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SPINGROUPS AND SPHERICAL MEANS II 

F. Sommen (*) 

Abstract. In this paper we study generalized mean values of functions 

in 1?m over spheres of any codimension, by making use of representations 

of Spin(m) on spaces of functions in the Clifford algebra over i?m. 

This leads to several versions, refinements and peneralizations of the 

classical Euler-Poisson-Darboux equation. Furthermore for spheres of 

codimension 2 we interprete these equations in terms of complex 

Clifford analysis. 

Introduction. The notion of spherical means of a function is known to 

be useful in partial differential equations as is shown by F. John 

(see [ 6] ). Especially for operators, which may be expressed in terms 

of Laplacians (and powers of it), it is applicable, because of the 

Darboux equation 

Axf(x,r) = (-^+
m^l A)£(5c,r), 

9r2 r 9r 

since it transforms the Laplacian into a one-dimensional operator. 

In our previous paper [10] we extended spherical means by usinp the 

representations of Spin(m) instead of S0(m) and so-called spherical 

monogenics instead of spherical harmonics. Snherical monogenics are, 

roughly speaking, hypercomplex generalizations of the classical complex 

powers z-*z , kez , i.e. they are homogeneous solutions of a Dirac 

type operator D, with values in a Clifford alpebra. These ideas fit 

completely into the general setting of proun representations and 

integral geometry as is being studied by S. Helpason in [ 3] . 

Our previous paper [10] was restricted to spheres of codimension one 

and so the spherical means have only one extra dimension, the radius 

of the sphere. Hence the Darboux equations link this radial dimension 

r to the space variable xeR . 

(*) Senior Research Assistent supported by N.F.W.O. Belgium 



158 Sommen 

In this paper we study mean values of functions over sDheres of any 

dimension. Such spheres are parametrised by their center x, the 

radius r and an s-vector co, which represents the axis so that spherical 

means depend on coordinates (x,r,co) where r and w are extra dimen­

sions. Hence there exist Darboux equations which link the radius r 

with the space variable x, called radial Darboux equations, and 

equations which express the Mo)-derivatives" in terms of the space 

derivatives, called angular Darboux equations. 

In the first section we recall the main definitions and DroDerties 

of [ 101 . 

The second section is devoted to spherical means of codimension 2. 

In this section we link the radial and angular Darboux equations to­

gether in such a way that we obtain solutions of the comDlex mono­

genic system (D x+iD )f=0, 

ViVJ,V%+i1>V 
being a complex Dirac type operator in Cm (see [ 8] ,[ 1 1] ,[1 2] ) . 

The study of spherical means of any codimenson is more involved 

To that end we make use of functions defined in the entire Clifford 

algebra cm or in its real part 

R or in the spaces of s-vectors R (see also [ 4 ] ) . The study of 

Spin(m)-representations is done in section 3. 

In section 4 we study the Darboux equations for SDheres of any 

codimension. 

Preliminaries. Let {ei,...,e m} be an orthonormal basis of f?m. Then 

.by C we denote the complex Clifford algebra constructed by means of 

this basis. Hence a general element a e C m is of the form 

a= I e A a A , a^C , N = { 1 , . . . ,m) , where for A={a x , . . . ,a^} , ai<...<a h, 

e A = e * i - - - e a • 

The product in c is determined by the relations 
m J 

e i e j + e j e i = •Ző^j; i,j=1,...,m, e. = 1. 

By Rm we denote the real Clifford algebra over Rm. 

Every a e C m may uniquely be written into the form a=[ a] 0 +[ a] i + - . -
 +t a] m , 

where [ a] s^Cm g; s=0,...,m and where Cm s is the space of complex 

s-vectors C m,s •-• a
A

e
A

: a
A

Є C 

Ul-s 
The space of real s-vectors will be 
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denoted by R . 

An involution on c is given-by a= ̂  a/eA, where aA denotes complex 
A£N A 

conjugation and eA=e ...e , e.=-e.; j=1,...,m. Notice that on Rm IA a^ a l j j m 

a=[ a] 0-[ a] !-[ a] 2+[ a] 3 + . . . . 

An inner product on Rm is given by <a,b>=[ ab] c.This inner product 

coincides with the one induced from R2 . The norm of a^C is given 
_ m * 

by |a|2=l|aA|
2 and satisfies |ab|<2m|a||b|. 

A 

By the identifications Rm+1=Rm +R and Rm=R ,Rm+l and Rm are 
' m,o m,1 m, i ' 

naturally imbedded in i? . Hence (x0 ,xi , . . . ,xm) ePm will be identi-

_• _> m 

fied with x0+x, x= I
 xiei« The inn^r product in Rm will be denoted 

j = 1 J J 

by <x,y>. 

