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SPINGROUPS AND SPHERICAL MEANS II

F. Sommen (*)

Abstract. In this paper we study generalized mean values of functions
in R™ over spheres of any codimension, by making use of representations
of Spin(m) on spaces of functions in the Clifford algebra over R™.
This leads to several versions, refinements and generalizations of the
classical Euler-Poisson-Darboux equation. Furthermore for spheres of
codimension 2 we interprete these equations in terms of compiex
Clifford analysis.

Introduction. The notion of spherical means of a function is known to
be useful in partial differential equations as is shown by F. John
(see [6]). Especially for operators, which may be exnressed in terms
of Laplacians (and powers of it), it is applicable, because of the

Darboux equation

8 E(R, )= (2l 263, 1),
or2 r 3T

since it transforms the Laplacian into a one-dimensional opnerator.
In our previous paper [ 10] we extended spherical means by using the
representations of Spin(m) instead of SO(m) and so-called spherical
monogenics instead of spherical harmonics. Spherical monogenics are,
roughly speaking, hypercomplex generalizations of the classical comnlex
powers z>z , k€Z, i.e. they are homogeneous solutions of a Dirac
type operator D, with values in a Clifford algebra. These ideas fit
completely into the general setting of proun renresentations and
integral geometry as is being studied by S. Helpason in [3].
Our previous paper [ 10] was restricted to svheres of codimension one
and so the spherical means have only one extra dimension, the radius
of the sphere. Hence the Darboux equations link this radial dimension
r to the space variable xer™.

(*) Senior Research Assistent supported by N.F.W.O. Beigium
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In this paper we study mean values of functions over snheres of any
dimension. Such spheres are parafetrised by their center X, the

radius r and an s-vector w, which represents the axis so that spherical
means depend on coordinates (;,r,m) where r and w are extra dimen-
sions. Hence there exist Darboux equations which 1link the radius r
with the space variable X, called radial Darboux equations, and
equations which express the '"w-derivatives" in terms of the space
derivatives, called angular Darboux equations.

In the first section we recall the main definitions and oronerties
of [10].

The second section is devoted to spherical means of codimension 2.
In this section we link the radial and anpsular Darboux eauations to-

gether in such a way that we obtain solutions of the complex mono-
genic system (DxfiDy)f=0,

3 3
D_+1iD_= g% e.(——_+i__.__)
X . . .
Y j=1 ] axJ ByJ

being a complex Dirac type operator in c™ (see (81,0111 ,12]1).

The study of spherical means of any codimenson is more involved

To that end we make use of functions defined in the entire Clifford
algebra Cp Or in its real part

R, or in the spaces of s-vectors Ry s (see also [4]). The study of
’
Spin(m)-representations is done in section 3.

In section 4 we study the Darboux equations for snheres of any
codimension.

Preliminaries. Let {e;,...,ep} be an orthonormal basis of r™. Then
by ¢, we denote the complex Clifford algebra constructed by means of

this basis. Hence a general element aeC is of the form
a=A§NeAaA, ay€c, N={1,...,m}, where for A={a1,...,ah}, <. . <oy,

e,= [ .
Aea1 e(l

h

The product in Ch is determined by the relations

N .te.e.=- o
e;e.+e e 261

j*teieq j; i,j=1,...,m, e, =1.

¢
By R ~we denote the real Clifford algebra over R™.
Every a€C  may uniquely be written into the form a=[a]o+[a]1+...+[al,
where [ a] _eC

; $s=0,...,m and where C is the space of complex
s °m,s . ,S -

s-vectors Cm S={‘z‘ aAeA:aAEC]. The space of real s-vectors will be
’ Al=s )
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denoted by Rm,s‘

An involution on Cm is given by a= I EAEA’ where EA denotes complex
ACN

conjugation and e,=

A—euh" o, 3 j j=1,...,m. Notice that on R,

a=[a]l g-[a]l ;-[a]l ,+[ &l 5+.

An inner product on R, is given by <a,b>=[ab] ;.This inner product
coincides with the one induced from R?". The norm of agc is given
by |a|?=z|a,|* and satisfies |ab|<2™|a]||b].

A

By the identifications R™ =g R and Rm=Rm 1,Rm+1 and R™ are
Ly

naturally imbedded in R,. Hence (xo,xl,...,xm)ERm+1 will be identi-

m

fied with xo+§, X= 5 xjej. The inner nroduct in R™ will be denoted
j=1

by <;,§>.

