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ON COMPLETENESS OF THE REPRESENTATION SPACE OF J. W. CALKIN

K.-D. Kiirsten

Abstract: The representation space of J. W. Calkin [1 ] depends on
a state ( on lgg with W(eo) = {0} . We prove that this space

is complete if and only if ¢ is a finite convex combination of
ultrafilter-limits.

For a Hilbert space H (supposed infinite=dimensional, but not
necessarily separable), let B(H) denote the algebra of all bounded
linear mappings of H into itself. Let K(H) denote the ideal of all
compact operators in B(H). J. W. Calkin [1 ] has constructed a
representation of the factor algebra B(H)/K(H) in a certain scalar
product space - X'. The space X' depends on a state W on legg . It
is known that x‘ is complete if W ie a limit with respect to a
free ultrafilter [31 . Thus, the assertion that x' is never complete
( [1 ] , theorem 4.1.) is not true. In this note we obtain a
necessary and sufficient condition for the completeness of .56 In
particular, x' is not always complete.

We now fix some notations and recall the definition of X' Let
W be a positive linear functional on 1l oo such that (o(c ) = {03
and W (-(1,1,1,...) ) = 1. By [2] II §2 (8), there is a positive
finitely additive measure M on the Gjalgebra of all subsets of K
such that S :

W) =k aum) )
for all sequences (x ) in loo . Denote by "¢ the space of all
-va.lued sequences (f ) tending weakly to zero. The linear structure
of ¥ 15 defined by -

a (fn) +b (gn) = (a £+ 0 gn)',
Ve consider the linear subspace

Mo = e L% v, f)>>=o}

and the factor space

This paper is in final form and no version of it will be submitted for
publication elsewhere.
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The imase of (f ) under the quotient map X - xgis denoted by
(f nley - For (£, ) (g€ L", we define

1) ( (fn)u » (5n)h)) t= U(((fn,sn))),

@l = (1), (2,002,

3 "l(fn) Il := sup { f£,0l: n e_l} ,

@ ey M= ane ey - i = e M, 3.

It is easy to see thet Z",,,V,.‘, are closed subspaces of the space of
all bounded H-valued sequences with respect to the norm (3).
Consequently, the spaces (x‘, m . Hl) and (Z:J’m . m) are Banach
spaces. If (g,) & ‘/%9 , “then ‘

Hegd o 12 = ICe-m) y 12 = w2 -g, 12) =< [l ¢z -8 M
for all (f ) e X" . This implies

Pl < NEM
for all F ex"a . Now the open mapping theorem yields the following

eriterion.
Lemma: The normed space (xw Il - II) is complete if and omly if there
exists a positive J such that

) SMFN =< Qrl

for all Fe .Z'w
We now are in a position to prove the necessary and sufficient

condition for the completeness of xw.

Theorem: The space zw endowed with the scalar product (1) is a
Hilbert space if and only if &J is a finite convex combination of
limits with respect to free ultrafilters.

Proof: Suppose (x:\')' (.,.)) is a Hilbert space, i. e., (X' y " v “)
is complete. Let (e ) be an orthonormal sequence in H. Denote by
X (M) the caracteristic function of MCCH. Then (x (M)e ) € Z
for all subsets MCCN. If M(M)>>0 and (h )€ N then

iz fln 12 : new} < (ua™ WX, I, 12) = o.
This implies [|( X (M)e ),lll= 1. On the other hand,
XD |7 - w0 (X)) = ).
According to the lemma, this implies
0 <inf { (M) : HC W and M(M)=>0].

Standart arguments yield the existence of pairwise disjoint subsets



ON COMPLETENESS OF THE REPRESENTATION SPACE OF J. W. CALKIN 81

M M Ml of K satisfying the following conditions:

1? 210

MH ) =0, kzﬂ a, = 1, and HC M, implies M(M)e {0,a].
For 1=k =1,we define ultrafilters U, by

U, = {ucE: pm n,Mk) =a J.

Since W(o ) = {0}, MG =0 1f M 1s finite. Consequently the
ultrafilters ll are free. For each subset MC H we have

MAEN\UK) < WKBE\NUK) =1 - Xa =0,
w (X)) = u() = uM\ UK) + S uNu) =
=2 a, lim X, (0.

U

k
This implies

(6) W ((x))= kzl1 2, llilm x,
= k
for all (xn) € loo -
Conversely, suppose () has the representation (6), whereat a, =0,
& = 1, and U are free ultrafilters. Put o= (min{ak 1<k<1]‘)1(?
By the lemma, it suffices. to verify (5) for all F = (f )‘0 exw.
For, fix (£, Ye ¥" and £ = 0. Denote -

by = 111'm e,y b =max b, : 1sks1].
k
By the definition of the limit with respect to an ultrafilter, there

are sets M, € U, such that | llfn - bk[ < € for. all negM, . Define
Xn(Mo) fn , where Mo = U Mk' Then (gn—fn) é ‘A/w and
1l (g,) ll =< £+ b. This implies

Sl < SCE) S Te+ (2 a, 5,223 + [y |

Letting ¢ — 0, we get (5), which completes the proof.
I am grateful to F. Loffler for discissions on this subject.
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