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PETTIS INTEGRATION

Kazimierz Musia}
4

1. INTRODUCTION. Recently, Geitz [4] has proved a Lebesgue Domi-
nated Convergence type theorem for the Pettis integral defined on a
finite perfect measure space. His proof is based on theorems due to.
Fremlin [2] and James [5]. We show here that Geitz's theorem holds
for arbitrary "finite measure spaces. Our proof imitates his one,
however, instead of Fremlin's theorem we use the following well known
theorem of Mazur: If X 1is a normed space and {xn: n e N} is weakly

convergent in X to x ¢ X, then there exist finite sets aq,...,
k(m) m

az(m), m = ;22;... of non-negative numbers such that Zj=1 a; =1
. m) m _ : .
and llmm Zj=1 AT m = x in the norm topology of - X.

The second problem we consider here is the problem of the appro-
ximation of a Pettis integrable function by a sequence of simple func-
tions. In [7] it has been proved that if és,z,u)’is a finite measure
space, X is a Banach space, and f: S + X 1is Pettis integrable then
f 1is approximated (in the Pettis norm) by a sequence of simple func-
tions {fn: n ¢ N} 1if and only if the indefinite Pettis integral of
f has norm relatively compact range. In particular we have for such
a function the following scalar approximation:'x*fn > ;*f in measure
v, for every functional =¥ e x*.

In this paper we present necessary and sufficient conditions for a
Pettis integrable function to be approximable by simple functions in
the above scalar sense.

2. TERMINOLOGY. Throughout X stanaé for a Banach space (real
or complex), B(X) for its closed unit ball and x* for the conju-
- gate space. S denotes a non-empty set, I is a oc-algebra of subsets
of S, and u 1is a finite measure on :. N(u) denotes the family
of u-null sets.
A function f: S + X is weakly measurable if the scalar func-
tion x*f is measurable for each =z* ¢ x* (i.e. (x*f)-1(BR) c I).
The function f 1is scalarly integrable if m*f e Lq(n) for
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each z* ¢ x*.

The function f is Pettis integrable on I (or on (S,I,u))
if there exists a set function v: I » X such that

&*v(E) = [, &"fdu
for all z* ¢ X* and E ¢ I. In that case we write
v(E) = IE fdu

and v ‘is called the indefinite Pettis integral of f on § (or
on (S,z,u)). »

A function f: S + X is weakly uniformly bounded if there .is
a constant M such that “|x*fl < MHx*H p-a.e. (the exceptional set
may vary with. z*). ‘

A family H of scalar integrable functions is uniformly inte-
grable if v ' i

limp(E)»O IE |hldu = 0

uniformly for % e H. :

(S,z,u) is said to be separable if it is separable in the‘Fre-
chet-Nikodym metric (p(E,F) = u(E A F)).

If £, is a sub-o-algebra of 1, then E(hlzo) denotes the
conditional expectation of h with respect to 1 .-

If F c P(5) then o(F) is the o-algebra generated by F.

BR denotes the o¢-algebra of Borel subsets of the real line R.

3. LIMIT THEOREMS. The theorem we are going to present now is
a Pettis analogue of Vitali's convergence theorem. Conditions (q) ..
and (b) of this theorem guarantee that for each z¥ ¢ X* and E € I
the sequence {jEx*fndu: n € N} 1is convergent to jEx*fdu, and that
the set {x*f: z* < B(X*)} is weakly compact in L1(u)- The condi-
tions (a) and (b) may be replaced by any others guaranteing the above
weak compactness and the convergence of the appropriate scalar.

integrals.

THEOREM 1. (VITALI CONVERGENCE THEOREM FOR PETTIS. INTEGRAL) . Let
f: S+~ X be a function. If there existg‘a sequence {fn: n e N} of
X-valued Pettis integrable functions on S such that:

(a) The set {x*fn: z¥ ¢ B(X*), n € N} 28 uniformly integrable,

(b) limn x*fn ;Ax*f in measure, for each =" e Xx¥,
then f is Pettis integrable and lim IE fodu = IE fdu weakly in
X, for each E e I. . .