Let Qng be open; then f€C:(Q,Cp) will be called left monopgenic

m
in @ if Df=0, where D= % e. 2 is a generalized Cauchy-Riemann operator,

X
j=r 19 |
called Dirac operator or vector derivative.
A function Pk(;)(Qk(a)), 2esS™ ! is called inner (outer) snherical

'(k+mf1)0k(a)) is left monogenic

monogenic of degree k if rkPk(g)(r
in B™ (in R™ {0}).

_Every spherical harmonic admits a unique deéomposition Sk=Pk+0_k_l
into spherical monogenics.

By w, we denote the area of smr,

1. Basic representations of Spin(m)

Let s€Spin(m) and fELz(S e ) Then we con51der the basic renre-
sentations Hy and L of Snln(m), given by H, (s)£(X)= f(sxs),
L(s)f(x) sf(sxs). Ho corresponds to the usual renresentatlon of
SO(m), while L corresponds to spin 1/2-representation.

The Lie algebra of Spin(m) is the snace Ry ,2 of real bivectors, the
elements of which are of the form 1§JX13 13 , xijER. Hence the
infinitesimal representations of H, and L are given by

dHo(eij)=-2Li , dL(e )-—ZL

j T€ij0
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: - il 9
where Lij'xi5§7'x' T
J
The Casimir operators C(H,) and C(L) of H, and L are hence given
by
C(Hy) =g, C(L)=Ag+T-2(D),

where Ag is the Laplace-Beltrami operator and F='.X.eijLij’

1<)

the spherical Dirac operator (see [7],[9],[13]).

The eigenspaces of Ag are the classical spaces Hy of svherical
harmonics of degree k (elgenvalue k(k+m-2)); the eigensnaces of
C(L) are denoted by Mk‘

Mk is called the space of spherical monogenics of depree k.
As AS=F(m-2—F), Hy and M, are of the form

HimMy oM g ih=by o M,

where M Jk are the eigenspaces of T with eipenvalues -k and k+m-1
(see [7],[9],[13])

The elements of M, Jk are called inner and outer spherical mono-
genics of degree k and are denoted by Pk(m) and Qk(m), wes™ .
The projections on Hk, My s M+,k’ M—,k are respectively denoted by
Skr Mks Prs O

We have that Ok(f)—-ka(mf) and

-

k u > -
P (6) @) -L— fm , <0,V> (lalm)uffu)dsu
Let D- I 3 . then D=u(%+1T ). H if P herical
et _jzl ej 5;;, then —w(s? T w). ence i k,0k are spherica

monogenic, rkPk(g) and r‘(k+m_l)0k($) are left monogenic in

BR™ {0}. As D is invariant under the renresentation L, D commutes
with Me=Pr* Q- This leads to a refinement of the classical theory
of spherical means (see [6], [ 10]) of which we recall the main
definitions and properties.

Let f be a function in a domain of R™. Then we consider the refined
spherical means

P(£) (X,1) =~ £(X+r0)dS,,
m

m-1

5.f(§+r$)dsw

[

S

A0 GG o
m

These refined spherical means satisfy a first order Darboux system
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of the form

> 3 ,m:1
D P(£) (X,1)=(55+"
D, Q(£) (X, 1) =-P(£) (X,1),

which follows straight from Mo (D £(x+y)) Dfﬂof(§+;), where

Mo (£) (X+Y)=P(£) (X, Y1) -¥ /|7 O(f)(x,lyl)
Hence we may generalize these spherjcal means to

M (X)) (1) =Py (£(X+T ) (V) T%—Pk(—;Tf(x+u))(?),
y u

leading up to the generalized Darboux system

P, D)=L + K hyp (),

P_ k(Df) ('5;*;)P+ k()

where for r=|y|,

P, }(E) (X,1) =Py (£(x+1) (),

P_ k(f)(i,r)=Pk(r§rf(§+ﬁ))(?),
’ u
and where for fixed (§,r), P, k(f)(?,r) have values in M, X

