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HARMONIC MAJORIZATION AND THINNESS 

Matts Essen 

At the Srni conference on "Abstract Analysis" in January 1986, this survey 

was presented to a very general audience. In the talk, it was necessary to 

explain a number of basic concepts. These facts, including references to the 

literature, are here given in an appendix. 

The theme of the survey is to describe how some results from the classical 

H -theory for functions analytic in the unit disc in the plane can be generalized 

to higher dimensions. At the end, we give analogues in R , d ̂  3 , of the Zyg-

mund L log L-theorem and the M. Riesz theorem on conjugate functions. 

In order to avoid technicalities, we have sometimes restricted ourselves to 

cases which are typical rather than general (as an example, let us mention that 

the main example in Problem I is $(t) = t , p > 0 , a l t h o u g h many other choices 

are possible). A more complete treatment can be found in the references. 

Let D be a domain in R , d >. 2 > such that the complement of D has 

positive capacity. 

Problem I. Let $: [0,<») -* [0,oo) be unbounded at infinity and such that $(|x|) 

is subharmonic in R . When does <S>(|x|) have a harmonic majorant in D ? 

Here |•| denotes the Euclidean norm. 

An important example is 0(t) = t ,• where p > 0 is given. If we take . 

d = 2 and let D be the angle D = {z = re : |e| < a/2} , it is known that 

|z| has a harmonic majorant in D if and only if a < u/p . In the case when 

such majorants exist, the least one is Re(z /cos(pa/2)) = r cos p6/cos(pa/2) . 

If p is given and if the domain D is too big, there will not exist any harmo­

nic majorant of |z| in D . There are similar conclusions of this type for 

more general versions of Problem I. 

This paper is in final form and no version of it will be submitted for publica­

tion elsewhere. 
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As a second example, let us take U = (z £ C_: |z| < 1} and consider a domain 

D such that |w| has a harmonic majorant h(w) in D . Let F: U ~* D be an 

analytic function. Taking w = F(z) , we integrate the inequality 

|F(rei8)|p < h(F(rei9)) 

and obtain 

I F.U = sup J |F(re10)|Pde/(27T) < h(F(0)) < «> . 

We use that h°F is harmonic in U . This means that F € H (U) , a class 

which has been extensively studied (cf. [4]). This well-known argument proves the 

first half of 

Theorem 1. a) If F: U -> D is analytic and |w| has a harmonic majorant in D, 

then F € HP(U) . 

°) If every analytic function F: U -> D is in H (U) , then |w| has a harmo­

nic majorant in D . 

The proof of the second half of Theorem 1 will be given later. 

In higher dimension, we lose the analytic functions mapping the unit ball 

into D . However, it is still possible to study Problem I in D . 

If D is a bounded domain, we can solve the Dirichlet problem in D with 

boundary values $(|x|) : there exists a function h harmonic in D with values 

$(|x|) on 3D (with the possible exception of a polar subset of 3D) . According 

to the maximum principle, we shall have <f>(|x|) <_ h(x) , x € D . 

For unbounded domains, the situation is more complicated. A natural candi­

date for a harmonic majorant would be a harmonic function in D with boundary 

values $(|x|) . Assume that there exists such a function H which is the limit 

of an increasing sequence of harmonic functions which are bounded in D : let us 

say that H is a formal majorant of $(|x|) (cf. Ch. 3 in [1]). The following 

example will show that a formal majorant is not necessarily a majorant of $(|x|) 

in D . 

Let D = (x £ R : |x| > 1} . The function H(x) = .1 , x € D , is a formal har­

monic majorant. It is clear that we have H(x) < |x| in D . 

What is wrong in the example is that the complement CD is too small at 

infinity. We can prove the following result (cf. Theorems 1 and 3 in [9]). 

Theorem 2. The following statements are equivalent. 

a) $(1x1) has a harmonic majorant in D . 

b) There exists a formal majorant H and CD is not thin at infinity. (In the 

case d = 2 , we have to assume that lim $(t)/(log t) = <*> , t -> <» .) 

An equivalent way of describing non-thinness of CD at infinity is to say 
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that infinity must be a regular point for the Dirichlet problem. 

