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~ SYSTEMS OF COVERS OF FRAMES AND RESULTING
SUBFRAMES '

I.K¢{% and A.Pultr, Prague

A system of covers J¢ on a freme L generates in a natural way
certain (in general, non-reflexive) ordering. & on L and this in
turn gives rise to a subset Ly of L (see 1.7 and 1.10 below). This
has been used e.g. for describing the uniformigability (and complete
regularity), regularity and metrizability of frames (see [61,[8]).
In these notes we present some more facts concerning the mentioned
construction. . :

The paper is divided into three sections. The first one is de-
voted to a detailed introdustion into working with systems of covers
and with the resulting orders. In sectioh we, first, summarize a few
known facts, some of them in a slightly modified light. Then, when
having realized that the existence of special J+ such that L = Lg
can characterize some properties (general J" characterize the regue
larity, uniformity bases df characterize the complete regularity,
countable & the metrizability) the question naturally arises as to
when L equals Ly with finite resp. one-element & . As an answer,

a characterization of atomic Boolean algebras among frames is ob-
tained, Section 3 concerns injectively semireflective subcategories

of the category of frames. In particular we show that if e is
contained in the category of regular frames, there.are always sys-
tems of covequﬁP(fz,L) such that the coreflection is given as the
correspondence L > L&(‘C.L)‘ '

1, Preliminaries: Systems pf covers

l.1. In this paper, USL‘ is the category of all complete up-
per semilattices with unit, and their (\/,1)-preserving homomor-
This paper is in final form and no version of it will be submitted
for publication elsewhere.
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phisms, FRM (see,e.g. [4]) is the category of frames (complete lat-
tices satisfying the complete distributivity law (Vai)Ab = V(azAb))
and the ( V, A,0,1)-preserving homomorphisms. Thus, FRM can be viewed
as a (not full) subcategory of USL,. -

In the first two sections we will work in FRM only, the uppef
semilattices and their homomorphisms will play a role as a suitable
more general framework for some results in section 3. The reader
should note that all the definitions and some of the facts in sec-
tion 1 remain valid in the USL,-context as well, since an upper se-
milattice with 1 is automatically a lattice and hence formulas like
aAb # 0 make senge. We repeat, however, that in the first part of
the article we are interested in frames only. '

1.2, Recall that a cover of a frame L is a subset ASL such that
VA =1, e say that a cover A refines a cover B and write
A43B
1f YaeA Ibe B such that ab, Thus, in particular,
ASB & A-4B
Ir 4 ,% are systems of covers we say that & majorizes ‘15 and wri-
te-

H maj P

if VAed IBe® such that B4A, In particular,

AP > Amif.

1.3, If Ay ,Ay are covers of L we write
AyA A, for {a“\ atla‘-eAi} .
Obviously, A,A Ay is a cover and we have

(1.3.1) Agady 2 A; (1 =1,2),
(1.3%.2) if A;4 B; (i=1,2) then A,A A, 4 B, AB,.
1.4, For a cover A put ,
A” = {avb |a,be 4, anb # 0},
A¥ = {VX 1 X€A such that a,b& X = aAb # o}.
We easily see that
(1.4.1) (A~ AP 3 A0
(1.4.2) (AA 8)% 3 YA A,

(Let us prove, say (1.4.2), just as an exercise of the work with the
notions. Let X € A A A, be such that x,y € X = xAy # 0, Put Xi=
= {51‘ Ail 3 ay ;€4 g such*that 84r 8, € X}. Obviously aj,by€X; =2
2 agA b; # 0, hence VXiCAi and we have VX s\IX‘AVXz.)

Recall (see £6)) that a system of covers A is said to be a

L
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uniformity basis (resp. weak uniformity basis; we will write brief-
1ly u~basis and wu-basis) if for each Ae# there is a Be @ such that
B¥2 A (resp. B 3 4) ‘

1.5, Some special systems of covers: Let L, be a subset of L,

Denote by ’

Ed) (L,L,), resp. Fam (L,1y)
the system of all two-element, resp. all finite, covers A of L such
that A & Ly, ’

Obviously, unions of (weak) uniformity bases are (weak) unifor-
mity bases., Consequently, on each L there is the largest (weak) uni-
formity basis. It will be denoted by

aL (1) (resp. wqk(L)).

