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CHARACTERIZATIONS OF THE COUNTABLE INFINITE PRODUCT OF RATIONALS AND SOME
RELATED PROBLEMS

Fons van Engelen

All spaces under discussion are separable and metrizable.

In the beginning of this century, topological characterizations were obtained
of such well-known homogeneous'zero-dimensional absolute Borel sets as the
Cantor set C, C\{p}, the space of rationals @, the space of irrationals P,
and the product Q xC (see [1],[3],and [18]); in fact, apart from the dis-
crete spaces, these are the only homogeneous subsets of C that are either
an F0 (i.e. o-compact) or a Gd (i.e. completely metrizable, or, equivalently,
(topologically) complete). In [13], van Mill characterized a homogeneous

and an absolute G

8 8o’
but neither complete nor o-compact: he considered oroducts of the "basic"

zero-dimensional space which is both an absolute Fo

spaces Q, P, and C, and noticed that Q@ x P was not yet characterized.
Considering infinite products of these spaces le& him to the'question of
finding a topological characterization of the countable infinite product

of rationals Qw, which is an absolute FUG’ but not an absolute Géo'

Such a characterization can in fact be deduced from a theorem of Steel in
[20], as was pointed out to the author by A.W. Miller. However, Steel uses
deep results from descriptive set theory, viz. determinacy of certain games,
which may be the reason that his paper went unnoticed by many topologists,
including myself.

The aim of this paper is twofold: first, to give a completely elementary
proof of the characterization of Qm (and the other homogeneous zero-dimen-
sional absolute Borel sets of exact class two) that was obtained before I
learned of Steel's results; the techniques we use seem to be interesting in
their own right (see e.g. van Mill [15]). And second, to point out some con-

sequences of Steel's theorem that were never mentioned in the literature.

1. Preliminaries
For all undefined terms and notation, see Engelking [7], or Kuratowski [101.

_ A~ B means that A and B are homeomorphic. All metrics in this paper are
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denoted by d and assumed to be bounded by 1; the diameter of a set A 1is
denoted by diam(A). C always denotes the Cantor set, @ the space of ratio-
nals, and P the space of irrationals.

A subset of a space X 1is clopen if it is both closed and open in X. A
space X 1is homogeneous if for each x,y ¢ X, there exists a homeomorphism
h: X - X such that h(x) = y; homogeneous with respect to dense copies of A
if for all dense subspaces AI’AZ
exists a homeomorphism h: X -+ X such that h[AIJ = Ay strongly homogeneous

of X such that A] N AN A2, there

if U= X for each non-empty clopen subset U of X. It is easily seen that
a strongly homogeneous zero-dimensional space is homogeneous.
By a complete space we mean a topologically complete space. A space X 1is o-

complete if X = U?= Xi, where each Xi is complete, i.e. if X 1is an

absolute Gy . If P 1is a topological property, then a. space X 1is nowhere P
if no non-empty open subset of X has the property P.

Throughout this paper, M denotes the set of all finite sequences of natural
numbers, including the empty sequence . For s = (il""’ik) e M, "s,i"

denotes (il,...,ik,i), Isl =k, v(s) =1, + ... + ik’ f(s) = ik’ sld =

1
(il""’iﬂ) if £ <k, and § = s|lk-1 if k>1,8=¢ if k = 1; also,

put @] = v(@) = 0. If s,t ¢ M, we write "s < t" if tlk = s for some

k< tl, or if s=0. If o= (i) e N, then olk = (i,,...,i,), and
"s < ¢" means that s =@ or s =olk for some k ¢ IN.

In our proof, we will use the following criterion for convergence of homeo-

morphisms, which is a slight modification of a result of Anderson [2].

1.1 THEOREM: Let X be compact, and for each n ¢ W, let hn: X~+>X bea
PP R .

n+l’hn) < min{2 7,3 .mln{mln{d(hi(x),hi(y)).

d(x,y) 2 %}: 1 <i<n}l}. Then lim _h = <s an autohomeomorphism of X.

homeomorphism such that d(h

We will also need an "estimated homeomorphism extension theorem" for the
P

Cantor set, which is essentially due to van Mill [14]

1.2 THEOREM: Let g: C > C be a homeomorphism, let € > 0, and let A be

closed and nowhere dense in C. If h.: A + glA]l <s a homeomorphism such that

o
d(gIA,ho) < €, then there exists an autohomeomorphism h of C such that
hl|A = hy, and d(g,h) < e.

Some other known theorems that we will need:

1.3 THEOREM (Ostrovskil [1€]; see also [4]): Let A be a strongly homogene-

ous zero-dimensional space, and suppose that X = U: X» where each X, 18

=1
closed and nowhere dense in X, and X, ~ A for each i. Then X =~ QxA.
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1.4 THEOREM (van Engelen [4]): Let A be a (non-discrete) zero-dimensional
strongly homogeneous space. If C is homogeneous with respect to dense copies

of A, then C <s also homogeneous with respect to dense copies of Q@ xA.
Slightly different versions of the following lemma appear in [4] and [6]; the
easy proof is omitted.

1.5 LLIMA: Let A be a non-empty, compact, nowhere dense subset of B c X,

and let (En)ne]N be a given sequence of positive numbers. Then there exists

a countable discrete subset D = {dn: ne N} of B\A such that Clyd =
Du A, and d(dn,A) < ey for each n e WN.

The last theorem of this section is a special case of a result of Levi [11].

1.6 THEOREM: Let X be an analytic space. Then X <s Baire if and only if

X contains a dense complete subspace.

2. The first characterization of Q%

Recall the definition of M from section 1.

2.1 DEFINITION: X <s the class of all zero-dimensional spaces X for which

there exist non-empty closed subspaces X for each s e M, satisfying
(i) X = X@’ and X5 = Ui=1 Xs,i for each s e M;
(ii) for each i € W, and each s € M, Xs i 18 nowhere dense in Xs;
’

(iii) Zf o e WY, and P € X for each k € W, then the sequence

olk
(P )y cOnverges.
2.2 LEMMA: @ € X.
P f: E t : =q” . . = oo
roo numerate @ as {qn ne W}, and put X¢ Q, Xl]‘”lk (qil,

..,qi)XQxQx... .0
k .
Our aim is to prove that, up to homeomorphism, Q“ is the only element of X.