Let QCR be open; then feCi(^,Cm) will be called left monogenic 

m 3 in Q if Df=0, where D= I e.^-— is a generalized Cauchy-Riemann operator, 
j-, J9xj 

called Dirac operator or vector derivative-. 

A function Pk(w) (Qk(aj)) , GJGS111"1 is called inner (outer) spherical 

monogenic of degree k if r P, (o))(r m Q, (w)) is left monogenic 

in Rm (in Rm\{0}). 
Every sphe r i ca l harmonic admits a unique decomposition S ^ P T + O U 

into spherical monogenics. 

By m we denote the area of S 
J m 

1. Basic representations of Spin(m) 

Let sGSpin(m) and feL2(S
m~ \C ). Then we consider the basic repre­

sentations H0 and L of Spin(m), given by H0(s)f(x)=f(sxs), 

L(s)f(x)=sf(sxs). Ho corresponds to the usual representation of 

SO(m), while L corresponds to spin 1/2-representation. 

The Lie algebra of Spin(m) is the space R of real bivectors, the 

elements of which are of the form I x-.e.', , x . . e R . Hence the 
i<j J J J 

infinitesimal representations of H0 and L are given by 

dH0(ei;j)=-2Li;j, dL(ei;j)=-2Li:J+ei;j, 
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where L i j = x i ^ - x j £ - . 

The Casimir operators C(H0) and C(L) of H0 and L are hence piven 
by 

C(H0)=AS, C(L)=As+r-{(
m), 

where Ag is the Laplace-Beltrami operator and r=- E e . . L . . , 

the spherical Dirac operator (see [ 7] ,[ 9] ,[ 1 3] ) . 

The eigenspaces of Ag are the classical spaces H^ of spherical 

harmonics of degree k (eigenvalue-k(k+m-2)); the eigensnaces of 

C(L) are denoted by M, . 

M^ is called the space of spherical monogenics of depree k. 
As As=r(m-2-r), Hk and M^ are of the form 

H k = M
+ , k + M - , k > M k = M

+ , k + M - , k > 

where M , are the eipenspaces of r with eipenvalues -k and k+m-1 

(see [ 7] '[9] ,[ 13] ). 

The elements of M, v are called inner and outer snherical mono-
' m-1 

genics of degree k and are denoted by P^(w) and 0^(w) , a)GS 
The projections on H, M^, M+ ^, M_ k are respectively denoted by 
s k' nk> pk> °k- J ^ 
We have that Qk(f)=-uPk(uf) and 

P k ^ H ^ V l ^ L-i ̂ '^^^ufC^ds^ 
m b | u I 

m a -» a 1 
Let D= I e. ~—; then V = u(.^:+j?^ • Hence if Pk,0k are spherical 

monogenic, r Pk(w) and r"^
 +m" ^O^(w) are left monogenic in 

Rm\{0}. As D is invariant under the representation L, D commutes 

with nL = Pv"fQiC' This leads to a refinement of the classical theory 

of spherical means (see [ 6] , [10]) of which we recall the main 

definitions and properties. 

Let f be a function in a domain of Rm. Then we consider the refined 

spherical means 

P(f)(x,r)=— f f(x+rw)dS , v J K ' J a) Lm- I v ^ OK m b 

Q(f)(x,r)=J- L.^.f^r^dS^. 
m b 

These refined spherical means satisfy a first order Darboux system 
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of the form 

DxP(f) (£,r) = (A+™il)0(f) (x,r) 

D.xQ(f)(x,r)=-£;P(f)(x,r), 

which follows straight from n0(Dxf(x+y))=D n0f(x+y), where 

no(f)(x+y)=P(f)(x,|y|)-y/|y|.0(f)(x,|y|). 
Hence we may generalize these spherical means to 

nk(f(x+t.))(y)=Pk(f(x+u ))(?)-J_p (_|-f(x+u))(y), 
|y | lul 

leading up to the generalized Darboux system 

P+,kCDf) = ̂  + iS1F:1)p-,kCf). 

where for r=|y|, 

P+>k(f)(x,r)-Pk(f(x+u)(y), 

P.fk(f) (x,r)=Pk(^f (x+uj) (y) , 

and where for fixed (x,r), P+ , (f)(x,r) have values in M+ ^. 

In terms of the Gepenbauer polynomials Cv(6) (see [5]), we have 

the following explicit formulae 

m m 

P+ k(f)(x,r)=-I- / (Ck(e)+^cJ_1(9))f(ru+x)dSu, 
' m <.m-i 

m m 

P_>k(f)(x,r)=;i- / .1(uC^(e)-^_1(e))f(ru+^)dSu, 
m S 

- + - * - * • „ m - I -. - > - > • - * „ m ~ -

where y=ro), CJGS and 0 = <o),u>, uGS 

2. Spherical means of codimension 2 

In view of its importance in complex analysis we treat spherical 

means of codimension 2 separately. 