1,6, If ARL is a cover and x€L we write

Ax =V {aenrlanx # O}.

Obviously,
(1.6.1) A<4B > Ax £ Bx,
(1.6.2) A(Ax) € AWy,

1.7, Let 04‘ be a systeaof covers of a frame L. We write
X<y ‘

if there is an A ed such that Ax £y, Obviously we have the formu-
las ) & ‘B

(1.7.1) Amaj @* (xQy % x4dy),

(1.7.2) x€¢xg y<y @ xZ&y.

1.8. We say that #A has the property (M) if

(M) ;@ (1=1,2) = x‘szg'y“\ A
The following is obvious:

Proposition: Let #& be such that for any two~A4,A,. eﬂr there
is an A €& with A< A} (i=1,2). Then & has the property (M). Q

Thus, by (1.3.1) and (1.4.1), QW(L) and wll(L) have (M), Ob-
viously so has $n (L,L,) whenever L, is a subframe of L..

1.9, Proposition: Let L, be a subframe of L, Then’
, W _ s:aél..l., A
2 * > .
- Fin
Proof: Trivially, _xg y ? XxXq y. Now, let xa Y. Thus, there

are 84,...,8, € L such that \‘/‘ai =1and a3Ax #0 = a; £ y. Put
a = Viaglag ax # 0}, b =\/{a;la3a x = 0}. Obviously,{e,b}x = a ¢ y

and hence x & y. O
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1.9.1, Corollary: If L, is a subframe of L, then (L, L1) has
the property (M). O

(Note that common refinements in ® are extremely rare. Thus,.
the premise in Proposition 1.8 is far from being & necessary condi=
tion for (M).)

1,10, We put ‘*
[L:dl={xerlx= V{y|yax}}.

(1n [6], (7], [81[L: gk was written as L‘* . We are changing the no-
tation to avoid too complex- indices,)

1.11, Proposition: (1) [L:f]is always an upper sub-semilattice
of L. If ¢ has the property (M) then [L:#]is a subframe of L.

(2) If # majP then [L:B) S [L:P]. '

Proof: (1) Obyiously, 1 € [L:f]. Let xg

_____ > 5,(3€9) be in [L: A1,
’I‘hus x' = \/{y‘y< x} and hence an = \‘/J\/{ylyq xa} V{y
x-} < Vi (recall 1.7.2). Irdk has (1) and x,% 6 [L #]
we have Xq'\ Xq = v{,yqlbhﬁ Xy }’\ V{ytlyl xq,} \j{.YU\ ytl yqd X4
&y, 9%} <NV {ylv4 xa x.L} $ X4A Xpe

(2) immediately follows from (1.7.1). O

1,12, Notation: Let
1L =— K
be a frame morphism. For covers A of L and systems of covers ﬁ we
will use the notation '
£(a) = {r(a)]| a€n},
() = {£(A) |aed].

1.5, Propodition: (1) A =3B 3 f(A)=$ £(B),

T @2) Hmai® D r(A) may (B,

(3) f£A(x) € £(Ax)

(4) WM e e,

(5) £m* s £a™,
Proof 1is straightforward., Let us show, e.g., (5):

If u € f(A) ‘we have u = V X for some X ®f£(A) such that x,y € X®

=D xAy # 0. Let X = {r(a)la€Y}; for a,b € Y we have £(aAb) =

f(a)A £(b) #0 and hence aAb # O so that VYe.
Thus, u=Vx=£VY) ¢ £A%). O

1,14, Corollaxy. 1r £() mag B then
y = f(x) 2 £(y).
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(By 1.13.(3), xay = f(x)aq £(y). Use (1.7.1).) J

1.15. Corollary: Let f:L —> K be a frame morphism. Then
fwLL)) ¢ wal(K),
AL @ AL(K).

x‘i"(% > f(x)wg(x) £(y),

x“},‘)y 2 f(x) %w £(y).