To connect our problem with the geometry of D , we need the concept of 

harmonic measure. Let R > 0 be given and let w be the harmonic function in 
K 

that component of D = {x £ D: |x| < R} which contains the origin (which we 
K 

assume to be in D) which has boundary values 1 on {|x| = R} n D and 0 on 

{|x| < R} n 3D: a) is called the harmonic measure of this part of 3D with 
K R 

respect to D . 
R 

Conjecture. Problem I has an affirmative answer if and only if 
oo 

(1) J $f(t)a)t(0)dt < °o . 

The conjecture is known to be true for a large class of functions $ which 

includes $(t) = tp (cf. Theorems 2 and 4 in [9]; also cf. Theorems 2.2. 3.1, 

3.5. and 3.6 in [3]). Also cases when the conjecture does not hold are well 

understood but it would take us too far to go into the details here. As an 

example, we mention that if $n(t)
 = (log t)(loglog t) for t large, then it 

is known that $n(|x|) has a harmonic majorant in D c R if and only if 

(2) J üït(0)dt/t < 

(cf. Theorem 3 in [6]): we note that $A(t) w t loglog t , t large. 

The point of conditions of type (1) is that it is often possible to estimate 

(u (0) in terms, of the geometry of D . We have a general criterion which can be 

used to solve Problem I. For an example of such an estimate, we refer to [8]. 

To make the picture complete, we have to define the formal harmonic majorant. 

Let , v be the harmonic function in D which is 1 on {|x| > R} n 3D and 0 

on {|x| •<_ R} n 3D . Also when D is unbounded, we can construct such a function. 

We consider 

(3) H(x) - J •(t)d(-v.(x)) . 
0 

If H(0) is defined, we can use Harnack's principle to deduce that H(x) will 

be finite for all x E D . Furthermore, H will be harmonic in D with boundary 

values $(|x|) • H is the formal harmonic majorant in Theorem 2. If CD is not 

thin at infinity, H will be a harmonic majorant of $(|x|) . 

We can now give an outline of the proof of the second half of Theorem 1. Let 

F: U -> D be a universal covering map such that F(0) = 0 (cf. the Appendix). 

The nontangential maximal function NF is defined by 

NF(el6) = sup |F(z)| , z G S(e) , 

where S(9) - {z: |z| < /5/2} U {z: |z| >_ /3/2, |arg (el9 - z) | < u/3} . In Sec­

tion 6 in [9], we find the following estimate: 

w_(0) < (2/ir)m{e: NF(el9) > R} . 
K. •—• *""• 
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Here m(') denotes Lebesgue measure on the unit circle. It follows that 

oo 

J u>R(0) dR P < 4 | | N F | | P < Cons t . | | F | | P < oo . 

In the last step, we use a result of Hardy and Littlewood (cf. Theorem IV.40 p. 

186 in [15]). 

This "means that (1) holds with $(t) = t . We conclude that |w| has a 

harmonic majorant in D . The second half of Theorem 1 is proved. 

At this point, let us stop for a moment and consider the history of the sub­

ject. A beginning can be found in Chapter 3 of the thesis of A. Beurling [1]. In 

the plane, he defines harmonic measures a(-,t) and $(»,t) which are our func­

tions 1 -v and to . Beurling uses StieltjeTs integrals of the type given above 

in (3) to find "formal" solutions of problems on harmonic majorization. For details, 

the reader is referred to [1], 

In [3], D. Burkholder gave results on harmonic majorization which were stated 

and proved in the language of probability (stopping-times, Brownian motion). Let 

X be a Brownian motion in R starting at x € D and let T be the first time 

X leaves D : 

T(OO = inf {t > 0: Xt(w) t D} . 

1/9 

As an example of the results of [3], we mention that T E L (where 0 < p < oo) 

if and only if |x| has a harmonic majorant in D: this is one of the basic 

problems in this survey. 

If a problem on harmonic majorization can be solved using probability, there 

is also a solution which uses classical analysis. In [9], the questions which 

Burkholder asked in [3] are studied from the point of view of analysis. The reader 

is recommended to compare these two papers. 