In terms of the Gepgenbauer polynomials C (8) (see [5]1), we have
the following explicit formulae

m m .
P, (D E,)=o- f (cZ(o)+atct_, (0)) £(rivk)ds,,,
m Sm-l
m m

p-,k(f)(§,r)=;; gm_l(ﬁcf(e)-ch_l(e))f(rﬁ+§)dsﬁ,

-1 m-1

> > o
where y=ruw, wes™ and =<0 u>, uGS

2. Spherical means of codimension 2

"In view of its importance in comnlex analysis we treat spherical
means of codimension 2 senarately.
Let QCR™ be open and put
. a -> > > - = -> -> -> >
Q={(x,y):x€Q,x+SycQ}, Sy={u:lu|=|y|, <u,y>=0}.
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The component of Q containing Q is called the comnlex harmonic hull
of Q@ (see e.g. [1]). s
First we introduce the O-th order spherical means by

PL(E) L) o — [ s(<W,us) £(Rerl)ds,
m-1 Sm—l

1

(.L)m__l

Q! (£) (X,Y)= [ o1 U8 (<U,5>) £(X+1U)dS,
where y=rw, r=|y| and (X, Y)€q.
From the codimension 1 case we immediately obtain the radial Darboux

equations
3 -2
(Dy-6<w,Dx>) P (£) = (z+122) 01 (£)

_—-) - 1 __é— 1
(D -0<6,D,>)Q" (£)==3=P* (£).

However, this only expresses the radial part of the ?—derivatives in
terms of X-derivatives. Of course there will also be an anpular
version of the Darboux equations. This is obtained in

Theorem 1. P!(f) and Q!(f) satisfy the angular Darboux equations
i 1 - 1
Tw<w,Dy>P (f)-(1-Fy)Q (£)

r$<$,DX>Q1(f)=rypl(f),
0=y = 2
where rw=y and Fy J.-'L;:jeij(yj v, Y3 ay~)‘

Proof. As 6(<ﬁ,$>)=|?|6(<ﬁ,?>), we have that
ryP(£) (X,7)

YLp o rs (@) £GH T as,
m-1 Sm-l Y

= [ 8 (<8,0>) (WAw) £(X+TU)dS,
sm?

-l [ s (<T,35)<i, D> (GADE (X+11) ) dSy

m-=1 .m-1
S

=rw<w,Dyx>Q' (£).

Similarly we obtain that
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r.Q (£)=——— [  &§(<0,8>)<0,D >[ Uaw. Gf (X+ru)] dS
y m1'[1—1 Sm-l u u

[ 8(<U,8>)UAsl $f (x+10) +Ur<s,D, > £ (X+11)] dS,|
S

wm- 1 m-1

=Q1(f)-i$<$,nx>p1(f). o

Notice that the radial Darboux équations follow from the L-invariance

of D, together with the commutation relations
[ D, -w<w,Dy>,P] =[ Dy -u<w,D,>,Q"] =0
[w<w,D,>,P'] =0, w<w,D >Q'=-Q'®u<w,D,>.

The angular equations were shown independently from this. There is
however a nice way to link the radial add angular equations together,
which has a meaning in complex analysis.
Indeed, we have that

Pl (D, £)= (ar——r o (6)+22lq! (6)

=5 (& +37,) (<807 (£)) =D, (-5QL(£).

and
-6Q! (D, £) =D P (£).

Furthermore, by the above commutation reiations, BQI(DXf)=-DxZGU(f),

so that we arrive at the system
(Dy+iD) [P!(£)-ip@! (£)]=0

Hence spherical means of codimension 2 provide global solutions of
the complex monogenic system (DX+iDy)g;0, which we alréady studied
partially in [11] (see also [8],[12]). It is natural to introduce
one single spherical mean of codimension 2 by means of

[ (1+iUAQ) 8 (<U,u>) £(X+1U)dS, -
m l m-=1
S

M(f)(x,y)-

Then M(f) is a solution of (D +iD )p 0 such that lim M(f) (x,y)=f(x).
y-0

Example. Let us take the Dirac measure §(X+ru). Then in spherical
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coordinates, putting X=|X|Z, we have that
r

5 (r-|X|)@8 (U+E), u,Zes™ .

6(x+ru)-
™
Hence the spherical mean of the Dirac measure is piven by

M(8) (R,¥) = — ——15&95c1y|-|x|)xa(<a w>),%=|XZ,

N
ylo
m-1 |y|

y= l

Notice that M(d)(;,;) is concentrated on the isotronic snhere in ¢™

One can easily show that M(&)(;,;) is a global distributional solu-
tion of (Dx+iDy)g=0.

Next we introduce the k-th snherical means of codimension 2, denoted
> > -> > -~
by P, () (x,7), (x,y)e€a.