(The inclusions follow from 1,13.(4),(5). Then we use 1.14.) OO

Consequently,

1.16, Corollary: Let f:L — K be a frame morphism, let f(Ld) <
< K‘. Then L‘) s)('KJ(‘)
£Ay o fx) a fy. d

2. Some properties of frames represented in the form L= [L:#‘J

2,1, Recall the following standard definitions (see, e.8. (4],
cf(1]). In a frame one writes
X Qy
if there is a z such that zAx = 0 and yvz = 1, One writes
x<aq ¥ .
if there exist X4 _indexed by some D dense subset of the unit inter-
val (e.g., the set of all dyadic rationals) such that
' ' X=Xqy ¥ =Y a@&ndd<e 3 x;dx.-
(More exactly, one should indicate the frame in question, writing,
say, Q ,<99, ., We will do it in section 3, here there is no dan- .
ger of confusion.)
A freme is said to be regular (resp.completely regular) if
Vxel x=V{y|y4x}

(resp. VxeL X = V{yly« x}).

2,2, Lemmas %et \A‘ be a system of covers, Then

x y ® xd4Yy.
Ir 9 (L,L) majg then

Q 8 4 ..
Proof: Let Ax € y. Put z = N {a|aAx = 0}, Since A is a co-
ver, AxVz =1 and hence yVvz = 1. By the distributivity xAz = O.
Now, let ®(L,L) maj Jl' o By the first implication and by (1.7.1)
it suffices to prove that xq ¥y -:> XQ Ye Let zAx =0, zvy = 1.
Then {y,z} is a cover and {y,z}x <y. O
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* .
2¢3, Lemmas: Let d’ ba a wu-~basis., Let xa V. Then there is a 2
such that x Q2 Q ¥. : '

w
Proof: Let Ax € y. We have a Bedd such that B ={ A. Hence

B(Bx) € BMx ¢ Ax € y by (1.6.2) and (1.6.,1), Put 'z = Bx, O

2,4, From 2,2, and 2,3, we immediately obtain
Corollary: Let ‘Ar be a wu-basis. Then
y & xaay. O

2,5, Lemma: \le have

W s""m-«.

Proof: Since by (1,7. 1) and 2,4,
y 9 x Yay =9 x 44 y
it suffices to show that x @q ¥ é Ve 06,Prop.5.2] , trere
is a u-basis Jf such that x @9 y ‘=b X 3 NS Use (1.7.1). 4

_2_&._ Theorem: The following statements are equivalent:

(1) L is regular,

(2) L= [L:Adfor a system of covers S,

(3) L= [L:$@,1)],

(4) for each s such that D (L,L) majd , 1= (L: A1,
Proof: (2) = (1) = (4) by 2.2, (4) = (3) = (2) is trivi-

"

2,7. Theorem: The following statements are equivalent:
(1) L is completely regular,

(2) L = [1:A] for a u-basis S,
(3) L= [L:.A] for a wu-basis J s
(4) L= [L:WUw],
"(5) L= [L:wl‘u(L)].
Proof: By (6;Theorem 5.3], (1) =(2). Further, we have the impli-
cations ' )

4.44

(2) = (4)

Pirvad  Jan

) = (5) == (1.4
A 44 2.4

2.8, Theorem: The following statements are equivalent:
(1) L is metrizable,
(2) L = [L:J for a countable system of covers o,
(3)- L = (L: 4] for a countable wu-basis S ,
(4) L = [L:4] for a countable u-basis #.

n
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n [7:Theo.4.6]. In fact, the existence of a countable u-basis - in
a slightly different form - was, in essence originally taken for the
definition of a metrizable frame (locale) (see [3]). What was done
in [7] was connecting this with the existence of certain type of a
real function on L (the diameter). The equivalence (2) & (3) is a
generalization of Bing s metrizability theorem (see, e.g.,[2]1) to
locales, and has been proved in (8]. O

2.9, Theére are two reasons why we have presented the: facts of
246 = 2,8 this explicitly although the essence is already published
elsewhere, First, we want to stress the relation of 2,6.(2) and 2.8,
(2) on the one side and the relation of 2.7.(2) and 2.8.(4) on the
other side: We see that, in a sense, the regularity is an equally na-
tural generalization of the metrizability as the complete regularity.