Let QcRm be open and put 

Q = {(x,y) :xe.ft,x+SyCQ}, S ={u: |u| = |y| , <u,y> = 0}. 
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The component of Q containing ft is called the comnlex harmonic hull 

of ft (see e.g. [1]). 

First we introduce the 0-th order spherical means by 

P1(f)(x,y)=-~— / 6(<u,S>)f(x+ru)dS 
m-i sm-i 

Q1 (f) (x,y) =—--- J xu6 (<u,w>) f (x+ru) dSu, 
m-i S 

where y=rto, r=|y| and (x,y)eft. 

From the codimension 1 case we immediately obtain the radial Darboux 

equations 

(D x-^,D x>)P
1(f) = (|F+

m^)01(f), 

(Dx-w<w,Dx>)Q
1(f)=-|TP

1(f). 

However, this only expresses the radial part of the y-derivatives in 

terms of x-derivatives. Of course there will also be an anpular 

version of the Darboux equations. This is obtained in 

Theorem 1. PJ(f) and Qx(f) satisfy the angular Darboux equations 

rw<w,Dx>P
l(f) = (1-ry)Q

l(f) 

rw<^,Dx>Q
1(f)=ryP

1(f), 

3 „ 3 where ro) = y and i y ^ e . . (y. ^--y. ^ -) • 

Proof. As 6(<u,w>)=|y|6(<u,y>), we have that 

/ r 6 (<u,y>)£(x+|y|u)dSu 
m-1 ç.m-

1 / • ôЧ<u,æ>)(uлш)£(x+гu)dS
u 

ш
ш-i

 s
m-i 

/ 6 (<u,čo>)<á3*,Du> (uAwf(x+ru))dSu 
ш
m-ì ^m--

=rw<w,Dx>Q
1(f). 

Similarly we obtain that 
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TO (f)=— / 6(<u,w>)<w,Du>[ UAW. uf (x+ru)] dSu 
y V i m̂-i 

/ 6(<U,W>)UAW[ wf(x+ru)+ur<w,Dx>f(x+ru)]dSu 
"°m-i ̂ m-i 

=Q1(f)-r(o<o),Dx>P
1(f). * 

Notice that the radial Darboux Equations follow from the L-invariance 

of D, together with the commutation relations 

[DY-w<w,Dx>,P-] =[Dx-w<w,Dx>,Q
1] =0, 

[ aj<u),D >,PX] =0, i^w,D >Q-=-Qlow<oj,D >. 
A X A 

The angular equations were shown independently from this. There is 

however a nice way to link the radial and angular equations together, 

which has a meaning in complex analysis. 

Indeed, we have that 

pl (Dxf) = (^-7ry)Ql ( f ) * 2 ^ 1 (£) 

=w(^4ry)(-"Ql(£))=Dy(-"Ql(£))* 
and 

-UQ
1(Dxf)=DyP

1(f) 

Furthermore, by the above commutation relations, coQ.1 (Dxf) =-Dx(j0Q,
1 (f) , 

so that we arrive at the system 

(ViD y) [P
1(f)-iwQ1Cf)]SB0. 

Hence spherical means of codimension 2 provide global solutions of 

the complex monogenic system (D +iD )g=0, which we already studied 

partially in [11] (see also [8],[12]). It is natural to introduce 

one single spherical mean of codimension 2 by means of 

M(f)(x,y)=-~— / (1 + iuA^)6(<u,w>)f(x+ru)dSu. 
m-I ~m-I 

Then M(f) is a solution of (D +iD )P=0 such that lim M(f) (x,y) =f (x) . 
X y ' y-0 

Example. Let us take the Dirac measure 6(x+ru). Then in spherical 
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coordinates, putting x=|x|£, we have that 

6(x+ru)=-I-r6(r-|x|)©6(u+!), ̂ .fes"1"1. 
r 

Hence the spherical mean of the Dirac measure is piven by 

M(6)(x,y)=77l— lll|^6(|y|-|x|)x6(<|,^>),x=|x||, y=|y|^. 
V i |y| 

Notice that M(6)(x,y) is concentrated on the isotronic snhere in C . 
One can easily show that M(6)(x,y) is a global distributional solu­

tion of (Dx+iDy)g=0. 

Next we introduce the k-th snherical means of codimension 2, denoted 

by P±k(f)(x,y), (x,y)Gfi. 

To that end, we first introduce vector bundles over Sm~1 as follows. 