PROOF. Assume at the beginning that X 1is ‘a real Banach space.
Fix E € I, and let (¢ be the weak closure of the set
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{fE fndu: n € N}. Since Vitali's convergence theorem guarantess that
lim [p z*f,du =/z z*fdu - for each z* ¢ X¥*, we see that C is bo-
unded and C\{IE fpdu: n e N} consists of at most one point. In or-
der to prove our assertion it is sufficient to show that C is -weakly
compact, since this yields the existence of the weak limit of

{IE fndu: n € N} in X, Clearly the limit can only be equal to
fEfdu, and so we shall be able to conclude that f is Pettis inte-
grable on E, and hence an the whole of .

Suppose therefore that C is not weakly compact. Then, according
to a theorem of James ([5], Th.1) there exist a bounded sequence
{x;: n ¢ N} , a sequence {x 1N e N} ¢ C, and 8 > .0, such that
d;(xn) =0 for k >.n and x (z,).> 68 for .k < n..

Consequently, we can find a subsequence {gm:.m € N} of
{fn: n e N} anq e subsequence {y;: m e N} of {x;: n e N}, such that

(Z) fE y;gmdu =0 for k > m,
.. ' * )
(27) [g yp9,dn > 8 for k <m,

* *

(Gi¢)  lim [ x*gmdu =g *fdu, for all =z* ¢ x~.

. Consider now the set {y;f: m e N}. It easily follows from (a).
that this set is uniformly integrable and bounded .in L1(u). Hence,
it is relatively weakly compact. This yields the existence of a func-

tion 4 ¢ L1(u) and a subsequence {z;: J € N} of {y;: m ¢ N} - such
that 1lim, z%f = # weakly in L, () . Applying (Z<Z) for all z;
we get an inequality fE 2 fdu > 6 and hence IE hdu 2 6.

Now we shall appeal to the theorem of Mazur. Let a1""’ak(m)’
m

m ¢ N, be non-negative numbers, such that ZJ i =7 and
limm (Z anJ+mf) h in L, (u) . Without loss of generality, we may
assume, that the above convergence holds up-a.e.. Clearly, if z:

is a weak® cluster point of the sequence {Z : m e N}, then

* ) J J+m
= z,f w-a.e. In particular, we have
. *

(Zv) fE z fdu 2 0,

On the other hand, since each 9, is Pettis integrable, the
functional z* + f x*gndu is weak® continuous. Hence, if. {w:a}
is a subnet of {Z J J+m' m > n} that converges weak”® to zz,
then, applying (z), we get ‘

* . . * _ % - *
0= lima J’E' wnugndu_- llmu wnu IE gndu - zo J'E gndu IE zogndu.
Since this-holds for each 7 ¢ ¥ , we see from (ZZ%¢), that
IE z:fdu = 0. But this contradicts the inequality (Zv).
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It follows that (¢ is weakly compact and so the real part of
the theorem is proved.

. Assume now that X is a complex Banach space, and denote by
X; the real conjugate of X. According to the real valued version
already proved there exists a set function v: £ -+ X such that for
each 3* ¢ X; and E ¢ r the equality

2*v(E) = [, z*fdu
holds. Consider x* ¢ X*, then, there is a (unique) z* ¢ X§ such
that
¥ (x) = z*(z) - 12*(ix)

for all «x ¢ X. Then, coﬁsider an operator T: X » X given by
T(x) = 2x. As T 1is R-linear and continuous we have

tv(E) = Tv(E) = IE Tfdu = fE tfdu,
where the integrals are taken with respect to Xg.

It follows that

z*v(E) - iz*[iv(E)] =
IE z*fdu - ifE z*(2f)du =

) = IE [2*Ff - 22*(<f) 1dn = fE x*fdy
Thus, the theorem is completely proved.

x*v (E)

As a direct consequence of Theorem 1 we get the following gene-

ralization of the classical Lebesgue Dominated Convergence Theorem:

THEOREM 2 (LEBESGUE DOMINATED CONVERGENCE THEOREM FOR PETTIS
INTEGRAL). Let f: S -~ X be a function satisfying the following two
conditiong:

(a) There exists a sequence of Pettis integrable functions
fn: S+ X, ne N, such that limn m*fn = x*f in measure, for each
e X¥, .

(B) There exists a Pettis integrable function g: S + X such
that |a*ful < lz*g|l u-a.e, for each z* ¢ X* and n e N (the
exceptional set depends on z*).

Then f 1is Pettis integrable and lim IE fndu = fE'fdu we-
akly for all E € L.