1

To that end, we first introduce vector bundles over s™ ! as follows.
m-1

For-;ES , k(w) are the right C -modules of inner and outer
spherlcal monopenlcs of degree k on S ={ues™ }:4LY} and Pk © is
the projection onto M, k(w) Furthermore we put Mk(m)=M+ k(3)+M_ k(J)

- -> ->

and Hk(w)=M+,k(w)+M-,k-1(w) and denote by ﬂk,w and SkGM the corresnon-
. . N . - - > .,

ding projection operators. Ngtlce that Hk’w—Pk;w-ka,mv , where v is

the unit hormal vectorfield on Sw

Definition 1. The k-th inner and outer spherical means of codim 2
are given by

P} kE(X,Td) =P (£(X+11)),
p1,kf(i,r$)=pk’w(ﬁf(§+rﬁ)),
and are consideréd as sections of M+,k(;) (for fixed ?).
Putting 6=<ﬁ,3>, we have that in terms of the Geyenbauer‘nolynomials,

P, 1 (£) (X,10) (V)

n-1 n1
——L— [ s(<3,B)(C, " (8)+VuC, (e))f(ru+x)dS
m-=1 Sm 1

and
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Pl 1 (£) (x,1d) (3)

m-1 m-1
—1 . - —’T o T - >
_wm_l ém_16(<w,u>)[uck (6)-vC, 2 (8)] £(xU+X)dS,.

0f course P¥,k(f)(§,r$)€M+’k(;) only for Vg -

The radical Darboux equations are now of the form

.- k+m-2
Pl 1 ((Dy-ib<u,Dy>) £)= (Fe+= )P 1 (£)

-> > 3 k
PL (D -u<6,D ) £)=(~gg+) Py 3 (£).

165

The angular Darboux equations are not expressed nicely in terms of

Py (0)=A, L (B)+VA_ ()

PL L (D)=A_ L (D)-VA, (),

where : m-1
1 - > 7 >
A+,k(f)=m / 5(<w,u>)Ck (8) £(ru+x)dS
m-1i sm-l .
and 'A_ 4 (f)=A, | (Uf).  Similar to Theorem 1, we obtain that for
<w,v>=0,

1<, Dy> A, (£)=(1-T DA_ 4 (),
rB<Z,Dx> A_ k(f)=FwA+,k(f)'

Next we introduce

Pi Kk In order to obtain them , we first write Pi k into the form
-

Definition 2. The k-th spherical harmonic means of f are given by

S} K (EEeri))=A,  (£)-A, 1, (£),
SI  (EEerd))=A_  (£)-A_ y_, (£).
Notice that formally S} k=Pl k-GPik and
B ’ ’

sl’k(f)=si’k(ﬁf)=P1’k(f)+3p1’k(f).
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Next we prove the generalized Darboux system for the k-th svherical

harmonic means. ’

Theorem 2. Let y=ro, ves™ ' such that <V,»>=0 and let r,, be the
.spherical Dirac operator on S . Then Si’k(f) and Si,k(f) satisfy
the system

igr

(DX+1Dy- T

v .
)(Si’k(f)-lei,k(f))=0.
Proof. First notice that Si k(f) satisfy the same anpular Darboux
S +,kt
system from Theorem 1. Next, the radial Darboux system for P, x
’

leads to
> > 9 ,m-2-T
83k ((Dy-w<w,D,>) £) = (gp+ie—2)s! | (),

ST 4 ((D-0<6,D,>) £) == (§p+ T8l L (£).

Hence, by combining both systems , we obtain that for
> > -> -
<v,w>=0, y=rw,

S1 (D )= (=38! 4 (£))-T¥s? | (),

-3s! k(Dg£)=D (f)+£¥98+,k(f1.

y + ,k
‘It is now clear that Sl,k(Dxf)=DXSi’k(f) while straiphtforward compu-
leads to

si’k((DX-I<$,DX>)f)

=-2lv k(f)+(D ~w<w,D >)S‘ k(f)
Hence, as Si,k(B<E,DX>f)=—$<$,Dx>Sl,k(f), we obtain that for <v,w>=0,

. st;,k(f)=ny(-351,k(f))-zxsl k(f),

Dy (S1 4 (£))=Dy (S} k(f))——M—s1 k()
which may be simplified to the stated system. =
Notice that the above equation should be considered as an equation

for sections of the bundle Sk(w), on which Fv acts as a finite
dimensional linear operator.
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3. Extended representations of Spin(m)
Let Rm

be the space of real s-vectors and let Em s be the cone of

’s b

elements of the form ;=;1.§2...;1 with ?11...1;

s* Notice that

R \ {0}=C_ (R)xR, G (R) being the Grassmann manifold of oriented
m,s m,s + m,s

s-dimensional subspaces of ™.

