for a packing element 
vn(x) of a subset E g Ud

9 x e E is demanded. 

Lemma 3 

If h satisfies h(2q) _ ch(q) (c > 1) for all q = 0 then there are Xl9 X2 e U+ 

such that Xt x)(E) = zh(E) ^ X2 fJ(E) and Xx p)(E) ^ hh(E) = X2 ph(E). 

Proof: Use B(x9 2"B-2) g vn(x).H 

For a Borel set E g R', a Borel measure ^, ft e H we define 

(20) < , ( £ , * ) = S u p i n f f r ( f n 0 ^ ; d i a m ^ x ) ) ^ 5 , n e / j 
*>o (ft (dim (rB(x)) J 

for x e Ud and for 0 < inf D^^E, x) it is not hard to see that 
xeE 

Lemma 4 
inf DIJE, x) ph(E) ^ ii(E) = sup 1%J(E9 x) p)(E) . 
xeE xeE 

Further it seems easily to see that certain self similar sets [3] K g Ud satisfy the 
condition (A) 

(A) For x9 yeK9 n9mel either vn(x) n vm(y) = 0 or one is contained in the other. 
Since such K has then positive Hausdorff-Besicovitch number [3] we can select a com
pact subset (which satisfies (A) too) having Hausdorff measure zero for all h(q) = 
= q* (a > 0), but non-cr-finite packing measure for some h0(q) = qa° (a0 > 0 is 
smaller than the Hausdorff-Besicovitch number mentioned above) by Theorem 5. 
Hence, the premises of the next Theorem are not an empty set. 

Theorem 10 

Let X g Ud be a compact subset of non-G-finite measure for ph and satisfying (A) 
for X. If ft satisfies h(2q) ^ ch(q) (c > 1) for all q = 0 then there is a compact 
subset C g X such that 0 < ph(C) < +co. 

Proof: X has non-cr-finite measure for p). Further we can suppose f}(iin(x) n X) = 
= + oo for all x e X, n e N. This makes it possible to find some finite packing for 
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K taken from G(l), {vnJx^)}keJ (J g N, nk el) satisfying 

(i) Ih(diam(t,„ t(x,))>l 
keJ 

00 Za)/*(diam(v„k(xk))) ^ IforalljeJ if the term h(diam (vn (xj)) is left 
keJ 

(iii) If {vmi(yt)} is any different finite packing for X from G(l) such that for 
every I there is some k such that v„k(xk) g vmi(y^) then £h(diam (vmi(yi))) ^ 1. 

i 

Let Sx be the family of v„k(xk). If now Sl9..., Sn (n e N) is given, take vm(x) e Sn. 
Tj(um+2(x) n X) = +co implies that we can find a finite packing {vnk(xk); ke Jn}9 

j n = Jn(vm(x)) g N for the set um+2(x) n X such that 
(i)' £ h(diam(v„k(xk))) > h(diam (vm(x)) 

keJn 

(ii)' £ u>*(diam k W ) ) = ft(diam (t,m(x))) for all j e Jn 
keJn 

(iii)' If{vmi(yt); I e J'} is any different packing for X n um+2(x) taken from (G(l) 
such that for every le J' there is some ke Jn such that vnJxk)^vmi(y^) then 
£ h(diam (vmi(yi))) = h(diam (vm(x))). 

leJ* 

Sn+1 denotes the family of all packing elements obtained in this way for all possible 
vm(x) e Sn. Suppose um+2(x) n X for vm(x) e Sn is always closed. Further \JSn+i g 
g Sn and sup {diam (vm(x)); vm(x) e Sn} -> 0 (n -> oo). 
This implies that 

C = 0 (V{X n MW+2(X); vm(x) e Sn}) 

is a compact subset of X. We define a Borel measure /z ob IR* by fi(C) = 1 and 
ti(Rd - C) = 0, further put P' = w„+2W f° r p = v

n(x). Then define 

H P ' n C ) = f f ) t ( f : ( f ) ) , forall P 6 S l t 

!{*(««---(e)); fie st} 
for P e S,.+1 there exists a unique Te Sn such that P g T, put then 

u(P'n C) = n(T'nC)h(dmm(P)) 
£{h(diam(Q)); QeSn+l9Q = T}' 

\i extends in a natural way to a Borel measure on R*. We remark that \i(P n C) = 
= li(P' r\ C) for all PeSn. We evaluate upper and lower boubds for D* 7(C, x), 
xeC .Fo t .xeC there is a unique sequence ( ^ (x ) ) ^^ , v„k(x) e S*, nk e / , (n*)*^ 
depends of x. We estimate by (i) (i)' 

»(c^vnk(x)) ^ 1 # 

h(diam (u-Jx)) 
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For lei there is a unique ke N such that nk < I ^ «*+_.. If / = nk+1 we obtain 
by(ii)' 

j K C n j W i i W , ^ 1 /t(Ct"> ».*.,(*))  
fc(diam(t>.ktl(x)) " A ft(diam(o,,„.(x))\ (h(diam(tv _,(*))) + A(diam (tjx)))) 

V *(diam(.Jx)) ; 
and thus 

ltCCntyJx)) ^ 1 1 
ft(diam (t>Bk+1(x)) - * / fc(diamfr.fJx)))\ (1 + A(diam (»Jx))))" 

«UV *(diam(pjx)))1 

We may assume (a suitable thinning of X does it, I think) 

b = inf . > 0 . 
xec rr A ft(diam(0.f,t(x)))\ (1 + h(diam(*„(*)))) 

teNMV ft(diam(rjx)))/ 

If nfc < / < nk+1 it follows by (in)' 

h(diam(Vl(x))) rg £{fc(diam(P));PeSk+1)Pg »,(*)} 

and one estimates also using (A) 
fi(Cnvt(x)) ^ ^ 

h(diam (*>j(x))) 

Lemma 3 and 4 gives us then 0 < ph(C) < + oo.// 
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