We first show that the sets Xs of definition 2.1 can be chosen to be dis-

joint. In fact, we will prove:

2.3 LEMMA: Let X € X be embedded in C. Then the sets X from defini-
tion 2.1 can be chosen to satisfy the additional property

(iv) fsn§t=¢ if s,t e M, Isl = |tl, s # t.

Proof: For each s € M, let Lls be a disjoint clopen cover of Xs\Ui<f(s) X‘é,i;

enumerate U as {U.: j € Es}, using-pairwise disjoint indexing sets.

If j €E | for each n < |s| = k, then define a closed set
sin
k

X(s53p-eedi) = Xg 0 Moy U5 -

n
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The reader can easily verify that

1) i(sd,.“jk)rli(:x1.nek)= 8 if (s,§)...5) # (nll.nlk)-

(2) X = U{X(s,§): Isl =1, j e Es}, and X(s,j) 1is nowhere dense
in X;

(3) X(s,j]...jk) = U{X(t,j]...jkj): t=s,3c¢ Et}’ and
X(t,jl...jkj) is nowhere dense in X(s,jl...jk).

Thus, infinitely many X(s,j), with |[s| =1, j ¢ E_, are non-empty, and

each non-empty X(s,j]...jk) contains infinitely many non-empty X(t,j]---jkj)
with =35, j ¢ E.. Furthermore, if o e IN , jk € Eclk for each k € I,

and P € X(O!k,]l...Jk), then P € xclk’ and hence the sequence (pk)kem

converges.i]

2.4 LEMMA: Let X,Y € X be densely embedded in C. Then there exists a
homeomorphism h: C + C such that h[X] =Y.

Proof: Since X,Y € X, there exist closed non-empty subsets XS of X,

Y of Y, for each s e M, satisfying properties (i), (ii), and (iii) of
definition 2.1, and (iv) of lemma 2.3. Throughout this proof, (i), (ii), (iii)
and (iv) will always refer to those properties.

We will construct, for each n ¢ IN, a homeomorphism hn: C - C, such that

(*) d(b b ) <€ = min{z'“,3““.min{min{d(hi(x),hi(y)): d(x,y)
zr-l}:lsis:x}};
(*x) Vs € M: Vx € X : At ¢ M: |t| = |sl, and Vn 2 v(s): hn(x) € ft;
(#%%) Vs e M: Vy e Y_: 3t € M: [t] = |s], and Vn = v(s): h;l(y) € i;.

Suppose this has been done; then limn*w hn is an autohomeomorphism of C

by (*) and theorem 1.1. We claim that h[X] = Y.

s<o X BY (x*), for each k € N we can find
t(k) e M such that |t(k)| = k, and such that hn(x) € ?t(k) for each

Indeed, let x € X, say x € N

‘2 > v(olk); thus, if° k < £, then hv(clk)(x) € Yt(k) n Yt(l) c Yt(k) n
Yt(l)lk’ and hence t(£)|k = t(k) by (iv). So in fact, we can find T €

WY such that t|k = t(k). Then hv(olk)(x) € Y}Ik; and if P € Yo .
satisfies d(hv(olk)(x)’pk) < % then (pk)k converges in Y by (iii),

and hence h(x) = limk*m hv(clk)(x) = limk»w P € Y. A similar argument shows
that (xx+) implies h~I[Y] c X.

Thus, roughly speaking, if x € Xs, and v(s) = n, then hn determines the
Y, with |t] = |s] which, at the end of the process, will contain h(x);
and if y e Ys’ and v(s) = n, then h;] determines the X with |t] = |s]

t
which, at the end of the process, will contain h l(x).
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We will construct the homeomorphisms hn inductively, together with finite
collections As = (Aa: a e ES}, Bs = {Ba: a e Es} (using pairwise disjoint
indexing sets), each consisting of pairwise disjoint Cantor sets in C, such

that the following hold for each n € Nu {0}, and each seM with v(s)=n:

(1) if n = 2, then d(hn’hn—l) <Ee 3
(2) if v(t) £ n, and o € Et’ then hn[Aa] =B;
(3) if |t]l = Is|l, t # s, and v(t) < n, then UA_n UAt =0

= UBs n UBt; .
(4) i; c U{UAt: lt] = Isl, v(t) < n} u UAS;
YS c U{UBt: ltl = Isl, v(t) <n} u UBS;
(5) if a € Es, then there exist tst, €M with lt]l = |s| =

|t2|, such that A, is a clopen subset of iil’ and B is

a clopen subset of Yiz.

(6) if a € Es, lel = 18], and A < Xy, then A n xt,f(s) c
U{UA, .: j s £(s)};
. S,] " — —_
if a e Eg’ lt] = ||, and Ba <Y, then B, n Yt,f(s) c

U{UB§ j: j < £(s)};
’
(7) if o € Es’ then for some B € E§, A, is a nowhere dense sub-

set of AB’ and Bu is a nowhere dense subset of BB'

First note that from (ii) it follows that no Xs or Ys can contain isola-
ted points (in the relative topology), so that A =~ C for any non-empty
clopen subset A of X, or Y. '

Put A¢ = {c} = B¢. Since il’?l are nowhere dense in C, we can define

a homeomorphism h;: C > C such that hl[Y]] = Y]; if we put A] = {il},
Bl = {?]}, then (1) -.(7) are satisfied.

So suppose that hm’ As’ and Bs’ satisfying (1) - (7), have been con-
structed for m < n, v(s) <n (2 1).

Fix s e M with v(s) =‘n + 1, and fix o € Eg‘ By (5), there exist t)t,
e M with ltll = |§] = ltzl, such that Aa c Xep» Ba < Ye,- Put s =
(t],f(s)), s, = (t2,f(s)). By (5), YQZ\U{UBg,i: i < f(s)} is closed in Y;z,

so we can find a clopen V' in Ba’ satisfying

By 0 V{UB ;i i< £(s)} e V' < Bu\(?sz\u{usg’i: i<f(s)h.