For cô S , M± k(w) are the right C -modules of inner and outer 

spherical monogenics of depree k on S ={ueSm~ * :uiw} and P, is r ' J-' a) _̂  k,o) 
the projection onto M+ k(w). Furthermore, we put Mk(w)=M+ k(w)+M_ k(w) 

-• -> -• 

and Hk(oj)=M+ k(w)+M_ k-1(w) and denote by n, and Sk the corresnon-

ding projection operators. Notice that n, = P, -vPv v , where v is 
K,(JO K,(JJ K,CI) 

the unit normal vectorfield on S . 
0) 

Definition 1. The k-th inner and outer spherical means of codim 2 

are given by 

P+>kf(x,rw)=Pk)a)(f(x+ru)), 

Pl>kf(x,ra)=Pk)aj(uf(x+ru)), 

—• — • 

and are considered as sections of M+ k(w) (for fixed x) . 

-> -• 

Putting 9=<u,v>, we have that in terms of the Gepenbauer nolynomials, 

P+)k(f)(x,rw)(v) 

m-1 m-1 

= ^ — / 6(<w,u>)(Ck
2 (9)+vuCk_l(e))f(ru+x)dSu 

m- i ̂ m- i 

and 
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PІ
>k
(f)(x,rЗ)(v) 

1 
m-1 m-1 

u
m - i ^ m - ì 

*J 6(<u>,u>)[uCk (e)-vCk" (e)] f(ru+x)dSx. 
sm-i 

Of course P+ k(f)(x,rw)eM+ k(u>) only for vxu • 

The radical Darboux equations are now of the form 

Pi,kCCDx-3<S,Dx>)f)-(T^^l2)pi>k.(£) 

p ! ) k ( ( D x - ^ , D x > ) f ) = ( - ^ + | ) p : ) k ( f ) . 

The angular Darboux equations are not expressed nicely in terms of 

P+ k- In order to obtain them , we first write P+ , into the form 

p : , k ( £ ^ = A
+ , k ( £ ) ^ A - , k - ^ f ) 

Pl>kCf)=A_jkCf)-vA+>k_1Cf), 

where m-1 
A
+ k ( f ) =5T— / 6(<".u>)Ck

2 (e)£(ru+x)dSn 
' m-i gm--

and'A_ k(f)=A+ k(uf). Similar to Theorem 1, we obtain that for 

<U), v > = 0 , 

rS<S,Dx> A + / к ( £ ) = ( 1 - Г ш ) A . j k ( f ) , 

rы<IÎ,Dx> A _ > k ( f ) = Г ш A + j k ( £ ) -

Next we introduce 

Definition 2. The k-th spherical harmonic means of f are piven by 

S+jk(f(x+ru))=A+jk(f)-A+>k,2(f), 

S^k(f(x + ru))=A-)k(f)-A_)k_2(f). 

Notice that formally S| k=P+ k-vP*k and 

s - , k ( £ ) = s
+ , k ^ f ) = p - , k C f ^ ^ p

+ , k f f ) -
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Next we prove the generalized Darboux system for the k-th snherical 

harmonic means. / 

Theorem 2. Let y=ro), veS " such that <v,w> = 0 and let rv be the 

.spherical Dirac operator on S . Then Sj k(f) and S* k(f) satisfy 

the system 

icoT 
(D x +iD y~ F^)(S^ k(f)-i^S^ k(f))=0. 

Proof. First notice that S| k(f) satisfy the same angular Darboux 

system from Theorem 1. Next, the radial Darboux system for P k 

leads to 

Si ) k((D x-^,D x>)f) = (|?+I!ll|lIv)si)k(f), 

Si > k((D x-^,D x»f)=-(| 7 +IU)si > k(f). 

Hence, by combining both systems , we obtain that for 

<v,co> = 0, y=ra), 

s
+ , k ( D x £ ) = D y ( - s i , k ( £ » - ^ s i , k ( f ) ' 

-^Si)k(Dxf)=DySijk(f)+I^S+)k(f).. 

•It is now clear that S| v(D
xf)

 = D
X
S+ k ^ while straightforward compu-

leads to 

Sl j k((D x-^,D x>)f) 

-'2^Si j k(f) + (Dx-w<u,Dx>)S^k(f) . 

Hence, as S* k(a)<cj,Dx>f) =-o)<o) ,DX>S^. k(f) , we obtain that for <v,w> = 0, 

. Dxsi,kl£J-Dy(-»s-,k(f»-^s-,k(f). 

