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A NOTE ON FIEDLER - MORAVEK COMBINATORIAL PROBLEM

Jitl Vindrek

M.Fiedler amd J.Morsvek have formulated in [ 1) the following:
l.Problem.  Let A1yeee,A  be vertices of a convex n-gon, E, be the
Euclidean plane .Find the smallest number K(n) of convex sets Sl’""
-K(n) such that K(n)
M=E ~{A,enat = U s

i=1
We are going to prove the following :
Hypothesis. (Je.Kratochvil) If we consider only pairwise disjoint -
partitions of M then the smallest number k(n) = T—- n-l + 1o

2.Lemma, Boundaries of parts sl""’-s-k(n) are unions of straight
lines,half=lines and abscissas.

Proof. If X,Y € bd Sin bd S'J then X,Y € cl S N el S_j' Since S
§.j are convex, their closures cl §i’ cl S are convex as well.
Hence, the abscissa XY < ¢l S; n cl §j and also XY_C bd §; N bd-_S_j,
Qeeede

LDefinitions. a) Let ¥ = {3 4e.¢,S,} be a partition of M (i.e.

i'

M-U Si,SinS =@ for 1 #¥ J), Xe EZ.Thenadegge of X

with respect to ¥ is defined by deg(X,¢ ) = |{il|Xe el §i’;l .

b) A straight line (or its subset) p is called
an gdge of the partition ¥ if there exist i,J such that p <ecl 5; 0
necl SJ and for any straight line, abscissa or half-line q 2 p with
qec ¢l Sin cl SJ there is q = p.

c) A point X is called a vertex of the partition g
(1ff it is an end point of some edge of ¥ .It is called a proper
vertex if deg(X,¥ )z
4.Proposition, Let ¥ = { Syseee S, Sbe a partition of M, V be a vertex

¥) This paper is in final form and no version of it will we sub~
mitted for publication elsewhere.
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of f,deg(V,¥) = d 2 4.Then there exists a partition® ={D;,eee,D '3
of M such that k'S k, deg(V,d) = @ = 1 and there is a bije&tion

f : E, — E, such that deg(f(x) &) < deg(X,¥) or deg(f(X),®) = 3,
for any Xe E Ese '
Proof. Let py,+..,pq be edges of ¥ containing V. One can suppose that
the angle ¥ pyp;,; between p; and p,,; contains no other pje The
Dirichlet principle implies that there exists i such that PjPj40 =
<180° . Suppose that Pie1 = DA Sy N BA S, , g< ro
Consider the following cases
(1) P44y is a half-line
(11) py,q = VW with deg(W,¥ )= 3
(iid) Py = VW with deg(W,¥) = 2
In the case (i) there is S_u S also convex (see Fig.l) and
one can define & = {D:l,...,l)k 1’; where
Dy = 8y for j< r, J¥a
D = §q v S, for j=gq
DJ=_S_+1for,j> r
If we pit £ as the identity mapping then & ,f satisfy asser=-

tions of Proposition.

Figc 1.

In the case (ii) there exists an edge p with an end-vertex W
such that X% PPy41 £180°, Without loss of generality one can suppose
that p <cl S_« Then one can choose Ve Pji.2 such that the angle
between p and Wv’is less than 180° and V° is not a vertex of ¥ (see
Fige2)o.Now one can define Qq as a union of -§q and the triangle I
with vertices V,v", W, D . =S.~ I, 2y & -S-.j for any J # qre
& = {D)yees,R,} 18 the esked partition of M.(Actually, the only new
vertex is V7 with deg(V’,®d) = 3 and we can put f as the identlity
mapping.) '

In the case (1ii) one can suppose that w & {A1sceesA }
Consider three cases :

(a) There exists a straight line m containing W such that
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the half-plane mV contains the n-gon Alg..A (see Fige3)e

One can suppose that m contains no vertex X of ¥ such that
X # W. Denote by oV the union of the open half-plane mV and the
right half-line m' ¢ m with the end-point We

Fig.2 Fige3

Then define for any J # q,r : Dy = Sy 0 IV. Further define :

D. = B~ v ~{w}, D = (§q v S,) n oV, Clearly, T = {21,...,_121{} is
a convex partitien ;g M,‘deg(V,é’b) = d-1. One can put f as the
identity mappinge.

(b) Non(a) and €1 S v €l S is convex. Then choose a line m
such that the only vertex of ¥ lying onm is W (see Fige4). Denote by
m+(m", resp.) the open half-iime- of m with end~peint W which inter-
seets §_r£§q,resp.).Then define 1’;\7' as the union of the epen half-plane
mV and m o Further put :

D, = for § # q,r
J-(équ s)n ol
-(S uS)\ ™ uln” ﬂcl(S v S.))