Since v(§) < n, hn[Aa] = Ba' by (2), and also by ), h;][U{UBg'i: i< £(s)}]

= U{UA§ i i < f(s)} since v(§,i) < n for each i< f(s). Thus,
> X .

hn[Au n U{UAg’i: i< f(s)}] = Bu n U{UBg,i: i< f(s)},
and since YSI\U(UA§ it i < f(s)} 1is closed in fgl by (5), we can find a
’
clopen U in A such that
s,a o

Ay 0 U{UA; 2 i < £(s)} e U | © Aa\(igl\u(uAg’i: i<£(s)h,

n s
s,1

41
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while moreover

h [U 1=V cVv'.
n o s,o s,

Since Ag is pairwise disjoint, A, n'U{UAg i i < f(s)} is nowhere dense
’

in Aa by (7), so we may assume that Aa\us o # @, and hence Bu\vs,u # 0.

’
Let V be a clopen disjoint cover of B \V by non-empty sets of dia-
s,a a''s,a

meter less than € . For each W e V » put
n s,a

= min{p: h;'[W] n it o # 01, ay = min{q: W n Yt # 0},

Py 1? zvq

and

-1 _ —
A(W,s,a) =h [W]lnX B(W,s,a) =WnY .
(’ ’ n t]’pw’ (’ ’) tz,qw
Now define

As = {A(W,s,0): W e Vs,u’ o € Eg}f BS = {B(W,s,0): W e Vg gr @€ Eg},

’

and put ‘As = {AB: B e Es}, BS = {EB: B € Es}, such that if A

then BB = B(W,s,a).

Before defining hn+1, we will show that (3) = (7) are satisfied for each

8 = A(W,s,a),

s € M with v(s) =n+ 1. Fix s € M with v(s) =n + 1.

To prove (3), let |t| =|sl, t #s, and v(t) <sun+ 1. If § # €, then since
v(8),v(t) < n, we have UA§ n UAE = @, and hence by (7), UA nUVA = @; if

§ = t, then UAt c U{UAg,i: i< f(s)} C.C\UAS by the construct1on of As'
Similarly, UBs n UBt = ¢.

For (4), fix x € is' Then X € ié, so by (4), x € U{UAt: lel = |8l, v(t) <
v(s)} v UAé. First suppose that x € A for some A € At' for some t' e M
with [t'] = [§], v(t") < v(§8). By (5), A c §£1 for some t) € M with Itll
= |t'|, and since A n ié # @, we must have t, = 8. Put t = (t',f(s)). Since
v(t) = v(t') + £(s) < v(8) + f(s) = v(s) =n + 1, we can apply (6), and obtain
that x e A n § =An x () © u{uAE’j: j < f()} = u{uAt,’j: j < f(t)} c
U{UAr: el = lsl, v(r) < v(s) =n + 1}.

Second, suppose that x ¢ U{UAr: Irl = |sl, v(r) < n+1}; consequently, by the
first case, x ¢ U{UAt: ltl = |81, v(t) < v(8)}, and hence x € Au for some

a e Eg' Using notation as in the construction of As’ we find that t, = s,
and hence (t ],f(s)) = s, = s. Since U{UA : el = Isl, v(r) <n+ 1} >
U{UA i i< f(s)}, we have X € A n (XSI\U{UA i< f(s)l), whence X €

) h [w] for some W e V s.a We clalm that X € A(w s,a); since x € h [W] n
Xt] f(s), it suffices to show that h [W] n Xt] P =@ if p < f(s). So take
p < £(s); then v(t ,p) < n, so by (4) and (7), X¢; o < UIUA = el = 1(tp,p) 1,
v(t) <n} v VAL, o oc U{UA: Tt = |81, t # 8) y UIUA; [+ i < £(s)}. Now UA,
nA =0 if ltl = Isl, t # 8, by(3); and h_ vl < A \u{uA ;1 1< £(9)).
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This proves the claim. The proof that ?s c U{UBt: ltl = Isl, v(t) <n+ 1}

u UBs is similar, so (4) holds. (5) is trivial, and so is (7). It remains to
check (6).

Let o € E-, and suppose that t e M is such that |t| = |§], and Au c X
Then Aa n X

.
. |
\U{UAg’j. j < f(s)}) < Au\Us’a--hn [UVs,a]’ where Us,a’ v

t,£(s)

are as in the construction of As' If p < f(s), then v(§,p)vs n, so by (6),

A n i c U{UA .t j < pycU{UA, .: j < £(s)}, whence h-l[w] n i =0

o t,p S5] S,] -1 P

for each W e U o Thus, for each W e V s,a’ if h Wl n Kt f( ) # ¢, then
. 1 .

A(W,s,a) = h [w] n Xt £(s)> 5° JAS > A, N & \U{UAs,j' j < £(s)D).

This completes the proof. of (6).

s,a

t,f(s)

We will now define h el satisfying (1) and (2).

Since A(W,s,a) =~ B(W,s,a) =~ h [W] ~NWsS C for each We V s,a’ each s e M
with v(s) = n + 1, and each «a e E-, and since A(W,s,a) (resp. B(W,s,a)) is
closed and nowhere dense in h [w] (resp. W), there exist homeomorphisms

g(W,s,a): h [W] + W such that g(W,s,a)[A(W,s,a)] = B(W,s,a). Since Vs o

b
is a dis301nt clopen cover of Ba\vs q® We can define a homeomorphism 8 o
b ’

Aa\Us,a > Ba\vs,a by

gs,u = U{g(W,s,a): W e“VS’a}.

Note that d(gs,a’hnl(Au\Us,u)) < e, since diam(W) < € for each W e Vs,a'

Now put Ij ={s € M: v(s) = n & 1, f(s) = j}, for each j e {1,...,n+l}. Using
induction on j, we will define for each s ¢ Ij’ and each a ¢ E§, a homeo-

morphism hS o Aa -> Ba, such that

(1) hy I(A \U ’a) =8 o

(11) 1f l j, t e IE’ B € EE’ and AQ Aa, then hS aIAS = ht g’
’ ’
(1I11) d(hs,u’hnlAu) < En.