Dx(Ssifk(f))-Dy(Sifk(f))--^Sifk(f), 

which may be simplified to the stated system. • 

Notice that the above equation should be considered as an equation 

for sections of the bundle Sk(u)), on which r acts as a finite 

dimensional linear operator. 
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3. Extended representations of Spin(m) 

Let 1? t, be the space of real s-vectors and let 1? be the cone of 
m, s r m, s 

elements of the form y=yi.y2...yi with yil . . .1 y . Notice that 

Rm \{0}=G„ (R)xR , G (R) being the Grassmann manifold of oriented 
> .5 III * «5 ' III « o m s-dimensional subspaces of R . 

First of all we introduce extended representations H and L of Spin(m) 

as follows. Let ftCR. f a function in ft and teSpin(m). Then we put 

H(t)f(y)=f(tyt), L(t)f(y)=tf(tyt)-yen-

Furthermore, yGR may be written as 
y=[y] o+ [y] i + . . . + l y l m , lY\eR

m9S> s = o , . . . , m , 

and tj y] t=[ Tyt] , teSpin(m). Hence the representations H and L are 

well defined for functions in ftCR 
m, s 

Furthermore, if y is of the form v=yi«*«ys
G#m s then 

Fyt = Fy*i tTy2t. . ."ty t e R Hence H and L may even act on functions 

defined on i? 
m, s 

The Casimir operator of H is of the form 

C(H)4 I ( d H ( e . . ) ) 2 , • 
i<j 1J 

where dH(e..) are the infinitesimal representations of e^.. Let 

A~ be the Laplace-Beltrami operator on Gm s(fl), then A^ equals 
m,s * ' nm,s 

the restriction of G(H) to R . 

The infinitesimal representations of e^. correspondinp to L are piven 

by dL(e..)=dH(e.)+e... Hence the Casimir operator of L is piven by 

C(L)=C(H)+r-{(m), 

where r=--f I e . . d H ( e . . ) . 
i<j 1J J 

Notice that r2=[ r2] 0
+[ T2] 2

+[ r2] k , where 

[ r 2 ] 0 = c ( H ) , [ r 2 ] 2 = (m-2)r 

and 
i r 2 K = i • . j ^ ^ i j k i ^ ^ i j ^ C k i ' - ^ f i k ^ ^ j i ) 

1<J <K<1 
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+ d H ( e i l ) d H ( e ; j k ) ) . 
/ 

Next, consider the Clifford derivative on R , introduced by D, 
Hestenes and G. Sobczyk in [ 4] and given by V=Ze. *-—-. Then 

A A yA 

on 1? we have that m 

dH(e )f(y)=lim l(f ( (1 -ee . )y (l^e..) ) -f (y) ) 
iJ e-0

 b iJ --J 

= < [ y , e i j ] ,V>£=<eiyyV+yV >f, 

where <y ,u>=[ yu] 0=[ yu] 0 > u , y e R 

Hence on R_ we o b t a i n t h a t 

T^lyV+yV] 2 
. 1 , - • « . . . * 

Furthermore, let D „ be the s-vector derivative, given by I e.--—, ra,s |A|=s A8yA 

then the restrictions of r to R and R „ are both of the form 
m, s m,s 

r i ^ , s - 4 t y D m , s + y \ , s i 2 ' 

and will be denoted by r . 
y 9s 

Example s , ( i ) For s = 1 we have t h a t [ r 2
 g] ,, =0 so t h a t Ag=r ( m - 2 - r ) . 

( i i ) For s = 2 we p u t y= I y, , e i - and y i c i = ~y i i c
 aT-d w e have t h a t 

k<l 

3 „ 3 dH(e.,)=2 Z (y | _ _ - y k i | — ) 
-J k^i.j K;> ә y

ki
 K 1 ә y

kj 

Hence r is given by 

>' 2 =íj k5i,j e--(7kJ ^ 7 " y k i ^ 

Notice that in this case [ r2 J , ̂ 0 , which makes r quite indepen-
l y , 2 J « + 7 y , 2 l 

dent from A7; . r „ is even not an elliptic operator. 
VJ v . 2 x 

m,2 J > 

4. Spherical means of higher codimension 

Let s<m-1 and SKR1^ open. Than by ti we denote the set of all spheres 
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of codimension s + 1 inside ft. We parametrise -"- as follows. 

Let coi,...,u)_ be an orthonornral s-frame; then u)=u)i ... a>-. represents 
s _* _• '~ ' ~ 2m-1 

the oriented s-space spanned by u>i , . . . ,u)Q. Hence u)£G (R)=i? cnS 
•̂  m, o m, o 

A sphere of codimension s+1 is determined by its center x , its radius 

r and the s-vector u) which represents the axis. 

Hence n ={{x,raj) :x+yeft, |y| =r,y 1 u)} . 

The normal vectors to span{u)i , . . . ,u) } are given by the equations 

<u).,u> = 0, j = 1,...,s, and the Dirac measure on the space N(u)) of 

normal vectors is given by 

6(<u,u)i>) . . .6 (<U,CJ S)=6(<U,U)>) . 