CIearly, = {21""’21:,‘ is a convex partltion of M and deg(V,& ) =
= d - 1. '

. Fige4.
One ean again put f as the identity mapping.
(¢) Non (a) and 0::1-§q vel §-r is not convex (see Fige5)e Then

the half-line VW contains another vertex U of ¥ .' Iy Ueﬁal,...,An}
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then there exists a tangent t to n-gon at Us If U€ c1 S, u # q,r
then one can define S’ as the operd half-plane opposite to tW with
the right half-line t  added, S =S 3 S end then apply (b) since

cl Sq v el S is convex. v

Figo 5.
IfU ¢ {Al,...,A } is a point of the interior of the given n-gon,
UebdS, NnbdS. nbd§, uskaqr, U¢bdS ~bds, W, <

cbdd S, ~bd S are border lines such that UU; ;f Pyy1 # e If there
exists A eUUzn{Al,...,A % then put U3 = A otherwise choose 5 €
arbitra®ily. Then define a point V'e py &8 the intersection of Py
and U3w and U’as the point of intersection of lines V U3 and U U (see
Fige6).Further put U2 as the point of intersection of bd S, and vu’
distinct from U; (see Fig.6).Now use points U',Uz' as new vertices of
a partition (instéad of U U2), connect U~ (UJ ;resp.) with any vertex
Xof¥ , X #V (X # Uyresp.) such that U X(UZX, resp.) is an edge

of ¥+ Of course, connect also UV’ kY

Flg.6..
The new partition® has again k elements, deg(U’,% ) = deg(U,¥),
deg(V,&) = d = 1, deg(Us,® ) =3, degcv’ R)'= 3 and deg(X,¥) =
= deg(X,¥ ) for any X #/V, V',U , U’, UZ’ Uz, Use Put f(U) = U,

_f([] )y=1U f(Uz) = uz,f(uz) = Uz,f(x) X for eny X £ U, U 'Uz'uz~

One can check ~onditions of Proposition. Qe«E.D.
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3. Using this Proposition and the method of induction one can sup-
pose that the given partitionf of M has only vertices of degrees

2 end 3 (and that all vertices of degree. 2 are vertices of the given
n-gon)s Let & be the dismeter of the set of vertices of ¥ and let
§Pyse-esPg} be the set of all half-line.edges of ¥ .If p = XY,
then denote, by P; the point of p; such that 9(Xi,Pi) =0 , It is
evident that all the vertices of 5" are situated inside the s-gon G
with vertices Pl,...,P (see Fig.?).

% v

Ps

— —
— —
— — — —
— — —

FigeTe ~

Moreover, ¥ induces a partifiZn S of the interior of G with the
same number of elements.So, it suffices to count the number k of
elements of § o Denote by ¥ the number of proper vertices of ¥ (1r
v.is the number of proper vertices of S then § = v+ s~whtre s is the
number of half-lines of ¥ ), h the number of edges of ¥ .

Euler formula implies that k + ¥ = h + 1.Clearly, h = 2 7,
Hence, k = 5 + 1¢ . (%)

6e0ur goal is to mim.mize o We shall study the number adj X of
proper vertices of .‘f adjacent to &:vertex X ef/Rhe given n-gon.(If
a vertex X is adjacent to two vertices A,B of 5; we shall count only
1 of vertex X adjacent to A and of X adjacent to B etg).Of course,
if X €{Ayje005A } 18 a proper vertex of ¥ then'X is adjacent to X.
For vertices X = Ay Y= 1+1'Z = “i+2 we have the following
configurations : ' '

Fig.8a
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Y Z
(vﬁ)
Fig.8b.

In the first case (see Fig.9) we have adj X 2 1 (at least half=-

points A and B are adjacent to X), adj Y = 2 (adjacent points Y,C),

adj Z> 1 (at least half-points D,E adjacent to 2).
' £

Fig. 9

Similarly one can check the other configurations-:

(1) adj X =2 1l,2dj Y =2, adj 2 2

(1i1) adj X2 1l,adj Y = 2, adj 22 2

(iv) adj X2 F,adj Y =%, adj Z 2

(v) adjX23,0dj Y=4, adj Zz =2

(vi) adj Xz g—,ad;j Y=g, edjz2%

(vii) adj X 21,adj Y = 1, adj Z = 2

(viii)adj X 21,845 ¥ = 3, adj 2 2 3

Hence, adj A + adj A1+1 adj- Ai+2 > 4.

Since ¥ g adj Ai there is ¥ = ['3 n].By (%) we have k 2|'_n'[ +1,
Q.E.D.

.
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TsConstruction. One can construct a partition ¥ of M as follows @

for j = 1,60, r%'l denote by B',j the point of intersection of lines

Ay J-2*3 j=1 and A, JA3 410 Further define m, j=1 @ an open half-line
which is the axis of the exterior angle & B,j 1A3 2B‘_], Myy &S & _
elosed half=-line which is the axis of the exterior angleg. A') ;]-ZB,jA')’ G+
..é -] &8 the open set with the border lines o 5 1’A‘,’»J-2Bj’m2 s

C2J as the open set with the border lines mZJ'B A5:j+1'm2,j+1' Finally
define D2.j a= CZJ ViV A3 24\3 -1 (a8 the open abscissa),

)Dzj = CZJ Uy v A,”A”+1 (as the open abscissa), %r;l-l-l

UBJA3.1|U @ A3J 1B U int P where P is the polygon

jz

Fig.10.
One can check that & = {D,...,D, } is the asked partition of Me

8eNon-dis,jéint case. If one does not suppose the assumption of
pairwise disjointness of a partition then generally K(n) # k(n) e
e.ge while k(8) = 7, K(8) £ 6 (see Figell) :
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