Suppose the hs o can be constructed. Let s € M be the sequence (n+l),
’

and let o be the unique element of E§ = E¢; then Aao =C= B“O’ so hSO,GO
is an autohomeomorphism of C. We claim that hn+] = hso,ao is as required.
Indeed, by (III), hn+l

v(t) <n+ 1, and let y ¢ E,. If v(t) = n + 1, then AY = A(W,t,B) for some

clearly satisfies (1). To prove (2), let t e M with

B e EE’ and some W ¢ Vt Hence AY c AB\Ut,B c AB’ so applying (I1) (for

g
’
=f(t), j=n+1,a-= @y, and s = so), we find that hn+][Ayl =
(hsg,aqlAg)lA T = by LA ], and by (1), hy [A 1= 8. gl = B(W,t,8) =B, .
If v(t) <n, then t =3§ for some s ¢ M with v(s) = n + 1; hence by (II)
(for £ =f£(s), j=n+l, t =5, B=y, a = &0, s = 5g), we find that hn+l[AY]

The homeomorphisms hs o are constructed as follows.
’
For s € I], o € Eg, define hs,a by
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h_ U =h |U_ ;
S,0' §,Q n' " s,a
hs,al(Au\Us,a) = gs,a'
Since gs,a[Aa\Us,u] = hn[Aa\Us,u]’ and h [A ] = B.» hs,a maps A0l onto B .

and h 8,0 is a homeomorphism since US o is clopen in A . Clearly, (I) and
(I1I) are satisfied. For (II), note that from (3) and (7) it follows that AB
c Aa for some B € EE’ t e Il’ can only occur if § < €; since v(s) = v(t),
and f(s) = f£(t), we have v(§) = v(f), and hence § =€, so s = t. Then a =
B, and we are done.

Now suppose ht,S has been defined for t ¢ U%=l 12’ B € EE’ such that (1),
(II), and (III) are satisfied, and fix s € Ij+1’ a € E§. For 1 < £ < f(s) =
j+ 1, put s = (§,£,(j + 1) - £). Then sp € I(j+l)—l’ and (j + 1) - £ <

so hsﬂ ye A > BY has been defined for each ¥ € Egt. Let EAz = {y € Eg l

AY <A } = {Y € Egp: B < Ba}. Then

g = U{hSZsY: Y € Eét}: U{AY: Y € E 2} > U{B : Yy € Ea K}

is a well-defined homeomorphism since Ag and B§ consist of pairwise
disjoint sets; and £

j . . .
g=Uy . gyt U{A : v e E- , 1 <2< 3}~ U{B :yeElL,1=z4£<j}
L=1 °¢ ‘2 8p 8

is a well-defined homeomorphism since by (3), UAgL n UAAK, = Q= UBAz Bgt,

if £ # 2£'. Let D, denote the domain, and D, the range of g. Then D, <

Au n U{UA- g i< f(s)} c U s,a’ D2 c B n,U{UBg,i: i< £f(s)} c Vs,a’ Dl ~ C

(resp. D2 N C) is nowhere dense in U " ~ C (resp. Vs o C) by (7), and
d(g,hnIDl) <&l by (III). So by theorem 1.2, there exists a homeomorphism

3: Us,u > vs,u such that ngI = g, and d(g,hnIUS’a) < € . Define h_ :
A +>B_ by
o a
s,ulUs,a 83
ul(Au\U ) = 8s,a

Then hs o satisfies (I) and (III). If £ < j+ 1, t e IL’ B e EE’ and AB

’

c Aa’ then by (3) and (7), § < €. 1If § = €, then s t, « = B, and we are
done. If § < €, then for some 1 < k < j, we have § < § < t. By (7), there

=

exist v € Esk’ § € Eg’ such that AS c AY < Age Since A§ consist of pair-
wise disjoint sets, we have & = a. Hence, hs,alAB = (hs,alAY)lAB = (glA )IAB
= (gklAy)lAB = hsk’YlAB. Since (II) holds for j = £(s), hSk’YIAB = ht,B,
and we are done.

This completes the inductive construction of the homeomorphism hs , and
hence of the autohomeomorphisms hn of C. To complete the proof of the lemma,
we must show that the conditions (%), (*x), and (x**), at the begin of this
proof, follow from (1) - (7). Now (%) is clear from (1), and since (x**) is

similar to (*x), we will only prove (*x).



THE COUNBABLE INFINITE PRODUCT OF RATIONALS 45

Let s € M, and X € 2;. By (4), x € Au for some a € Et" for some t' e M
with |t'l = Isl, v(t') < v(s). Hence by (2), hn(x) € Ba for each n > v(t'),
in particular for each n > v(s). By (5), Ba c ?; for some t e M with |t]

= |t'l, so |t| = |s|, and hn(x)'e Yt for each n 2 v(s).O
2.5 THWOREM: Up to homeomorphism, Q" is the unique element of X.

Proof: Qw € X by lemma 2.2; and if X € X, then X contains no isolated

points, so X can be densely embedded in C. Now apply lemma 2.4.0

2.6 COROLLARY: The Cantor set is homogeneous with respect to dense copies

w
of Q.
In [12], Luzin "effectively" described an absolute Foé which is not an absolute
Gsoo viz. the subspaceof P =~ n* consisting of all sequences of natural
numbers which converge to infinity. As a corollary to our first characterijza-

tion, we will show that in fact this space is homeomorphic to Qw.

2.7 THEOREM: Let X = {(x.). e W: lim,  x., = »}. Then X = Q.
171eN i i

e and
Proof: Note that X consists of those sequences of natural numbers which, for
each n ¢ IN, take the value n at only finitely many coordinates. Let {Ei:
i ¢ IN} be an enumeration of the collection of finite subsets of NW.

For s,t e M, if |[s| =|t] 21, s = (il,...,ik), put

X(s,t) = {¢c = (xm)m € X: t <o, and for each n e {1,...,k},

x =n if and only if me E, }.
m i

Then X(s,t) is closed in X. If we also put X(@#,8) = X, then it is easily
seen that, for each Spatp € M with Isol = Itol Z.l’

X(s 0) = U{X(s,t): s,t ¢ M, § = sg t= to},

0°"
and that X(s,t) 1is nowhere dense in X(so,to) if § = o> t = ty- Finally,

if o,T € m“’,and P = (plic)ie]N € X(olk,1|k) for each k ¢ I, then p; =
k+1

i if i <k, so (pk)k converges to a point of X.[

. . W
3. The second characterization of @

Throughout this section, X] denotes the class of all zero-dimensional absolute
F_s-spaces which are nowhere o-complete and of the first category. Using
theorem 2.5, we will show that, up to homeomorphism, Qm is the unique element
of X,.