Second, the facts naturally introduce the question which we wish
to deal with in the remainder of this section, namely:
What does L = [L:eb] with a finite resp. one-element & say a-
bout L? ;

2410, From now on untill the end of section 2,
{Aq,..., M,}
is a finite system of covers of a frame L, Given a system B of ele-
ments of L, considér on it the equivalence relation generated by the
relation
xRy iff xAy # O,
The equivalence classes will be called chain-components of B, We will
denote

A = A‘/\...A A, , and
g g Vx| X is a chain component of A}.
Thus, A is a disjoint cover of L.

2,11, Lemma: Let x be in [L:h] . Then
(1) for each aGA we have either a$x or aAx = 0,
(2) for each ae}X we have either agx or aAx = O,
Proof: (1) We have x = Viyl3ilAyy ¢ x}. Let a = a,a ceun gy,
a; €Ay, and let aAx # 0. Hence
Viaayl31, a5y <x} # o,
Thus there is an i and a y such that aAy # O and Ayy € x. Then,
however, 83 Ay # O and hence a € aj € X
(2) Let aAx # O for some a € A Choose u€A, u sa, such that
uax # 0, Let v be an arbitrary non-zero element of A such that v€a.

n
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We have a sequence

U = ug,Up,eee,y =V Uz€A, UIA Ui 0.
By (1), ug¢x. If u;€ x we have ujuyAx # O and hence ug,, ¢ x by (1)
~ again, Thus, v € x and hence finally a $x. O

2,12, Corollary: For each x el: 41,

=V {lala€? s as$x
L: &Y < [L:{K}]. O

Consequently,

2,13, Lemma: Let B be a disjoint cover of a frame L, Then
T [w:48Y) = {Vxixss}
and consequently it is isomorphic to exp(B:{0}).

Proof: By 2.12 each x6 [L:{B}] is of the form VX, X €B, On the

other hand, let X @ B be arbitrary. For any b€B we have Bb = b so

that VX is in LL {B}] We have the mutually inverse isomorphisms
exp (B:{o}) {Vzx|xe B}

given by $(X) = V¥, Y(u) = {peBlo#v<u}.O

2,14, Proposition: Let A be an arbitrary cover of L. Then
Co:4aY) = [1: 1] and hence [L:{A}] 1s an atomic Boolean algebra.
Proof: By 2.12 (applied for n = 1) we have
[L: )] < (1 {311,
On the other hand, A 3 A hence {A} maj{A} and hence [L: {A'S] S [L‘
{23] by 1.11. Finally, [L:4F}] 1o atomic boolean by 2,13, O

2.,15. Theorem: The following statements are equivalent:
(1) L is an atomic Boolean algebra,

«2) L = [L:A4] for a finite ok,
(3) L = [L:{a}) for a cover A,
(4) L = LL:{AYlfor a disjoint cover A.

Proof: (1) = (4): It suffices to take the cover consisting of
the atoms,

(4)=> (3) = (2) is trivial, .

(2)=>(1): By 2.12, L = [L: yb] & [L-{A}] L, hence L = [1:{A}]

and this is an. atomic Boolean algebra by 2.14. n

24 16 Note: We are here concerned with the condition L = [L.J]
rather. then with the form of the general [LJ] About that we have
got Just the statements 1.,11.(1) and 2,14, In fact, these are, in
essence, the only general chdaracteristics one can present, As we will

3
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prove elsewhere, any complete lattice C can be represented as [L:J];
moreover, one can choose a repreSentation with atomic boo¥an L, and
in the case of finite C even with a two-element sk .

3s The subframes EL:JU and injectively coreflective

subcategories of RegFRM

3.1. We will say that a subcategory €4 of a concrete category
<C is injectively coreflective if the coreflection transformation
Yo tF(C) = C (vhere F is the coreflection functor (e - €, ) con-
sist of injective morphisms (A

3.24 A system (RL)LC usyy of binary relations on upper semilat-
tices.L is said to be admissible if
(1) xRy = x <€y inl,
(ii) for every morphism f:L—>K
Ry = F(x)Ryf(y).
A system (Ry)_epry Of binary relations on frames L is said to be

strongly admissible if (1),(ii) and, moreover,
(iii) x‘-RLyi (1=1,2) 2 XA X,.RL JiA yto

3e3. Examples: (1) By 2.2., 1.8 and 1.16,
(<L W (recall 2.1)
is a strongly admissible system.