PROOF.. If g: S » X 1is Pettis integrable then the family
{z¥*g: =¥ ¢ B(X®)} is ﬁniformly integrable and bounded in L1(u)
(this is an easy consequence of the countable additivity and the u-
-continuity of the indefinite Pettis integral of g (cf.[1]}, Theorem

I1.3.5)
It follows that the assumptions of Theorem 1 are satisfied.
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REMARK 1’-§eplécing'ﬁhé function“ gA{ in Theorem 2 by‘_»"” _
tion & € Lq(u) satisfying. for each- and e NS Sar cdndltion

le*f, 1 < 1nl u-a.e., we get the same , concluslon concerning )
such-a form of Theorem 2 is essentlally weaker - from the orginal oney“
Namely, it follows from Musial ([61], Proposition 1) that if. g isf
Pettis integrable, then one can only .find a measurable partltlon .f
{En: n ¢ N} of S and, a sequence of" functionSv ¢n € 51(u), n e N.
such that for each n and «* the inequality |z*gXg,| < |¢ |
uy-a.e., holds. If the variation of the indefinite integral of -g -.is
infinite then the_funétions ¢n' n e N, cannot be replaced by aSihgle‘
function ¢ e Lq(u).

4, SEQUENTIAL APPROXIMATION BY SIMPLE FUNCTIONS. It haé been
proved by'Musia}l ([71, Remark 1 and Corollary 1) that if v: is £he
indefinite Pettis integral of f: S » X, then Q(z) is a norm rela-
tively compact set if and only if f can be approximated by simple
functions in the sense of Pettis norm, i.e. if there is a sequence
fn: S + X, n ¢ N, of simple functions, such that ’

lim sup{fs lx*fn - x*fldu{ x* ¢ B(X*)} =

In this section, we show, that if one does not order theuniform
convergence on B(X*), then one gets a condition which is equivalent
to the separability of v ().

THEOREM 3. Let f: S » X be a Pettis integrable function on
(S,Z,u) and, let v: I » X be its indefinite integral. Then, the
following conditions are equivalent:

(%) {*f: =¥ € B(X*)} is a separable subset of Lq(u),

(22) There exists a o-algebra 20 c I such that (S,zn,ulzo)

is separable and f 18 weakly measurable with respect
to I, o
(222) There exists a sequence {fn: n e N} of X-valued simple
functions, such that for each x* ¢ X* one of the follo~—
wing conditions 18 satisfied:
(a) {x*fn: n e N} is uniformly integrable and u-a.e.
convergent to f, o
(b) {x*fn: n € N} <s uniformly integrable and convergent
in u-measure to x*f,
(J) {m*fn: n e N} <8 convergent to x*f in Lq(u),
(d) {x*fn: n e N} <4s convergent to x*f weakly in Lq(u),
(Zv) v (X) <& a separable subset.of X.
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PROOF. (7 » %) Assume that the set {x*f: z* . B(X*)} is se-
parable. Then, there exists a sequence {mné n ¢ N} in- B(Xx*), such
that {z)f: n e N} is dense in {z*f: ||z*| s 1}. If
L. = 0[U:=1(m;f)—1(33) u N(u)1 then clearly uli, is separable.

Take an arbitrary z* ¢ B(Xx*). Then, by the assumption, there
exists a sequence {x;k: k € N}, such that xgkf »> x*f in. L1(S,z.w).
It fql}ows that there is a subsequence of {m;kf: k ¢ N} converging
to z*f, on a set SI# with u(¥) = 0. But N(u) < I, and so
ﬂ-; zol It follows that z*f is 1,-measurable.

‘ (11 > Lzza) Assume that f is weakly measurable with respect to
a separable (S,zo,ulzo) ‘and, let. I = o({En: n e N}) < I,  bea
coun;ably generated g¢-algebra which is y|I,-dense in I, . Moreover,
let L be the partition of S generated by the»éets E1,...,En.

Put for each lh e ' Xigl‘x S 070 = 6y

n “Eem, u(E) "E . . L

It is well known that {fnyo("n)}n=i is an X—yalued martingale
and z*f, > E(z*fIT) in L1(S,§.uli)_A(¢f- (81, Ex. IV. 3.2) and_
ulz—a .e. (cf. [1], V. 2.8). Moreover, the conditional expectation .

'opg§§§or is a contraction on Ll(ulz) and so we have [ |x*f,|du <
s j lz*fldu for all =2 ¢ N. This yields the uniform integrability
of {z*f,: n e N}. A$ by the assumption £ is dense in Io, we have
E(z*fI¥) = a*f u-a.e., and so =z*f, » 2*f yulZo-a.e.

