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MUSIELAK - ORLICZ ALGEBRAS

Henryk Hudzik

There are characterized Musielak-Orlicz spaces which are
Banach algebras under pointwise multiplication of functions. It is
an extension of the results of [1]. ILet ‘(T,Z,’J.) be a space of posi-
tive G-finite measure and let $: TxR —> [0,+m] be a Musielak-
Orlicz function, i,e. &(t,.) is convex, even, vanishing and continu-
ous at O and not identically equal to O for p-a.a. te T and (- ,u)
is a XZ-measurable function for any ux0. Let L% be the corresponding
Musielak-Orlicz space, i.e. L‘E consists of all equivalence classes
of X-measurable functions f: T—>1R for which there exists A>0 such
that M§(7\f)- §&(t,Af(t))dp<+m . With respect -to the Luxemburg
norm || ll@ ,defingd by . :

ltllg= inf{A>0: Mg~ £)< 1},
1% is a Banach function space with the Fatou property (see [3-€]).

Henceforth, Ta and IN denote the non-atomic and purely atomic
part of T, respectively, i.e. the atoms will be identified with po-
sitive integers. For neIN we write Qn(°) instead of ®(n,s). L® de-
notes the space of p-essentially bounded functions on T with the
norm defined by Hfll -eszeslép |£(t)] for any fel®.

LEMMA. LQC L® if and only if there exists o€ (0,+m®) such
that . '
(1)  &(t,x)=+o for p-a.a.te€T,, and
(ii) §n(d)}1({n})_>_1 for all nelN. .
Moreover, the inequality llfllméd"f“§ holds for any f¢ L§ when con-
ditions (i) and (ii) are fulfilled.
Proof. Sufficiency. Assume that conditions (i) and (ii) hold.
1r £e 18, then Mg(£/r liflig )£ 1 and so [£(t)l /rllflig=e for any r>1
and for m-a.a. t€T. Hence it follows that llfllmﬁncllfllif .

Necesiity. Assume that L8c 1®. Then Lﬁ(Ta)c L°°(Ta), i.e.

Lé(Ta)C L °(Ta) » where § is the Orlicz function defined by §o(u)
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=0 for 0<u<1 and §0(u)=+a) for u>1. However, this inclusion is
possible if there exist k>Q, a set TO of measure O and a non-negati-
ve p.—summable over Ta function h such that

§ (u) € (t,xu) +n(t)

for all t€TNT  and u20 (see [5]). Hence it follows that &(t,2k)
=+m for }L-a .a. té T . So, condition (i) holds with o = 2k.

Now, we shall prove the necessity of condition (ii). Assume
that this condition does not hold There is a sequence (nk) of posi-
tive 1ntegers such that § (2 ) p{ny 'i-)<2 for k=1 2,... . Defining

'Zk 1.'2 e ny? where enk is the nkth basic sequence in 1 , we have

Mg (£) =218, () pling) € 227K

i.e. £€LENL® ., This ends the proof.

DEFINITION. A Banach function space (X, |l-]l) is called a Banach
quasi-algebra (algebra) if it is an algebra, i.e. f.g€X whenever
f, g€X and if there is K> O such that |If-gll<xlifllgll CJit-glilifiiliel)
for all f, geX.

THEOREM 1. The following conditions are equivalent:
(1) 1® is an algebra :
(11) 1¥c1®:
(iii) 1% is a Banach quasi-algebra:
(iv) There is «€ (0,+m) such that:
(a) &(t,a) =+ for p-a.a.te?,, and
(b) g (x) m({n})21 for all ne]N.