First of all we introduce extended representations H and L of Spin(m)
as follows. Let QCR ., f a function in @ and t€Spin(m). Then we put

H()£(y)=£(Eyt), L()f(y)=tf(tyt),yeq.

Furthermore, yERm may be written as

YUY o ylate oot Lyl oy [YIg Ry s 520,000 ,m,

S,

and ?[y]st=[fytls,
well defined for functions in QQRm

t€Spin(m). Hence the representations H and L are

’S.

Furthermore, if y is of the form y=;1...;seﬁ then

L _ - m,s

tyt=t§1tt§2t...t;steﬁm 5+ Hence H and L may even act on functions
~ " b

defined on R )

»S”

The Casimir operator of H is of the form

C(H)=3 I (dH(e;;)?,
i<j
where dH(eij) are the infinitesimal renresentations of eij‘ Let
AE be the Laplace-Beltrami operator on Gm S(R), then AE equals
m,s ’ m,s

the restriction of G(H) to Em s
’

The infinitesimal representations of €ij corresponding to L are given

by dL(eij)=dH(ej)+eij' HHence the Casimir operator of L is given by

c(Ly=c+r-7 (3,

1
where I'=» I e..dH(e..).
2 i<j ij ij
Notice that T2=[T?],+[T?] 2#[T'?]u, where
[T2]0=C(H), [T?]:=(m-2)T
and

[T2) =g 5 jip (dH(e; ) dH (e ) ~dH (e ) dH e yy)

z
i<j<k<1
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+dH(eil)dH(ejk))'

Next, consider the Clifford derivative on R 1ntroduced by D.
Hestenes and G. Sobczyk in [4] and given by D ZeA 3—— Then

on Rm we have that
i ] - -
dH(eij)f(y)-éig =(£0C eeij)y(1+eeij)) £(y))
=<[vy,e ],D>f <e; j,yD+yD >f,
where <y,u>=[yu] ¢=( )’E] [ U,)’GRm
Hence on Rm we obtain that
=S yD+yDI ,

Furthermore, let D be the s-vector derivative, given by IZI eAay ,
m, s Al=s A

then the restrictions of T' to Rm s and ﬁm s are both of the form

’ b
Plp. =dA¥D +yD_ ]
Rp,s 20 Ym, sV m,s!,

and will be denoted by Ty s

Examples. (i) For s=1 we have that [Fy 1,=0 so that AS=F(m-2-F).

S

(ii) For s=2 we put y= I Yk1€k1 and Yp1=-Yqi and we have that
k<1

P 9
dH(e;:)=2 £ (¥p: so—Vii o5 -
ij #i,j  KI Yy Tk 3y

Hence Fy,z is given by

r, ,=% It i5(y “Yii 5v—) -
y,2 i<j k*i,_] kj 3}’ ki Byk

Notice that in this case [T'2 _] ,#0, which makes T

y,2)e y,2 quite indepen-

dent from A . ry , 1s even not an elliptic operator.
m,2 ’

4. Spherical means of higher cod1men51on
Let s<m-1 and QCRm'open Than by Q we denote the set of all snheres
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of codimension s+1 inside . We parametrise 95 as follows.

Let 31,...,35 be an orthonormal s-frame; then w=$1,...,55 représents
the oriented s-space spanned by Gl,...,as Hence wea (R) R SZm_T.
A sphere of codimension s+1 is determined by its center X, 1ts radius
r and the s-vector w which represents the axis. A

Hence §S={{§,rm):§+§GQ,|y]=r,;3lw}.

The normal vectors to span{zl,...,as} are given by the equations
<w.,u>=0, j=1,...,s, and the Dirac measure on the space N(w) of

normal vectors is given by

§(<U,01>) ...6(<3,35)=6(<3,m>).