It is well known that 0)̂ (0) can be interpreted as the probability that a 
K 

Brownian motion starting at 0 € D will hit the sphere {|x| = R} before it 

hits 3D . -.There is a connection between the behaviour of 0)̂ (0) as R -> oo and 

the size of CD at infinity. We can give a precise formulation of this fact if 

we assume that CD is not thin at infinity. (Very often, different proofs are 

required in [9] in the cases d = 2 and d ̂  3 . This dichotomy is present in 

the following lemma (cf. the proofs of Lemma 4 and Lemma 6 in [9]).) 

Lemma 1. A necessary and sufficient condition for CD not to be thin at infinity 

is that 
a) 0)̂ (0) -* 0 , R -> oo 9 when d > 3 , 

K —. 
b) (log R)UL,(0) -> 0 , R -> oo , when d « 2 . 

K • 

We use this result to prove a simple Phragmen-Lindelof theorem (cf. Lemma 1 

in [6]). Theorem 3 should be compared to Theorem 5.16 in [11]. 
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Theorem 3. a) Let u be subharmonic in D <-- R , d _> 3 , and assume that CD is 

not thin at infinity. If u is bounded above in D and if u _£ 0 on 3D , 

then we have u <_ 0 _in D . 
2 

b) Let u be subharmonic in D c R and assume that CD is not thin at infinity. 

If 

sup u(z)/(1 + log | z| ) < oo , z Є' D , 

and if u < 0 on 3D , then we have u _< 0 _i_n D . 

To prove Theorem 3 in the case d _> 3 , let us assume that M is an upper 

bound for u in D . Using the maximum principle in the bounded set Dn{[x| < R} 

(cf. the Appendix), we see that u(x) < M ^ (x) f x
 £ D n {|x| < R} . From Lemma 

— K 

1 and Hamack's pr inc ip le , we deduce that for a l l x £ D , we have to^x) -> 0 , 
K 

R -> oo # It follows that u(x) is non-positive i n D , and the first part of Theo­

rem 3 is proved. The second part of the proof is similar. 

In the remaining part of the paper, we shall assume that the domain D is 

contained in the half-space {x G R : x > 0} where d >_ 2 . E will be the 

complement of D with respect to the half-space, i.e., E = { x . > 0} \ D . 

Problem II. Let $: [0,oo) -> [0,oo) be an increasing convex function with $(0) =0 

such that $(t)/t -* °° 9 t -> oo . When does $(x,) have a harmonic majorant in D ? 

Minimal thinness at infinity (cf. the Appendix) plays the same role for this 

problem as the one that thinness played for Problem I. We have the following ana­

logue of Theorem 2 (cf. Theorem 1 in [6]). 

Theorem 4. The following statements are equivalent. 

a) $(x ) has a harmonic majorant in D . 

b) There exists a formal harmonic majorant in D and E is not minimally thin 

at infinity. 

In this context, the harmonic measures are defined as follows. Let xn € D 

be given. Let t > 0 be given and let w be the harmonic- function in that com­

ponent of D n {0 < x. < t} containing xn which has boundary values 1 on 

D n {x. = t} and 0 on 3D 0 (0 < x. < t} . We let v be the harmonic function 

in D which has boundary values '1 on 3D n (x > tl and 0 on 3D fl {x < t} . 

The formal harmonic majorant of $(-0 in D is given by formula (3) . A connec­

tion between the behavior of w (xn) as t -+ oo and the size of E at infinity 

is given by 

Lemma 2. A necessary and sufficient condition for E not to be minimally thin at 

infinity is that t wt(xn) -* 0 , t -* «- . 

(Cf. Lemma 2 in [6].) 
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Also here, there is a Phragmen-Lindelof theorem. 

Theorem 5. Let d >. 2 . Let u be subharmonic in D c {x € R : x > 0 } and ' 

assume that E is not minimally thin at infinity. If 

sup u(x)/(l +x ) < °° , x G D , 

and if u £ 0 on 3D , then we have u £ 0 rn D . 

In the proof, we apply Lemma 2 in the same way as when we used Lemma 1 to 

prove Theorem 3. We omit the details. 