__This completes .the proof.

_ The implications (@ + b » e¢ + d) are obvious, and so it remains
to prove that (Z<7d) yields (Zv).

(2722d » v) The condition (11Ld) means exactly that for each
E € £ the sequence {IE fndu. n ¢ N} 1is weakly convergent to
’IE fdu. Hence v (r) 1is contained in the weak closure of the set
u, v, (@), where v, is the indefinite Pettis integral of f,. As
each set v,(Z) is finite dimensional, the union is weakly separable.
But according to the well known result of Mazur, the weak and norm
separability in Banach spaces coincide. )

(iv » 7) Suppose that {z*f: ||x*| < 1} is not separable. We
shall prove that v () is non-separable. To do it take an arbitrary
x’; e Xx* with I3l =1 and h1 e Iy (), such that <p ,a%f> =1
(<x*,m> denotes the value of z* on x). Then, assume that we have
already constructed for an ordinal g < wq a family
{(z;,ha): a < B} with the following properties:

@) =y € x* and Hx:H =1,

(8) ha €L, (),

(v) x:f tviiiﬁx;fE o <y} for each y <38

’
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(8) <hY,.7c;f‘> = (1 if a =7y < B8
0 if o < y < B )
~Since {z*f: llz*| < 1} is non-separable, we can find x; e X%,
such that NxEH =1 and ng ¢ TTH{x:f: o < B}. Then, applying the
Hahn-Banach theorem we get hB € Lm(u) such that’ <hB,x;f> = 1 and
<h8,x(’;f> = 0 for all o < B. .
Consequently, we get a net {(x:,ha): o < wq} satisfying (a)=-(8)
for all a,B8,y 1less then Wy
Consider now an opérator T: X* » L1(u) given by Tz* = x*f;
It is well known (and easy to see) that T is continuous.
It is easy to see that for o < 8 we have
HT*bB - T*haﬂ > 1
and so the set 'T*Lm(u) is non-separable in x**,
But lin{xE: E ¢ r} 1is norm dense in I_(u) and so 1linv(z) is
norm dense in T*L_(u). It follows that v(z) 1is non-separable.
This completes the proof of the whole theorem.

REMARK 2. The uniform integrability of the sets {z*f, : n e N}
appearing in conditions (ZZZa) and (ZZ<Zb) may be replaced by the uni=
form integrability of the set '{z*fn: n e N, ¥ ¢ B(Xx*)},This follows
easily from the proof of (27 » i<ia). if oné.applies the uniform ipte-
grability of the set {x*f: ||lz*| < 1}. o

REMARK 3. Theorem 3 holds for arbitrary normed spaces. The proof

needs no change.

Combining Theorem 1 with Theorem 3 and Remark 2.we get the follo-
wing characterization of Pettis integrability in the case of separable

measure spaces:

THEOREM 4. Let (S,I,u) be a measure space -and let f: S » X
be a funetion. Then, f 1is Pettis integrable on 5 and weakly measu-
rable with.respect to a separable measure space (S,I ,ully)  Zf and
only if there exists a sequence {(f,: n.e N} of X-valued simple
funetions on S sueh that: e

(a) The family {x*fn: ne Ny, ¥ ¢ B(X*)} is uniformly inte-

grable, ,

(b) For each «* ¢ X* limn w*fn = z*f qp-a.e.

In the particular case of bounded functions we get the following
result:
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. THEOREM 5. Let (5,I,u) be a measure space and Zet f 5+ X
be a weakly uniformly bounded function. Then, f is Pettis Lntegrable
on . and 'weakly measurable with respect to a separable measure space
gg,_o{ujzo) 1f and only if there exists a bounded sequence
{fn:_ﬁ € N} of X-valued simple functions such that - 1imnlz*fn‘; z*f

u-d.e., for all z* ¢ X* (the exceptional sets depend on «*).