Definition 3. The 0-th spherical means of fe€C,(R) of codimension s+1

are given by

s .
PS(£) (X,rw)=—— | N 6(<0,5:>) £(X+10)dS,
-5 gm-1 j=1 J

S -
Q*(H) Korw)=ot— [ N §(<H, B UEGrri)ds,
m-s gm-1 j=1

where (;,rw)eﬁs
Notice that, when s is odd,
- - S j -> - ~
uwtwu=2 ¥ (-1)'<u,w.>w. ,
j=1 7

-whereas for s even,

s . -
Qw-wi=2 ¥ (—1)J<ﬁ,$.> W,
j=1 J J

=N

where 0.=0;...08 ..
i 9_{1

For s odd we put -<u w>=x (um+wu), whereas for s even, -<u w>=—(um mu)
Hence <u w> is an (s-1)- vector in the Clifford algebra snanned by
31,...,ws,wh1ch we denote by A(w).

Hence <u w> behaves like an s-dimensional vector in A(m) This justi-
fies the notation 6(<u,w>) for the Dirac measure on N(y). We now

have

Lemma 1. The Dirac operator may be decomposed as D=D, (w)+D_(w)

where
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D (w)=; g wlwse t=2—, D_(w)=1 2 wlw,e. ]
+ Z 5o j axj’ - 2 j=1 ij

Furthermore for s even (resp. s odd),
S -> -
D_(w)= £ w;:<w;,D>
+ j:l J J

Hence we obtain the radial Darboux equations

Theorem 3. For s even (resp. s odd), we have that

D, (W)P*(0)= (g (6)

D, ()Q° (£)=-g5P° (£).

In order to establish the angular Darboux equations, we first study

the action of the operator T introduced in the previous section,

y,s’
section, on §(<u,w>).

Lemma 2. For s odd (resp. s even), we have that

Fy’56(<ﬁ,w>j=GAD*(w)6(<ﬁ,w>).

>
Proof. First consider any smooth function f(yl,...,;s), defined in
a neighbourhood of the cone
- - - -
K={(y1,...,ys)e(Rm Vo) iyl eadyg b,

such that f‘K depends only on the s-vector y; ;s' Then f|X
determines a function on R ,s? which we denote by f|R ,s* Of course
this is no restriction in the classical sense, since K is a bundle
over §m,s in which Em,s is not inbedded as-a classical surface.

In any case, we may define a representation H' of Spin(m) on f by
H' () f(Y1,ee.,y )-f(f?lt,...,f§st) and H' (£)£(Y1,...,Y,) may still
be'"'restricted" to R

s*
Furthermore (H'(t)f) TE =f]z  (Tyy...y O)=H(t)(f|R

m, s
m,s m,s

so that also
dH (e )(flRm ¢)=(dH' (e, )f)lRm s
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s K ~
=-2 I
2 ‘(Lijf)|Rm

k=T S’

k d 9
h Ly =y e oYy : =" i
where ij Vi aykj ykJ ayki Hence we arrive at

FY,S(flﬁ

S k ~
m’S)=—( re.. ¥ Lijf)|R

i<j 13 k=g m,s’

We now apply this to the function
EV1see sy )= Vel [Vl 8(<0, 1) o 8(<U,7>) s

which, after action on a testfunction ¢ (u) behaves like a C_-function.
. ~ - . - -> > *® .
Notice that f|Rm s=5(<u,w>). Hence, putting yj=|yj|mj and
s

. ,=- % e.

vk 1jL?j’ we arrive at
i<j

- - - -> > -> >
Ty,55(<u»“’>)=|>’1|---'Yslry,s(<5(<u»>’1>)- s 8(<u,y>))

-> S - I 5 5 -> > ~
=(Ua £ @ & (<U,up>) 0 §(<u,w0:>)) R, .-
- k=1 K K7y J m,s

On the other hand, for <$h,3j>=§kj, i.e. on K,

"T™Mw®n

3 .
By <y, D> 8 (<U,w>) = z By 8" (<U,0p>) N 6(<U,u.>),

k=1 j#k J

which, in view of Lemma 1, leads to the stated identity. =
This leads to the angular Darboux equations.