We would like to give an analogue for Problem II of the conjecture (which 
is almost a theorem) mentioned in the discussion of Problem I. If 0 is the con­
vex function in Problem II, we introduce 

t 
A(t) = / sd(<Ks)/s) , t > 0 . 

0 
We say that $ satisfies a doubling condition if there exists a constant 

C such that $(2t) £ C$(t) for all sufficiently large t . 

Theorem 6. Assume that $ and A satisfy doubling conditions and that we have 

lim sup A(t)/t > 0 . Then $(x.) has a harmonic majorant in D if and only if 
t-*oo

 1 » 
oo 

(4) / A'(t)u).(xn)dt < oo. 
0 Z U 

(Cf. Theorem 2a in [6].) 

Remark 1. If $(t) = t log t , we have A(t) = (t - 1) and Theorem 6 says that 

x.log x has a harmonic majorant in D if and only if 

oo 

(5) / 03 (X )dt < oo . 
o c u 

Remark 2. The proof that (2) is a necessary and sufficient condition for 

(log |z|)(log log |z|) to have a harmonic majorant in D c R has a structure 

which is similar to the proof of Theorem 6. This solved a question which was left 

open in [9]. For details, we refer to Theorem 3 in [6]. 

Remark 1 plays a crucial role in the proof of 

Theorem 7. Let d ̂  2 . Then |x| has a harmonic majorant in D c: {x1 > 0} if 

and only if x.log x. has a harmonic majorant in D . 

(Cf. Theorem 4 in [6].) 

In the case d = 2 , there is a classical result of a similar type: The 

Zygmund L log L-theorem (cf. Section 4.3 in [4]). If F is analytic in the 

unit disc U , we say that Re F £ L log L if 
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2 7 iA + ifi 
sup ; | Re F ( r e ) | log | R e F ( r e ) | d0 < °° . 

0<r<1 0 

/ 
Theorem A. Let F be analytic in U . 

a) If Re F € L log L , then F G H1(U) . 

b) If F € H1(U) and Re F > 0 in U , then Re F G L log L . 

Remark. Another variation on the L log L-theme in the plane can be found in [10]. 

To compare Theorem A and Theorem 7 in the case d = 2 , we note that it 

follows from the discussion of Theorem 1 that 

i) if F: U -> D is analytic and if |x| has a harmonic majorant in D , then 

F G H1(U) ; 

ii) if F: U -» D is analytic and if x log x has a harmonic majorant in D , 

then Re F G L log L ; 

iii) if every analytic function F: U -> D .is in H (U) , then |x| has a harmo­

nic majorant in D . 

Theorem 7 tells us that if one of the two harmonic majorants exists and if 

F(U) c D , then we have both F G H (U) and Re F G L log L . To go the other 

way, we have to assume that all analytic functions F: U -> D are in H (U) : 

then it follows that |x| has a harmonic majorant in D . 

While Theorem A is a statement of properties of one a n a l y t i c function F , 

Theorem 7 describes a p r o p e r t y of the domain D . 

In the case 1 < p < °° , we can prove (cf. [7]) 

Theorem 8. Let d >̂  2 and let p be given, 1 < p < <» . Then |x| has a harmo­

nic majorant in D c_ (x > 0 } if and only if x P has a harmonic majorant in D . 

The associated classical result in the case d = 2 is due to M. Riesz. 

Theorem B. Let F be analytic in U and let p be given, 1 < p < <» . Then 

we have 

(6) ||lm F | | P < C |JRe F | | P , 
II II p __ p II P 

(7) | | F | | P < C | | R e F | | P , 11 " H P - P" " P 

where 
271 . 

|h||P = sup ; |h(relö)|Pd9/(27i) 
P r<1 0 

The classical form of the i n e q u a l i t y is (6) (cf. Section 4.1 in [4]). The 

best constant Cf was determined b y Pichorides in 1972. The best constant C is 
P P 

also known (cf. [5]). The proof of Theorem 8 combines ideas from [5] and [6]. 
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The relation between Theorems B and 8 is similar to that between Theorems A 

and 7. We omit the details. 