3.1 LEMMA: If X <8 an analytic space which is not o-complete, then X con-

tains a elosed nowhere o-complete subspace Y which is nowhere dense in X.

Proof: First note that any non-o-complete space A contains a nowhere o-

complete closed subspace B, viz. B = A\U{U: U is an open o-complete subset
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of A}. So we may assume that X 1is nowhere o-complete. If X 1is Baire, then
by theorem 1.6, X contains a dense complete subset G. Since G 1is an abso-
lute GG’ we can write X\G = Uz=1 Fi’ with Fi closed in X. Then for some

i, Fj is not o-complete. By the above remark, F. contains a closed nowhexe
o-complete subspace Y; then Y 1is as required. If X 1is not Baire, then
there exist a non-empty open set U, and closed nowhere dense sets A, in

X, such that U c Uz=l Ai' Since U 1is an Fc in X, and since U 1is not
o-complete, U contains a subset F which is not o-complete, and closed in

X. Then F = “:=1 (Ai n F), and hence some Aj n F 1is not o-complete; again,

if Y is nowhere o-complete, and closed in Aj n F, then Y 1is as required.[]

The following lemma is the key to our second characterization; the proof is
inspired by a result of Saint-Raymond ([17]; see also [4] and [6]).

3.2 LEMMA: Let A be a Borel set itn C which is not o-complete, and let
F Dbe a og-compact space such that A < F c C. Then A contains a closed no-

where dense subset Y which is nowhere o-complete and first category, such

that CICY c F.

Proof: We let ~ denote closure in C. Since F\A is Borel in C, there

exists a continuous surjection ¢: IP - F\A. Let W = {x ¢ P : there exists
a neighborhocd VX of x in TP, and a o-compact subset Ex of F, such
that ¢[Vx] <E, and E nA is o-complete}. Then W 1is open in TP, so

there exist countably many open Vi in P, and o-compact Ei in F, such
that W = U

= Yia Vi’ ¢[Vi] c Ei’ and Ei n A is o-complete. Suppose that F\A
cE=U, E.;
i=1 7i

-l then A= (E n A) v (F\E) 1is o-complete, a contradiction. So
G = P\¢~![E\A] is non-empty, and a G6 in TP, whence complete. If @ # U
is open in G, say U =1U'n G, with U' open in P, then ¢[U'] = ¢[UJ u
¢Lu'\U] < (30T n F) v E, which is a o-compact subset of F. Since U' ¢ W,
(GRTUT n F) UE) n A is not o-complete; but E n A is o-complete, so i)
n A is not o-complete.

Now write F = Ui=l Fi’ with Fi compact, and let {Bi: i ¢ w} be a basis for
the topology of A. We will construct compact sets Ks, open subsets U_ of

C, open subsets WS of G, and points x; € Bi’ for each s € M and each
i € w, such that:

[¢)) Ks c ¢[Ws] c US; _
(2) for each ne W: U nk =0;

s,n s_
(3) for each n,me IW: Us,n n Us,m =@ if n # m;
(4) for each n e W: ClG(ws,n) c ws;

(5) for each ne N: U cU
(6) diam(ws) < 27 (with respect to a complete metric on G);

() diam(v)) < 27v(s),

’
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(8) for each ne N: d(K ,K ) < ZI—V(S’n);
s’ s,n

9) Ks n A is nowhere o-complete, and nowhere dense in ¢iWS] n A
(10) Ks
(i Zk = UlslSk KS is compact, and Zk n A 1is nowhere dense in Aj;
(12) for each i < k: L3 ¢ Zk'

KS n A 1is contained in some Fj;

We use induction on |[s|. First, put w¢ =G, U@ = C. Then ¢ w0 nA-=
U1 1 (¢ f nAneF, ) is not o-complete, so some ¢[W¢] nAn Fj is not o-
complete. By lemma 3 1, ¢lw¢j nAn Fj contains a nowhere o-complete, closed

nowhere dense subset Hw; put K¢ = ﬁb. Since H0 is nowhere dense in A,
B0 ¢ H¢, say X, € BO\H¢' Then (1), (9) - (12) are satisfied, and so are (6)
and (7) since all metrics are assumed to be bounded by 1. Next, suppose that

Ks’ Us’ Ws, and X have been defined for |s| < k, i < k, in accordance with

conditions (1) - (12). Fix s e M with |s| = k. From (1), (9), and (10), it
easily follows that KS is nowhere dense in K U @[WS], so by lemma 1.5,
there exists a countable discrete subset DS {y pi mE N} of ¢[W ]\K R
such that D =D U Ks’ and d(ys’ ) < 27v(s, “3 for each ne WN. Now

s s

let Us,n be an open neighborhood of ys,n such that U a S Us’ Us 2" K

=@, T nvU =@¢ if n # m, and diam(U ) < 27v(s, nf for each n,m e
s,n s,m s,n

IN. Since y e ¢lw 1, y = ¢(x_ ) for some x € WS; hence there is

s,n s s,n s,n s,n
an open neighborhood Ws of x in G such that CIG(Ws n) c WS,
- - ’ —_— >
diam(W ) < 2 sl l, and ¢[W_ J cU_ _. Then ¢[W_ I n A is not o-complete,
s,n s,n s,n s,n
so as above, ¢[ws n] n A contains a nowhere o-complete, closed nowhere dense
’
subset H; n which is contained in some F.; let HS n be a non-empty clopen
’ i —_—
subset of H' which is disjoint from {x.: i <k}, and put K =H .
5,0 i S,n s,n
Then (1) - (7), (9), and (10) are satisfied. To prove (8), note that