REMARK 4,_As,it,has-been,proved by Stegall, the range of an in~
definite Pettis integral of a function defined on a perfect measure
gpggé_is_nprmﬂgelq;ivelngompact,_it_ﬁqllowsAfrom Theorem 3 that such .
a_function is weakly measurable with respect to_a_ separable measure
space. Hence, Theorems 6 and 7 of Geitz [4] are particular cases of
Theorem 4 and 5 respectively. _ ,

Let come back to Theorem 3. It-is a natural guestion whether

the separability condition ( ZZ) . can be replaced“by:the.following
stronger one: ' .
—.__ There exists. a countably generated. .¢g-algebra..T < r . such .that
f is_weakly measurable with respect to the ulf-completion of _.T.
Unfortunately, the answer in negative (at least if. one assumes
the Validity of Martin's Axiom). We begin with an easy consequence
_of Theorem 34 of Talagrand [9].

. PROPOSITION 1 (MA). Assume that (S,f,u) <8 such that I .is
contained in a uJE—completion of a countably generated o-algebra
T. If f: S > X 1is Pettis integrable then the indefinite Pettis
integral of f has norm relatively compact range.

PROOF. Without loss of generality we may assume f to be
weakly uniformly bounded. Let H = {x*f: ¥ e B(X*)}. As H is
compact in the topology of pointwise convergence we can apply The-
orem 34 of [9]. Thus, if {m:: n ¢ N} 1is a sequence in B(x¥),
then there is a subsequence (m;k: k e N} such that {mn fik e N}
is yup-a.e. convergent. It follows that an operator T: X* L (u)
given by Tz* = x*f is compact. Hence ™ is compact as well, and
this yields the relative compactness of the Pettis integral.

Now we are ready to prove the existence of a Pettis inte-
grable function f such that its Pettig integral is separable but
f 18 not weakly measurable with respect to any I, which would be
contained in a wul|I-completion of. a countably generated I.
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-. EXAMPLE (MA). Let W be an infinite set. Identifying PW with
the set of characteristic functions {0,1}W we can introduce on PW
the producfftbpology and the Haar measure u. It has been proved by
Talagrand'(£9]; Theorem 10) that there exists an extension u of
u to a o—éigebra I such that all non-measurable filters on W

are of . u-measure one.

Let . X =y x u be the direct product measure on PWxPW and let

f: PW x PW > 1_(W) Dbe given by '
fla,b) = Xg = Xp »

where Xa is the characteristic function of a set ¢ < W.

It is proved in ([3], 2D) that f is Pettis integrable on -
g(z x ), the range of its indefinite Pettis integral is always non .
relatively compact, and for uncountable W it is even non-separable.
Thus Zf W is uncountable, them f cannot be approximated by any
sequence of eimple functiaona, in the sénse considered in this paper._

Assume now that W is countable, .and denote by B the ¢-alge-
bra of Borel subsets of PW x PW. Clearly B 1is countably generated.

Suppose that there is.a countably generated T such that f -
is weakly measurable with respect to a I, © o(f x £) being .the '
completion of I with respect to. A|T. Without loss of generality, we.
may assume that B c zQ. But then, it follows from the construction.
of r that £, is A-dense in o(f.x ). In particular the inde-.
finite Pettis integral of f on z, (which is relatively com-
pact by Proposition 1) coincides with the indefinite Pettis integral
on o(I x £) (which is non relatively compact). .

Thus, we have got a contradiction, which proves that the o¢-al-

gebra with respect to which f is weakly measurable cannot be too
small. '

REMARK 5. Let us also observe that the function . f used in the
above example in the case of countable W gives an answer for a
long outstanding question concerning'fhe existence of conditional
expectations of Pettis integrable functions.:Indeed, if there
existed the conditional expectation E(f1B) of f with respect to
B, then the equality

[g E(£1BYdr = [, fdx
would hold for arbitrary E ¢ B. But B is A-dense in o(z x %)
and so the equality would be true for all E e o(r x r). This cle-
arly gives a contradiction, because according to the result of

Stegall ( [3], 3J) the set {IE E(f1B)d\: E ¢ B} 1is norm relatively
compact.
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Observe yet, that according to Proposition 1, a similar result

holds for arbitrary C o B being a completion of a countably gene-
rated € with respect to AIE.

If one does not want to use the result of Stegall, then the non

existence of E(f|L x PW) can be proved. Namely, an easy calcu-
lation shows that if E(f|f x PW) existed it would be equal to

X - (%) , where (%) e L,(W) 1is the sequence with all coordinates
equal to 1/2. But according to ([3], Theorem 2B), the function

a-»xa

X -

[13
(23
[3]
(4]
[53
(63

[7]

[81

[91

is not Pettis integrable with respect to H, and so

(t/2) 1is not Pettis integrable on 1 as well.
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