Theorem 4. For s odd (resp.1s even), we have that
- s _ _ s
D, (w)P*(H)=3(s-T, )0°(£),

D, (0)0° (£)=3r, P°(£).

s .
Proof. We have that GADt(w)= z <$k,DU>GA$k=o, so that, in view of
Lemma 2, k=1

S ->
Fy’sP (f) (x,rw)

=1 [ UA(D,(0)8(<H,w>)) £(x+TT)dS

S
=1 [ s(<T,w)Un(r I Gp<ty,D>) £(ReT)dS
m-s  gm-1 k=1

=1D, ()% (£) (X, 7w) ,
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-> -> - -
since for uiwk, UAwk=-kau——mku

.. —»S—>—> j—»
Similarly, as D*(m)u=k£1wk<wk,Pu>u=—s,

ry Q76 (X,1w)
’ - -> - ->
= [ s(<U,u>)UnD, (w) (BE(x+rUNdS
“m-s gm-1 -

=sQ%(£)-1D, (w) P> (£). *

Notice that for s odd (resp. s even), D_(w) commutes with both pS
and Qs , while D _(w) commutes with P% afnd anticommutes with 05. Hence
Theorems 3 and 4 lead to the system
s __ 1 s m-
PP, )=Gsr T, Q ()05

10°(6),
Q° (D, £)=- (g Ty PP ()

Furthermore, for s even D, (w) anticommutes with w, while for s odd.
D_(w) commutes with w. This means that for s even (resn. s odd)

Dx commutes (resp. anticommutes) with QS. Hence the second
Darboux equations may be written as

S+1

‘S —r. a1 S
DwQ*(0)=(-1)"" " u(Gerar, IP°(H).
Next, put y=rw. Then we shall establish an expression for Fy s(yf(y))
in terms of yr (f(y)) and yf(y). This corresponds to the hypercom-

plex reflnement of the Kelvin inversion, given by

T(YE(Y))=-¥T £(F)+ny£(7), so that the map £(¥) » —L;n— (—L) pre-

Y1~ 7|2

serves monogenicity and changes inner spherical monogenics into
outer spherical monogenics and vice versa (see [7], [9] , [13]).

First we prove

Lemma 3. Let m=$,...JS€Em s(R) and let (ﬁ,,...,ﬁm_s) be a local

—_— , ’

orthonormal frame, orthogonal to w. Then Ty s is locally given
’

by

Fy T I (- 1) mku <u. wk ’Dm,s>’
.k

h _ S - - -

where rw=y and wk=w1 cee Wy My e W

Proof. Let us recall that Fy s 1s given by
s v
I‘y,s_'Z'{)'[)m,s+)'tsm,s]z
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. e - -> >
Next, consider local orthonormal frames (wx,...,ws) and (ul,...,um_s)

- > - - - . N .
such that w=w; ... wg and (ul,...,um_s) is orthoponal to w. Then it
is easy to see that '

+L

> A 5
D =w<w,D >+ I u.w.<u. D >
7 m, s Wi ka’ m,s m,s?

m,s .
’ Lk
where Lm é is normal to ﬁm s- Hence, as y=rw and y=rw, we obtain
’
that

[yp_ I =r I [Ga5wk]2<almk,Dm’s>,

m,s 2 J,k ]

— ey N
[me,s]z-rjzklmujwk]2<ujwk’Dm,s>’
’

since [wLm,s]2=[wLm,s]2=0'

> A -] A — . -k = —> A k= -
Now ujwk=(—1)5 %*uj and 5=(-1)° By, SO that wujwk—(—1) wkuj.

On the other hand, w=(-1)k_13kak so that wﬁj&k=(-1)k-lak§j
=(—1)k$k3j. This leads to the stated lemma. ®= .
Theorem 5. Let f(y)be a function on ﬁm s* Then we have that
- ’

Py, sYE)=-yry £(y)+s(m-s)y£(y).
Proof. Putting Y=Iy€,, We have that
A

Iy sYE()= Xl:SVAFY’SeAf(y)+Fy’s(yIf(y)-

| A
For s odd, w commutes with Jk and anticommutes with U., whereas for
s even, w commutes with ﬁj and anticommutes with ak. Hence we obtain
that

k- - -> ~
eAf(y)=r_zk(—1) wkuj(rw)<ujwk’Dm,s>f(Y)

T yal
A=s" Yo i,

=-yT, ¢ £

Furthermore we have that
k—«)—»
T =r L (-1)"w,u. I
y=r T (-1)
YasT gk K31 Al =s
=r L w=s(m-s)y. "
jsk

<Q.0 >
ujwk,eA en

In order to establish the complete system of Darboux equations, we
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introduce a new differential operator.

lr .