-v(s,n) 1-v(s,n).
d(Ks’Ks,n) < d(Ks’Us,n) + dlam(Us,n) < d(Ks’ys,n) + 2 <2

We will now show that 2 =U K is closed in C. For each ¢ > 0,
. k+1 Isl<k+l s
put Zk = {x € C: d(x,Zk) < ¢}, and Mi = {s € M: |s|= k+l, K ¢ Zi}. Then each
Z; is compact, and M; is finite by (1), (7), and (8). Since Zk is compact
. . . _ € -
by the inductive hypothesis, we have Zk = ﬂ€>0 Zk’ and Zk+l €>0(Z U

U{Ks: s € Mi}) is compact, being the intersection of compacta. To prove the
second part of (11), suppose that V is a non-empty open subset of A which

is contained in Zk+l' Since Zk n A 1is closed and nowhere dense in A, V\Zk

is a non-empty open subset of A, contained in U KS. So for some s €

|s|=k+1
M with |s|l=k + 1, (V\Zk) n Ks # @; however, by (1), (3), and (5), (V\Zk) n

= (V\Zk) n Us, contradicting the fact that KS naA-= Hs is nowhere dense

Bt # Pl

point X, ., € Bk+l\zk+l; then (12) is also satisfied. This completes the induc-

“in A. Hence (11) holds. In particular, n A, so we can find a

tion.
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Now put Y = U:=O (Zi n A); we claim that Y 1is as required. We will first

show that ?\Ui=o Zi c F\A; so suppose that x € ?\Uz= Zi’ and fix i e w.

0
Since x ¢ Zi’ x ¢ Zi for some € > 0. From (1) and (4) it follows that

-3 amagrew— — e v
Ui=0 Zi c Zi u U|s|=i ¢[WS], and frém (1) and (7) that ¢[wS] c Zi for all
but finitely many s ¢ M with |s| = i. Hence for some finite M, c {s € M:

|s| =i}, we have Y < ZE u UseMo sfﬁ;j. Then X € sz;T for some0 s € Mo,
and this s is unique with |s| =i by (1), (3), and (5). So by (4), there
exists an infinite sequence o of natural numbers such that x ¢ ns<° $fﬁ;j
which is a one point-set by (1) and (&). Also, ns<c ws = ns<° ws is a one
point-set by (5), and by completeness of the metric on G. Hence, if z ¢
ns<0 Wes then ¢(z) : x, so x € ¢[P] = F\A. Thus, Y c U:=0 Zi UF\AcF by
(10), and Y n A = Ui=0 (Zi n A) =Y. By (12), Bj ¢Y for each j e w, so Y
is closed and nowhere dense in A. Since Y 'is clearly nowhere o-complete by
(9), to complete the proof it suffices to show that each Ks n A is nowhere
dense in Y. So let x e K n A, and € > 0.Choose n € N so large that
z—v(s,n) < }e. Since, in t:e construction, 5; = Ds 1} KS, Yom € B(x,Z—V(S’n))
for some m > n; and since ys,m € Us,m’ and diam(Us’m) < é—v(s,m)’ we have
Us,m c B(x,e), so Ks,m c B(x,e). By (2), Ks,m n KS =@, so B(x,e) n Y\(Ks n A)
B Ks,m nA¢#6.0

3.3 LEMMA: Let X € XI, let F be a o-compact space such that X c F < C, and

let € > 0. Then there exist closed nowhere dense subsets X; of X such that

(i) X = u:=] X
(ii) Xi € X] for each i € W;
Giii) Cl (X)) < F3

_(iv) diam(Xi) < g,

Proof: Again, let ~ denote closure in C. If F = U:=] Fi’ with Fi compact,
and X = U:=l Yi’ with Yi closed and nowhere dense in X, then X =

ut . (Y, nF.), i.e. we can write X = v A., where A, is closed and
Si,3=1 i j i=] 71 1

N

nowhere dense in X, and Ki c F; of course we may assume that each Ai is
non-empty. Fix i ¢ N, and let D be a cover of X\Ki by non-empty disjoint
clopen subsets of X, such that diam(D) < d(D,Ki) for each D ¢ D. Since
DnX#@ is not o-complete, and Dn X c F c C, we can apply lemma 3.2 to
obtain, for each D € D, a closed nowhere dense subset E(D) of D n X which
is nowhere o-complete and first category, such that E(D) c F. Put Bi = Ai u
EPED E(D). Sinéi_—f\(Ai v UDED E(D)) f UDeD (D\E(D)) is open in X, we have
Bi = Ai v UDeD E(D) ¢ F, and Bi is closed in X. From the diameter condi-
tion on the elements of D it follows that Ai is nowhere dense in Bi; thus,
since each E(D) 1is first category, Bi is first category. Also, if U is

a non-empty open subset of B,, then Un E(D) # ¢ for some De D, so U

is not o-complete, i.e. Bi is nowhere o-complete, whence B, ¢ Xl.
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Finally, Bi is nowhere dense in X: if V is non-empty and open in X, and
Ve Bi’ them VnD=VnE®D) #@ for some D ¢ D, contradicting the fact
that E(D) is nowhere dense in X. Now let Ui be a clopen disjoint cover
of Bi by non—-empty sets of diameter less than €, and enumerate Uz= u,

I i
as {Xi: i € IN}; then the sets Xi are as required.[

We are now ready to prove the main theorem of this section.
3.4 THEOREM: Up to homeomorphism, Q° <s the only element of Xl'

Proof: Being a product of o-compacta, Qw is an absolute ch’ and clearly
it is first category. That Qw is nowhere o-complete follows from a result
of Sikorski ([19]; see section 4 of this paper). So now suppose that X €
Xl; embed X in C, and let {Fk: k ¢ N} be a family of o-compact subsets

of C such that N Fk’ and put FO = C. We will construct closed subspaces

k=1
X of X, for each s € M, satisfying conditions (i) and (ii) of definition

2.1, as well as
(x) for each s e M, Xs eX];
(**) for each s e M, diam(Xs) < (|s|+1)_l;

(xxx) for each s ¢ M, i; c Fls'(closure in C).