As a final remark, we note that Problem II is a special case of a more gene­

ral problem treated in [6].If ft c R is a given domain, we let V be a minimal 

harmonic function associated with a Martin boundary point of ft (which in Problem 

II is «>). Let Deft be another given domain. Let $ be as in Problem II. The 

general problem is to find criteria for $o f to have a harmonic majorant in D. 

Appendix 

For the convenience of the ̂ reader, we give here some basic facts on subhar-

monic functions and thinness. A more complete treatment of the area.can e.g. be 

found in the two books [11] and [12], 

A function u is harmonic in a domain D c: R if Au = 0 in D , where 

A is the classical Laplace operator. A function u is subharmonic in D if u 

is semicontinuous from above and we have Au ^ 0 in D in the distributional 

sense. Other definitions are possible (cf. [ill, [12]). u is superharmonic if 

-u is subharmonic. 

If $ : [0,oo) -> [0,oo) is a given increasing function, $ (| x| ) will be sub­

harmonic in R if . 

$"(t) + (d- 1)t"1 $?(t) > 0 , t > 0 . 

If we choose $(t) = t , p > 0 , we have the example |x| . 

If u is subharmonic in D , we say that h is a harmonic majorant of u 

in D if h is harmonic in D and u £ h in D . 

If D is a bounded domain, we can solve the Dirichlet problem in D with 

boundary values f on the boundary 3D : there exists a function u = Hf harmo­

nic in D such that u = f on 3D . 

I. If 3D is smooth and f is continuous, this means that 

u(y) -* f (x) , y -* x € 3D , y G D . 

II. For more general domains and functions f , we can solve the Dirichlet prob­

lem by applying the Perron-Wiener-Brelot method (cf. Ch. 8 in [12] or 5.6 in [11]. 

III. A set E is thin at x £ R provided that the Wiener criterion holds (cf. 

Theorem 10.21 in [12]). This is a convenient way of characterizing sets which are 

small near a given point. The characterization is in terms of capacity. 

IV. A point x € 3D is a regular boundary point if for every f € C(3D) , we 

have lim Hf (y) = f(x) , y -> x , y € D (cf. Ch. 8, Section 3 in [12]). A point 

x € 3D is regular if and only if the complement CD of D is not thin at x . 

The set of irregular boundary points is a set of capacity zero (cf. Theorems 10.9 

and 10.12 in [12] or Ch. 5 in [11]). * 
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V.. For a bounded domain D , we have the maximum principle (cf. Theorem 5.16 in 

[11]). Let F c 9D have capacity zerp. Let u be subharmonic and bounded above 

in D and assume that for all x € 3D ^ F , we have lim sup u(y) £ 0 , y -> x , 
» 

y G D . Then it follows that u(y) £ 0 , y C D , 

Let us now assume that D = {x € R : x > 0} . If E is a closed subset of D 

and if the function f is defined on E , the reduced function of f with res­

pect to E in D is defined by 

F 
Rf(x) = inf {u(x): u >̂  f on E, u is superharmonic in D, u ^ 0 in D} . 

E 
According to the Perron-Wiener-Brelot method, R will be harmonic in D ^ E 

with boundary values f on 3E and 0 on 3D (let us assume that 3E n 3D = 0). 
F 

Rf is not necessarily superharmonic in D . However, the lower regularization 

.-»F F 
Rf (x) = lim inf Rf (y) , y -• x , y € D , 

will be superharmonic in D (cf. Ch. 7 , Section 3 in [12]). 

The set E c D is said to be minimally thin at infinity if there exist points 
*v E 

in D \ E where R (x) < x (cf. Definition XII.4 in [2]). 

"I . 2 . ' . 
If D is a domain in R , there exists a universal covering surface D over 

D: if CD has positive capacity, we can choose D to be the unit disc U (cf. 

[14]). This means that there exists an analytic function F from U onto D 

(which is not necessarily simply connected) such that for each point w G D , 

there is an open neighborhood £ of w such that each connected component of 

F (0) is mapped homeomorphically by F onto 0̂  . 

Remark. For a general discussion of covering spaces, we refer to [13]. 
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