Definition 4. The operator Dy on R is given by D Ty,s

=m(3_+
m,s T

y
Proposition 1. Let 51 N $S=w and let (31,...,ﬁm_s) be an ortho-
normal basis, orthogonal to w. Then we have that
=< .0 <u.
Dy w w,Dm >+ T ujwk<ujwk,Dm >,

s ,S

’ i,k

or, in other words, Dy is the projection of Dm tangent to Em
’

, .
s ,S

Proof. This follows easily from the fact that

3 k » > ko> - > A
§?=<m’Dm,s> and (-1) wmkuj=(—1) ujwkw=pjmk

and the fact that an orthonormal basis for the tangent space of

R in R
Rm,s m,

s is given by {w,ﬁj&k:j,k}. "

Notice that if f is a G-function in a neipghbourhood £ of a point
of R such that in QMg all normal derivations to RS of f
i ~ ’ ~ ]

vanish, then Dy(fIRm,s)=(Dm,kf)'Rm,s' We now have the Darboux

system.

Theorem 5. The spherical means of codim s+1 satisfy the system
s(s+1) -
2 -1 +1- s
D, PS(£)=(-1) (p Loz llsrlomey 035y,

D, w0’ (£)=(-1) %"

s(s+1)
2

D _P7(f).
y ( )
Proof. As w?=(-1)

, we have that

3 1 S,
(EF-FTy,s)Q (f)

s(s+1)
-1y 2 (%?—%Ty,s)m.wQs(f)
s(s+1)

2

=(-1) [0,00°(£)-2222)y20%(£)),

while clearly
waQs(f)=(-1)S*1pyp5(f). .

General spherical means of codimension s+1 are introduced as follows.
First, denote for meﬁﬁ s(H)’Mt k(m) the right-module of inner (outer)
s ’
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1

spherical monogenics of degree k on Sw={§€Sm- ; <;,w>=0}.

Let pk,w be the projection on Mi,k (w) and put
Mk(m)=M+’k(w)+M_’k(w),Hk(w)=M+,k(w)+M_,k_1(w);

then the projections on Mk(w) and Sk(w) are denoted by Hk w and

S, . ’

k,w

Definition 5. Let f be a continuous function in QCR™. Then the k-th

inner and outer spherical means of codim s+1 of f are defined by

$REG TP (FG),

P
S - -> -> -
Po xf(x,rw)=P  (uf(x+ru)),

and are considered as sections of M, k(m) such that (;,rw)eﬁs-
3

Notice that, if v is the unit normal on Sw’ 6=<ﬁ,35, then Pf k
b
is given by
S - ->
P+,k(f)(x,rw)(v)

m-s m-s .
S - ) - ) -> >
L M 6(e, i) (0" (@) Ve, Zy () E(rR)as,.

m-s m-1
S

Furthermore, the radial Darboux equations are given by (s being even

and odd respectively)
k+m-s-1
Py (0, () D)=(G+ 0220 p (),
9 .k
P2 1 (D, () D) =(-5z+p) Py 1 (D).

The construction of angular Darboux equations is similar to the one

in section 2 and uses the operator T To that end, let

y,s®
- : ->_S X
ST, k(E)=P L ()P 4 (£), ST 1 (£)=PZ [ ()+VP] 4, ().
We then obtain

Proposition 2. For s even (resp. s odd), Sf " and Sf X satisfy the
’ ’
angular Darboux system :
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D_(w)85  (£) =%(s.—r),,s)s§,k(f) :
D ()82 (F)=qr, (87 (D).
This finally- leads to the complete Darboux system.

Theorem 7. The k-th spherical harmonic means of cedimension s+1
satisfy the system '

5({5+1)
D8I ((D=(-1) © (o fsllsrlimluulysS | ey,
Dws? L (0)=(-1)"" (o -43)s] | (D).

Proof. The radial and angular Darboux equations alfeady lead to the
system '
s epd 1 m-1 _ I'yyeS
S+,k(Dxf) (3? ?ry,5+"?_ "%JS-,k(f)'
s ao(d 1 1 s
S,k (Dxf) 55'?"??)'.5*?%)5*.1(“) ’

The rest follows easily from the fact that D, commutes with Sf k
while
§2 1 (D_(w)£)=-D_{w)S2 | (£},

s° (B, (W=D, w)s? | (H)-2us] | (h),

so that
wsf,k(nxf)=(-1)snxmsf’k(f)-zg%sf,k(f). »
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