The construction is a triviality: Put X0 = X, and if XS has been defined

for all s ¢ M with |s| < k, then we obtain the sets XS i by applying lemma
- ’

3.3 to Xs c F|s|+1 cC, e = (Is|+2) ]. We claim that the sets Xs satisfy

condition (iii) of definition 2.1. Indeed, let o € N . Since Xcll > R;Iz > ...
k=1 %ok
Xolk’ and if U is any open neighbor-

o

is a decreasing sequence of compacta, n:=] i;lk =@, say xe N . By

(*xx), x € n:=l F =X Thus, x € n;=l
hood of x in X, then by (*x), Xcln c U for some n e IN. Hence, if Py

€ xolk for each k ¢ IN, then P € U for k 2 n, so (pk)k converges to x.[

From this characterization of Qw, we can, by elementary methods, obtain
characterizations of all zero-dimensional homogeneous absolute Borel sets of
exact class two (i.e. they are either an absolute Fcé’ or an absolute Géc’

but not both). Let X2 be the class of all zero-dimensional nowhere o-complete
absolute F_, spaces that are Baire, and let Vl (resp. VZ) denote the class

of all zero-dimensional o-complete spaces that are first category (resp. Baire),
and nowhere an absolutchG. We will show that, up to homeomorphism, each of

XZ’ Vl’y2 contains exactly one element (which is homogeneous), and also that,
if X 1is a homogeneous zero-dimensional absolute Borel set of exact class

two, then X € Xl u X2 u Vl v Vz.

3.5 LEMMA: Let X be dense and co-dense in C. Then X « X, if and only
if C\X € V2, and X € X2 if and only if C\X e V].



50 FONS van ENGELEN

Proof: It suffices to remark that if U is a clopen subset of C, then
Un X is an absolute Fod (resp. an absolute Géc) if and only if U\X is
an absolute Gso (resp. an absolute ch), and that by theorem 1.6, X is Baire

(resp. first category) if and only if C\X 1is first category (resp. Baire).[

3.6 THEOREM: Let Q" be densely embedded in C. Then up to homeomorphism,
c\Q” s the only element of Vz; furthermore, C <s homogeneous with respect
to dense copies of C\Q".

Proof: By lemma 3.5, C\Qw € V2; and if A,B ¢ V2 are densely embedded in C,
then by lemma 3.5 and theorem 3.4, C\A =~ Qm ~ C\B, so by corollary 2.6, there
exists an autohomeomorphism h of C such that h[C\A] = C\B, whence h[A]

= B.0

Since all dense embeddings of Qw in C are equivalent (corollary 2.6), we

will just write C\Qw for the unique element of VZ.

3.7 THEOREM: Up to homeomorphism, Q X(C\Qw) 18 the unique element of V];
furthermore, C is homogeneous with respect to demse copies of @ x (C\Q").

It is clear that Q@ ><(C\(Qw) € Vz. So suppose that X e V], say X = U:= X.,

with Xi closed and nowhere dense in X. Fix i € N, and let D be alcoier
of X\Xi by non-empty clopen disjoint subsets of X such that diam(D) <
d(D,Xi) for each D € D. If we embed D densely in C, then since D is
o-complete and not an absolute Fis? C\D is an absolute Fis which is not o=
complete. By lemma 3.2, C\D contains a closed nowhere dense subset Y such
that Y e X], i.e. Y™ Qw; then E(D) = Y\Y C\Qw. Note that E(D) is closed
and nowhere dense in D. Put Ai = Xi u UDeD E(D); then Ai is closed and
nowhere dense in X. By theorem 1.6, each E(D) contains a dense complete
subset G(D); then UDeD G(D) = eDeD G(D) 1is complete and dense in Ai’

so Ai is Baire.Clearly, Ai is o-complete, and Ai is nowhere an absolute
F05 since every non-empty open subset of Ai intersects some E(D). Hence
A; ~ C\Qw, so by theorem 1.3, U:=1 Ai =Xm~Q x(C\Qm). The last statement of
the theorem follows immediately from theorems 3.6 and 1.4.0

3.8 THEOREM: Let Qx (C\Q") be densely embedded in C. Then up to homeomor-—
phism, C\(Qx (C\Q")) <s the only element of X,; furthermore, C is homo-
geneous with respect to dense copies of C\(Q x (C\Q")).

_ Proof: Same as the proof of theorem 3.6.0

3.9 THEOREM: Let X -be zero-dimensional and horogeneous.
(a) If X <s an absolute Fos but not o-complete, then X € Xl v XZ'

(b) If X <Ze o-complete but not an absolute Fod, then X e VI u V2.



THE COUNTABLE INFINITE PRODUCT OF RATIONALS 51

Proof: (a) Suppose U 1is non-empty and clopen in X, and o-complete. Let
x € U, and for each y € X, let h_: X + X be a homeomorphism such that

hy(x) =y, and put U_ = hy[U]. If {Ui: i e N} is a countable subcover of

{Uy: y € X}, then X = Ui=l U, is o-complete, a contradiction. So X is

nowhere o-complete. If X 1is Baire, then X € XZ; if X 1is not Baire, then

«

some non-empty clopen subset U of X 1is first category, and as above, this

implies that X is first category. The proof of (b) is similar.0

4. Some consequences of a theorem of Steel

In this section, it will be convenient to denote the Cantor set by 2“,

where 2 1is the two point discrete space.

The following definitions and theorem are taken from Steel [20]. Let Q =

{x ¢ 2°: 3n:Vm>n: X, = 0}, qQ = {x ¢ 2“: 3n:Vm2n: X = 1}. If x ¢ 2w\(Q0 U Q]),
then x consists of blocks of zeros separated by blocks of ones; define

¢ Zw\(Q0 U Ql) > 2% by ¢(x)(n) = 0 (resp. 1) if the nth block of zeros'in

x has even (resp. odd) length. Note that ¢ is continuous.

4.1 DEFINITION:(a) T c P(2¥) <s a reasonably closed pointelass if ¢_][A] u
Qo e T for each A e T, and f-l[A] e T for each A € T and each continuous
£: 29 > 2°,

) Ac?2® is everywhere properly T <if for each non-empty open U in X
we have Un A e T, 2°\(U n A) ¢ T.