Proof. (i)=>(ii). If 18 is an algebra, then for any fe I® we
may defin‘e on LQ the operator 1Tf by Tl'fg f-g for any gé Lé. It is
obvious that T, is an orthomorphism (see [7] and [8]), i.e.
inf (|, gl |h] ) = 0 whenever inf (|g|,|h|)=0 in 12 (obviously 1% is a
1attlce under the natural order relation f<g if and only if f(t) <
g(t) for m-a.a. t€T). However, it follows by [7], Th.8 that f eI
so, .8c 1®. The implication (ii)=>(iii) follows by LEMMA.
Indeed, if f, g €1, then for any r>1,

(——5 ) € My (——e ) € My (—) <1,
ro«lifligligly r lIflighelle rlifilg
i.e. lif-gllg <«lifllg gllg - The implication (1ii)=> (i) is obvious
and the equivalence (ii)¢€=>(iv) follows by LEMMA . The proof is
finished.
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THEOREM 2. LE is a Banach algebra if and only if there exists

oC€ (0,1] such that: .
(i) &(t,d) =+ for p-a.a.t €T, and
(ii) Qn(oc) M({n})21 for any neNN. ’

Proof. The sufficiency follows by LEMMA .. Now, we shall prove
the necessity. Denote of = sup [u> 0: $(t,u) < +@ for p-a.a. t€T].
Assuming that of >1 and defining [5-0C2/3, we have §(t,p)< +® for
M-a.a. t€ T. Assume that )J.(Ta)>0 and C is a subset of T, of positi-
ve and finite measure. Define

c,={tec: §(t,p)<n}, n=1,2,...

This sequence is ascending and M( Ln}cn)"f"(c)‘ So, there is an index
k such that O<}£(C ) <+®. Defining f = @XC , we have

Mg(f) - g@(t,(a)dtSk MC )<+t

There exists a set DCCk, DeZ, such that M&(fXD)<1 However,
mg((rxp)=§ 3(t, ot Pap-sm.

Hence it follows that lf)(;jlg<1 and ”(fXD)2"§51, i.e. 18 is not a
Banach algebra.
For the proof of nece531ty of condition (ii), assume that L§ is
a Banach algebra. Every element f-X belongs to LQ (n=1,2,...). We
have lIfllg< llfllé, f.e. liflig21 and so Mg(£)= @ (1)pu({n}) 21 for
n=1,2,... . The proof is finished.

COROLLARI%S: (i). Let m be a purely atomic measure and &=(3 ),
where En(u)-u n’ where 1<p < +m for any lu/20 and ne€N. Then L2 is
a Banach quasi-algebra if inf mw({n})>o0. 12 is a Banach algebra if
and only if inf pu({n})21. 7

n _
(ii). We may define for any Musielak-Orlicz function a subspace B®

of L§ by \
2. {fé 12 MQ(%I‘)< +@ for any )\ > O}.

It is clear that the condltion $(t,0¢)=+m for p-a.a. te T, where
0< < +m, implies that E -{0} So, in the case of a non-atomic me-
asure, no non-trivial space E is an algebra ‘under pointwise multi-
plication of functions.

(i1i). It is well known that any Banach quasi-algebra can be re-
normed to be a -Banach algebra (see [9]). For Musielak-Orlicz spaces
the following is true: if a Musielak-Orlicz space LQ is a Banach
quasi-algebra, then there is a Musielak-Orlicz function §1 equival-
ent to & (i.e. 2. L§1) such that nd equipped with tre norm I |l§1 is
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a Banach algebra. For this purpose it sufficeg to put Q{(t,u)-

= §(t,lu), where £ is a positive constant satisfying conditions (i)
and in THEOREM 1. It is evident that || llg, - g, so, llfgllqg = lIf-glig
< «lizllglellg = l£lig lgllg, for all f, ge1d',

REMARKS. It is obvious that LQ is an algebra if and only if
£2€ 12 whenever fe 12, It is equivalent to L€ < I¥ which it is equi-
valent to ¥3&, where ¥(t,u) = §(t,u2) for all u20 and p-a.a. t€T.
The relation ¥2¢@ is characterized for example in [5]. In the case
of a non-decreasing but non-convex Musielak-Orlicz function & it is
possible that ¥2@ also for a non-atomic measure. For example, the
function &(u) = log (1 +ju] ) satisfies the inequality B(u?) <3 &(u)
for all u20., Orlicz algebras generated by non-convex Orlicz func-
tions has considered N.J. Kalton in [2]. ‘
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