Definition 3. The 0-th spherical means of feC0(n) of codimension s+1 

are given by 

P
ь
(f)(x,ro))=77 /

 П ő(<u,u).>)f(x+ru)dS , 
ш
m-s

 s
m-i j=i

 J 

1
 s 

Q
s
(f)(э^Гü>)=-~ J П ő(<u,w.>)uf(x+ru)dSu, 

m-s Qm-i j=i
 J 

where (x,ru))eft . 

Notice that, when s is odd, 

s 
iш+u)U=2 I (-1)^<u,ш..>üJп. , 

У-i = i
 J J 

whereas for s even, 

s .
 ж 

uu)-u)u=2 I (-I^^UjШ-^ u). , 
j = i

 J J 

where U) Г^—Čj .U) 

For s odd we put -<u,u)>=-j(uu)+um) , whereas for s even, -<u,u)>=y(uu)-u)U) 

Hence <u,u)> is an (s-1)-vector in the Clifford algebra spanned by 

coi,... ,co,which we denote by A(u)). 

Hence <u,u)> behaves like an s-dimensional vector in A(u)). This justi­

fies the notation 6(<u,co>) for the Dirac measure on N(u)). We now 

have 

Lemma 1 . The Dirac operator may be decomposed as D=D + (o>)+D_ (ui) 

where 
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.1 ü -r , Ә „ , , 1
 m 

j
= 1 J

 j j
= 1 J

 j 

Furthermore for s even (resp. s odd), 

s _ _ 

D_(o))= I Ü)
Л
.<LŰ̂  ,D> 

j : i = i J 3 

Hence we obtain the radial Darboux equations 

Theorem 3. For s even (resp. s odd), we have that 

D+(o))P
s(f) = (|T+

m^|-^)QS(f)' 

D ± ( -> )q S (£ ) - | - :P S ( f ) . 

In order to establish the angular Darboux equations, we first study 

the action of the op< 

section, on 6(<u,u)>) 

the action of the operator r , introduced in the previous section, 
y 9 s 

Lemma 2. For s odd (resp. s even), we have that 

T 6(<U,O)>)=UAD . (U))6(<U,O)>) . y, s ± 

-> -> 
Proof. First consider any smooth function f(y ,. . . , y s ) , defined in 

a neighbourhood of the cone 

K = { ( y i , . . . , y s ) G ( R m \{0}) r y , ! . . . ! ^ } , 

such that f|K depends only on the s-vector yi--.ys- Then f|K 

determines a function on R , which we denote by fIR „. Of course 
m, s' } • m,s 

this is no restriction in the classical sense, since K is a bundle 
over R „ in which R „ is not inbedded as a classical surface, m, s m, s 

In any case, we may define a representation Hf of Spin(m) on f by 

Hf(t)f(yi,...,ys)=f(tyit,...,t7st) and H1(t)f(yi,...,yg) may still 

beMrestrictedM to R 
m r s _-> 

Furthermore (H'(t)f)|- =f|- (tYl...yst)=H(t)Cf|Rm ) , 

m, s m,s ' 

so that also 

dH(eijHf|Vs)^dH,(eij)f^4,s 
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s 
= -2 I 

k= 
( L k . f ) | P Iv 11 J m, s > 

where L..=yv-. ->$— yv. -——. Hence we arrive at 
-J Kl dykj

 KJ d Y k i 

r
y,sC

f^m,s^-C.J.ei:J j ^ f ) ! * ^ . 

We now apply this to the function 

f(yi,...,ys)=|yi|-..|ys|6(<u,yi>)...6(<u,ys>), 

which, after action on a testfunction \p (u) behaves like a C^-function. 

Notice that f|i? =6(<u,a)>). Hence, puttinp y- = |y-|o)- and 
k 

r k=- I e . . L . . , we arrive at 

ryjS6(<u,o)>) = |yi| ...|ys|ry>s(6(<u,y1>)...6(<u,ys>)) 

=(UA I wk &(<u,wk>) n 6 ( < u , u i > ) ) | R . 
k=1 j^k J ' 

On the other hand, for <Wh,^i>=^ki> i-e* on K, 

s s • 
I wv<tov,D >6(<u,o)>) = I w v6

! (<u\u)k>) n 6(<u,w->), 
k=1 k k U k=1 K K j*k J 

which, in view of Lemma 1, leads to the stated identity. • 
This leads to the angular Darboux equations. 