4,2 THEOREM (Steel [20]): If T <s a reasonably closed pointclass of Borel
sets, and A,B ¢ 2 are everywhere properly T, and etther both meager or
both comeager, then h[Al = B for some autohomeomorphism h of X.

Now for a ¢ [1,w;), let Aa’Mu denote the classes of Borel sets in 2“ of,
respectively, the additive class a and the multiplicative class o (recall that

A] =F_, M1 = G, A2 = Géc’ etc.).

4,3 LEMMA: If o 2 2, then AOl and Ma are reasonably closed pointclasses.

Proof: Take e.g. A € A i f: 2% 2m is continuous, then clearly £71a7

€ A , so we only have to show that ¢ [A] uQ, e A . Now ¢ is a continuous
map on 2 \(Q0 uQ, ), so ¢ '[A] is of additive class o in 2% \(Q0 uQ )
hence we can find B c 2“, B A , such that B n 2 \(Qo uQ ) = [A] S1nce
a 2 2 and 2“’\(Q0 u Q]) is a GG in 2, also ¢ [A] € A , and thus ¢ [A]
UQy e Aa since Q, is countable.O

For o 2 2, let X? (resp. X;) be the cléss of all zero-dimensional Borel sets
that are absolutely of multiplicative class a, nowhere absolutely of additive

class a, and first category (resp. Baire). Similarly, define V; (resp. Vi)
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to be the class of all zero-dimensional Borel sets that are absolutely of
additive class o, nowhere absolutely of multiplicative class a, and first

category‘(resp. Baire).

4.4 LEMMA: For all a 2 2, each of X?,X;,V?,V% contains at most one element,
up to homeomorphism, and thiselement, if it exists, is stromgly homogeneous,

hence homogeneous, and C s homogeneous with respect to dense copies of it.

Proof: 1If e.g. X e X?, then X can be densely embedded in the Cantor set;
this dense embedding is everywhere properly Ma and meager, so we can apply
lemma 4.3 and theorem 4.2; the other cases are proved similarly. Strong
homogeneity follows from the observation that, if X is in one of the classes,
and U 1is a non-empty clopen subset of X, then U 1is in the same class,

whence homeomorphic to X.[

For a = 2, the classes described above are just the classes considered in

the preceding section; in particular, for o = 2, they are non-empty. We

will now show that they are in fact non-empty for each a.

For this, we recall the very elegant construction of Borel sets of exact class
as given by Sikorski in [19] (see also [81): Let p e 2“, and put My = {p},
Ay = 2“’\MO; if ae[1,0), and Ag,M,

e © w w oo - - w w
put Ma = ni=] AY c ni=0 282 if a=vy + 1, Ma n8<a AB c n8<a 2~ 2

if 1lim(o), and in both cases put Aa = Zw\M;.

have been defined for B8 < a, then

Sikorski showed that M e M\A , and A e A \M . It is easily verified that
o oo o oo

M2 3 Qm, and that each Ma,Aa is dense in 2* for a 2 1.

4.5 LEMMA: Let

a 22, If o tis even, then M€ X?, A € V;; if o s odd,
then M e X3, A < VO
o 2 a 1

[

Proof: For a = 2, this follows from the results of section 3, so suppose the
theorem has been proved for B < o. Suppose e.g. that a 1is a limit (the

B<a AB' Since AB
is strongly homogeneous by lemma 4.4. So if U 1is a non-empty

other cases are entirely similar); them o 1is even, Ma =T
© B g

€ X] v XZ’ AB
basic clopen subset of Mu’ then U= Ma ¢ Aa; hence Ma is nowhere absolutely
of additive class a. Since AB is first category for odd B, M is first
category, so Ma € X?. As in the proof of lemma 3.5 it is shown that this im-

plies A « VZ.D

4.6 THEOREM: If o 2 2, then up to homeomorphism, each of X?,X;,V?,V; con-

tains exactly one element.

Proof: By lemma 4.4 it suffices to show that each class is non-empty. If a
is even, then Ma € X?, Aa €Yy it is easily checked that Q XAa €Y and
if this space is densely embedded in 2”, then its complement is in X;.

Similarly if a 1is odd.0



THE COUNTABLE INFINITE PRODUCT OF RATIONALS 53

Thus, as in theorem 3.9, we conclude that there are exactly four homogeneous
zero-dimensional absolute Borel sets of exact class o, for each o > 2, that
there. are very simple and elegant characterizations of these spaces, and also
that it is very easy to construct them "from below". For descriptions and
characterizations of all homogeneous zero-dimensional absolute Borel sets, see
[4] and [5].

The construction of the sets Mcl and Au naturally led Sikorski to the

following question (Coll. Math. problem P.215):

QUESTION: Let An be a Borel subset of additive class a in a metric space Xn’
but not of multiplicative class a in Xn (n =1,2,...). Prove or disprove that
the set A = Al XA2 x ... (which is, of course, of the multiplicative class

a + 1) is not of the additive class o + 1 in the space X = X] ><X2 X e

We will give a partial answer to this question using the so-called "Wadge
lemma" (see Wadge [21]): If A,B are Borel sets in 2, then either there is
a continuous f£: 2% > 2“ with A = f_l[B], or there is a continuous g:
¥+ 2% with B =g '[2“\al.

4,7 THEOREM: If in the above question A 18 absolutely Borel of additive
class a, and separable, then n:=l AL is not absolutely of additive

class a + 1.

Proof: By a theorem of Kunen and Miller [9] , each An contains a closed
subset B which is zero-dimensional and not absolutely of multiplicative
class a; consider Bn as a subset of 2“. If there were a continuous

g: 2¥ > 2 such that B = g-l[Pa], then B is of multiplicative class a
in Zw, a contradiction. So by the Wadge lemma, for each n € IN, there is a

P s 2
n=1

continuous f : 2* + 2 such that § = f_I[B 1. Define f: T w
n a n _n n=1

...l 0 o .
by f(x)(n) = fn(xn)' Then f [ﬂn=] Bn] = ﬂn=’ Su = Pa+l’ so since P

a+l
3 . 3 . . o0
is not of additive class u+l, neither is nn=l Bn’ and hence ﬂ:=

A_ cannot be
1 "n

absolutely of additive class a + 1.0
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