(2) More generally, let us have a correspondence L - L° as-
sociating with frames L subframes L’ in such a way that for each mor-
phism f:L— K'we have £(L°) € X', Then by 1.8, 1.9 and 1.16

(2
is a strongly admissible system.
(3) By 2.5, 1.8 and 1.15,
(<L N0
is a strongly admissible system.

J.4. Construction: Let (R ), be am admissible (resp. strongly
admissible) system.Define a funetor '
F,:USL, = USL, (resp. F,:FRM -3 FRM)

Fa(L) = Lxlx = V{ylyrox}}
and Fy(f)(x) = £(x) for morphisms f:L=?K
(it is easy to check that Fy(L) 1s a sub-upper semilattice of L -
resp. a subfreme of L - and that f(F4(L)) € F4(K) for morphisms

by putting
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f:L=>K),
Further, define functors Fy for ordinals & as follows:
Fo=1d, Fueq = BOFy , Py (L) =[] Fp(L) for linite ;
(of course) F,(f)(x) = £(x) for all o .
Finally put
rwy = N raw , Fow = o0,
o e 0vd
345 Theorem: For each admissible (resp. strongly admissible)
system (R, )_ on USLy (resp. on FRM) the full subcategory generated
by all the L such that
(%) VX€L , X —V{y yR\_x}

is an injectively coreflective subcategory.
On the other hand, for each injectively cpreflective subcgtegory

€ or USL4 (resp.FRM) there is an admissible (resp. strongly admis-
sible) system (R, )_ such that the objects of € are characterized by
the formula (X).

Proof: I, Take a (strongly) admissible system (R_)_ and consider
the functors from 3.4. Ve immediately see that

L satisfies (¥) iff L = Fy(L) iff L = F(L). ,

Thus, writing 3L for the inclusion F(L) € L we see that for L genersl
and K satisfying (X) andf:K-—>L a morphism, ¥ © F(f) =

II, Now let € be an injectively coreflective subcategory, F:
USL, —> € (resp., F:FRM —» €) the coreflection functor. Without loss
of generality we can assume that F(L) € L for all L and that always
F(£)(x) = £(x). Define

Wy irr Jzer), x<z<y.
If £:L—K is a morphism and xR y we have f(x) <€ f(z) £ f(y) with z e
€ F(L) and hence f(z) € F(K). In the case of frames, if xR y; (1=
1,2) we hive zi(-.F(L) with x;€ 2; € ¥3, hence X, Ax, € z,A zts NN
and since F(L) is a subframe, X4A %R y,A ¥, . Now if L=F(L) we have,
for each x€L, xR x and hence x V{y\yR‘_x} On the other hand if
VXeL X = V{nyRLx} consider for yR;x a z(y) € F(L) such that y &
Lz(y)¢x. Thus, for each x€L, x = \}-{z(y)lyR x]-e L), O

3.6. Remark: Thus (recall 3.3 and 2.1), the category
RegIFRM
of regular frames is an injectively coreflective subcategory of FRM,
Similarly for the subcategory of completely regulgr frames.

3.7, Lemma: Let K be a subframe of L and let o be a system of
covers of K, Then EL J"]
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N

Proof: Let x be in (L] . /e have x = V {ylyq x} =V {yl

neod, Ay< x}. Since, however, y € Ay and Ay € K, we obtain x =
V {AylAeJ‘ , ye€ L and Ay ¢ x} ex.d

3,8, Proposition: Let K be a regular subframe of L., Then
L: $,x)] = K,
Proof: By 3.7, [L: ®(L,K)] € K, On the other hand, let x€X.

Since K is regular, we have

x=Vlyly <

But if y Q,x, we have y é“‘t and hence xe [L: §(1,x)]. T

3.9. Corollary: Let € bve an injectively coreflective subcate-
gory of FRM such that e < RegFRM, Then there are &LS ® (L,L)
such that we have f(d"‘_) s J‘L for each morphism f:L=» K and that
the coreflection is given by the correspondence

L V— [L:d],

coreflection funct or. O
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