Theorem 4. For s odd (resp. s even), we have that 
D±(a))P

S(f)4(^ry>s)0
s(f), 

D±(o))Q
s(f)=iry)SP

S(f). 

s 
Proof. We have that UAD ±(OJ)= ^ <wk,Du>uVu)k=0, so that, in view of 
T o k=1 
Lemma 2, 

Tv Ps(f)(x,ru)) 

=-J— J UA(D4.(a))6(<u,co>))f(x+ru)dSll 
(A) „ ' , -- u 

m-s ~m-i 
= — - — J 6(<u,co>)uA(r I wk<o)k,Dx>)f(x+ru)dSu 

%-s Qm~l ^=1 

=rD±(o))O
s(f)(x,ro)), 
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since for ulw^., UAa)̂ =-a)jcAU=-a)j<.u. 

s / 
Similarly, as D±(u))u= I ̂

<oJ]c,Pu>u=-s, 
K = I 

ryjSQ
S(f)(x,rw) 

= — - — / 6(<U,O)>)UAD+(O)) (uf (x + ru))dSu 
wm-s ^m-1 

sQS(f)-rD+(oo)P
S(f) . • 

Notice that for s odd (resp. s even), D_ (OJ) commutes with both Ps 

and Q , while D+(u) commutes with P and anticommutes with O . Hence 

Theorems 3 and 4 lead to the system 

Ps(Dxf) = (|74 ry)S)Q
s(f)+m^lqs(f), 

QS^Dxf>=-c|7+7ry,s^S^^-

Furthermore, for s even D+(OJ) anticommutes with oo, while for s odd. 

D_(oo) commutes with OJ . This means that for s even (resr>. s odd) 

D commutes (resp. anticommutes) with 0s. Hence the second 

Darboux equations may be written as 

Dx»Q
s(f)-(-i)s+,u,(|--4r:/(S)p-(f).> 

Next, put y=roj. Then we shall establish an expression for r (yf(y)) 
y 9s 

in terms of yl" _(f(y)) and yf (y) . This corresponds to the hypercom-
y 9s 

plex refinement of the Kelvin inversion, given by ^ 
r(yf(y))=-/r f(y)+myf (y), so that the map f(y) - -^-^(-^—) r>re-

y | y | | y | 2 

serves monogenicity and changes inner spherical monogenics into 

outer spherical monogenics and vice versa (see [ 7] , [ 9] , [ 13] ) . 

First we prove 

Lemma 3. Let OJ=OJI . ..w eG (R) and let (iti , . . . ,um J be a local 
^ nijj m— s 

thonormal frame, 

by 

orthonormal frame, orthogonal to OJ. Then r is locally given 
y 9 -~ 

ry,s" r.", (- 1 ) uk uj < uj uk ' " - . s ^ 
J >K 

w h e r e roo=y a n d OJ, =OJI . . . OJ. , >&. , . . . OJ . 7 k k- 1 k+- s 

Proof. Let us r e c a l l t ha t r i s given by 

r y , s = l f y D m , s + y C , s 1 2 -
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Next, consider local orthonormal frames (wi,...,w ) and (ui,...,u ) 

such that 03=0)1 . . . a) and (ui,...,u ) is orthoponal to o).. Then it 

is easy to see that 

D™ =o)<oj,D > + I u.ati/u.Wi ,D > + L , 
m,s - ' m,s . v i k j k' m,s m,s' 

J J K 

where Lm " is normal to R . Hence, as y=ro) and y=roT, we obtain m, s m, s J J ' 
that 

[^,s^=^V"YV2<;IjVI)
m,s

>' 
J >K 

[ yD J =r 2! U U . I D , <u.w- ,D >, 7 m,s 2 , 3 k 2 j k> m,s ' 
J > K 

since t coL ] = [o)L ] =0. m,s 2 m,s 2 

Now u . w k = ( - 1 ) s ~ l o ^ u . and 3 B(-1) s" k3 kw k, so that w u . o ) k = ( - 1 ) w-^u-. 

k — l -*• **• ->'*' v_i—v —£ 
On the other hand, o)=(-1) ^vwv s o that o)u.o)v=(-1) w v u . 

]<•_•_• K K J K K J 
=(~1) WiU.. This leads to the stated lemma. • 

Theorem 5. Let £(y)be a function on R . Then we have that 

ry)Syf(y)=-yryjSf(y)+s(m-s)yf(y). 

Proof. Putting y=Iy Ae A, we have that 
r-. A A A 

^, s^W^ | = /Ary,seAfW+ry,sWfW' 

For s odd, o) commutes with Wi and anticommutes with u. , whereas for 

s even, to commutes with u- and anticommutes with cuk- Hence we obtain 

that 

,*, y A r
y , s V ^ ^ V ~ 1 ) k ^ 

j A| -S J ,K 
=-yr y > s£(y). 

Furthermore we have that 

r y=r I (-n
Riu. I <:u.wv,eA>eA 

y>sY j,k k J|A|=s 3 k' A A 

=r I w=s(m-s)y. " 

In order to establish the complete system of Darboux equations, we 
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introduce a new differential operator. 

~ 9 1 Definition 4. The operator D on R is given by D =^(-^-+-T ). 
•-"" ' y iu,i5 y o L L y y J 

Proposition 1 . Let coi ... co =o) and let (ui,...,u ) be an ortho-

normal basis, orthogonal to OJ . Then we have that 

J >K 

or, in other words, D is the projection of D , tangent to R 
y in, o in, o 

Proof. This follows easily from the fact that 

I7 = < w' Dm,s > a n d ("̂  <-<~kUj = (-1) u . ^ w - u ^ 

and the fact that an orthonormal basis for the tangent space of 

V s i n *m-s i s Siven by (o3 , u ^ k : j ,k} . -

Notice that if f is a Ci-function in a neighbourhood ft of a point 

of R „ such that in ftnR all normal derivations to R „ of f 
m,s ^ m , s _ m,s 

vanish, then D (f|i? ) = (D V£)\R . We now have the Darboux 9 y ̂  m, ŝ  v m,k J nm, s 
system. 

Theorem 5. The spherical means of codim s+1 satisfy the system 

s(s+1) 
DxP

S(f) = (-1) 2
 ( v(s-1)(s + 1-m)o)ja)Qs(f)> 

Dxo)Q
s(f) = (-1)s + 1 / O y P s ( f ) . 

s(s+1) 

Proof. As o)2 = (-1) , we have that 

s(s+1) 

= (-D 2 (h-iTy,s^-^S({) 
s(s+1) 

= (-1) 2 [gya)Q
s(f)-s(^"s)o,2Os(f)] , 

while clearly 

Dxo)Q
s(f) = (-Ds + 1I;yPs(f). -

General spherical means of codimension s+1 are introduced as follows. 

First, denote for o)€Gm C ( R ) , M . vM the right-module of inner (outer) 
m, s x , K 
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spherical monogenics of degree k on Sa) = 'fues
m" ; <u,co> = 0}. 

Let Pk w be the projection on M+ k (to) and put 

\ ( w ) = M+,k ( : a ) ) + M-,k^ ; )' Hk ( : w ) = M+ k(a))+M- k-i(aj;); 

then the projections on Mk(a)) and Sk(co) are denoted by n, • and 

Sk,o)" 

Definition 5. Let f be a continuous function in QCRm. Then the k-th 

inner and outer spherical means of codim s+1 of f are defined by 

P^kf(x,ro))=Pk>a)(f(x+ru)), 

pf>kf(x,ra))=Pk>a)(uf(5+ru)), 

and are considered as sections of M+ k(o)) such that (x,ra>)en . 

Notice that, if v is the unit normal on S , 6=<u,v>, then P+ k 

is given by 

P^k(f)(x,ro))(v) 

m-s m-s 

- 1 / n 6(<u,w.>)(c^"(e)+wck^1 (e))f(ru+x)dsu. 
„m-i 1 J (JL) 

m-s ç,m-

Furthermore, the radial Darboux equations are given by (s being even 

and odd respectively) 

p - , k C D
± c - ) f ) = c - | 7 + ^ p ! , k C f ) -

The construction of angular Darboux equations is similar to the one 

in section 2 and uses the operator r . To that end, let 

y 9b 

s + f k C f ) - p + , k C f ) - > f f k - , c f ) . s-,kC£)=P-S,k(f)+^,k-iCf)-
We then obtain 

s s 
Proposition 2. For s even (re5p. s odd), S+ k and S_ , satisfy the 

angular Darboux system 
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V»)s:fk(f)4cs-ryfS)s!fkCf), 

M")s!fk(f)-Iry>ss:fk(f). 

This finally- leads to the complete Darboux systém. 

Theorem 7. The k-th spherical harmonie means of codimension s+1 

satisfy the systém 

s(s+1) 
Dx S^kC fJ-t- T3 Z CV

(s^1^S"1-m)^^)a)S!>k(f), 

V s - , k í « = ( - 1 ) s + 1 CV^^.kC*) • 

Proof. The radiál and angular Darboux equations already lead to the 

systém 

S-,k(Dxf)=-ífc+7ry,s+7rv^S",k(f)-

The rest follows easily from the fact that Dx commutes with S^ k 
while 

s!>k(DT(a,)£)=-D?(a))sf)k(f), 

s!>k(D±(to)f)-D±(u))sffk(f)-^S^kC£), 

so that 

cuS^k(Dxf) = (-1)
sDxWS^k(£)-2^S^k(f).B 
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