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ON THE A.E. CONVERGENCE oF TR/ a, IN Ly~ SPACE

Asseni, Idris and Mesiar, Radko

1. Introduction

Let (X,L,m) be a c-finite measure space and let T be
a linear operator of Ll(x,ng) + A neccessary condition of the
pointwise convergence a.e. of ergodic means 1/n i-oT £, fe 1.1,
is B

(1) ™t/n— 0 , 8.6, :

The condition (1) is fulfiled in many npeeial cases, e.g., for T
beeing a positive contraction of both L1 and L, but of course
it is not satisfied in general. The condition (1) does not hold
even for positivt contractions of L; (see [3]).

‘Let {a, } be an increasing seguence of positive real num-
bers. We shall investigate 3he a.e. convergoncc to zero of
{Tnf/e .S for all f.eLl with recpect to the preperties of the
sequence {an}

2.’ The spectral radius of T

The n-th iterate of a linear operator T may have an expo-
nencial streaming determined by the spectral radius >‘T‘
Definition, Let T be a linear operator on Banach space B, Then

the spectral radius is defined as
' M = 11:&19 oY (10 S TR

| 1, A, = Lim AUT® = ine Rfr .
lema 1. 3y = iin B - tnt B

Proof. As IT™™| & UT®JLUT™)| , the sequence §log lIT"||} forms a
subadditive sequence. Thus, there exist

lim(log ll‘l‘nll)/n = inf(log ll'l‘nll)/n = lim log ’Vur“n'

see e.g. fGJ
To oliminato the expomencial trend.of 'r" in what follows we
suppose Ay = 1, If hp ¥ 1, it is sufficient to investigate the

»This paper is in final form and no version of it will be
submitted for publication elsewhere”. 4



58 ASSANI, IDRIS - MESIAR, RADKO
linear operator T°‘= T/Ap »

3. Finite space (X,%)

Let (X,Z) be a finite measurable space, (X,S , m) a mea-
sure space, A linear operator T acting on Ll(x,z ,m) may be vie-
wed as a matrix (Tij) » Tl = MUTy Il , where M depends only on
TRy Uelly is a norm in Ly-space, |l .ll is a matrix norm. For the sake
of simplicity, we identify T = (Tij) . Let A be Jordan matrix of
Ty, i,e. T = UAU'I, ™ = ua™~l, 1t'is easy to see that An =}.A .
Let )‘T = 1, Then the matrix A is a block-diagonal matrix with
eigen-valueski , maxuil‘" = >‘A = 1, For our pourpose it is suffi-
cient to work with A of the form :

20....0

o.“o
A= ?1)0000 =My + B ,lAl=1, I is an unit matrix,
Qes.OL) By = Op
. n ml n\gk | n=k m=1
Then for nym , A" = % (k)Bm PN , 80 that lxiim A/ =

= 1/ m=1 ! , All these facts imply the following theorem.
Iheorem 1, Let T be a linear operator on finite-dimensional L,-
space, Ay = 1. Then

i) for some mennegative integer k there exists positive finite
limit 1im UTR/n"

n
ii) for any sequence {an} with the property
(2) ay/n"—5 oo

and for any f€L; it holds T"f/a —0 , a.e, L,
1ii) the condition (2) is best possible to assure the a.e. con~
vergence of T“f/an, to zero.

4. General case

A direct extension of Theorem 1 / parts ii) and iii) / to the
general case of underlying measure space is not possible, as shown
in the next example,
Example 1, We construct an operator T satisfying ll‘l‘nﬂ= 2, n=1,
25000y . +@, i)of Theorem 1,for k = 0, an incrmsing sequence {an}.
of posi 've reals satisfying the condition (2) / even for k =1/
and a £ ction féLl » such that Tnf/an——>0 y 8.¢,, does not
hold, T! 3 example is a modification of an example in [5, p. 2621,

Le' S be an ergodic invertible measure preserving transfor-
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mation of {0, 1) / with Lebesgue measure / and define also Sf(x)=
= £(Sx) . Take 0&f&L,{0, 1) such that f£.log'£¢L,. By [7]

syp s"t/né Ly. Then there exists an increasing sequence {ni} of
integers such that E( n Sn:t'/n)?.i.2 . Let b =1 for n;_y¢n¢
¢ n; , ny = 0, Denote a i n.b, . As E(Bixn- gnf/an )21, we have
syp Snf/and; L,. It is obvious that an/n-—)o& . For the sake of
completness, we continue in presenting Example 1, although the
rest is essentially the seme es in [5, p. 2627 .

We define X ={0, 2) with the Lebesgue sets and measure. By
Theorem 4.3. of [5] there is a sub=-g-algebra d. such that
E(s“f/an /dJ.) does not converge a.e. Let E denote the conditional
expectation operator with respect to d . Define T on*Ll(O, 2) by
g(sx) 0¢x <1

Te(x) = { ES(1<Q’1) g)(x=1) lex¢2 .

Clearly T is linear / and positive /,
g(s™x 0¢x¢l
ets) - £ 55 7 Jx-1) 18 ¢2

We have IT%l; =2 , n =1, 2,.0., ITll,= 1, T1 = 1, Putting £°
on {0, 2) as £ on {0, 1) and O on {1, 2) we have for 1¢x¢2
T"!:"(x)/an =(Bs"t/a ) (x-1) , which does not converge on {1, 2) .
Remark 1, Similarly we can modify the example of a contraction
of Ll without a.e. convergence of Césaro means due to Chacon
(3] . By changing the choice of ¢, end K, in [3] we cen construct
a contraction T of L,  £€L, and a sequence (an} satisfying the
condition (2) with k = 1 such that
liginf T7f/a s 0 a.e.
1imaup Tnf/eun Q0 a.e.
For mean bounded operators, i.e. s§pP lanll‘= M < 00, where
= (I+T+, . +T%1) /0 , the problem of a.e. convergence of
']:nf/an to zero is solved completely by the next theorem,
Theorem 2, Let T be a mean bounded linear opsrator on Ll(x,z ,m).
Then _
i) for any increasing sequence {an} of positive reals with
the property
(3) Z1a 400
and for any £€ L, it holds Tnf/an——*o ) o€, _
ii) the condition (3) is the best possible to assure the a.e,
convergence of '1"‘t/an to zero.
Proof,



60 ASSANI, IDRIS - MESTAR, RAIKO
i) Denote U = § Ti/ai y 89 = 1. Then
o i=0 o
U= Eo (DU, = M) /0y = 2 (142003, (1/a; = Vay,,) ,
Mol &+ uE (141)(1/ag - ag,y) =1+ UZ Vs Lo,

8o that U is a well defined linear operator on I‘l‘ This implies
directly T%f/e —>0 a.e. , for every f¢L,.

ii)Let khe condition (3) does not hold, that is 2 1/a = oo .
Then there exist a mean bounded operator T on some ﬁl and £€ Ll
for which T"f/a —>0 ,a.e., does not hold, It is clear / after
Example 1 / that we can concentrate ourselves to the case an> n,
Modifying the Davis’s proof of his Lemma on p. 148 in [4] we ob-
tain for iiad {fn} that GULJMéL, implies syplf /a /4L, , where
G(a,) = é (a,-2x)/ay » @ = G(ay) on {a,, a,,,) « / The condi-
tion f.1lo f¢L for a, = n is an immediate consequence of
G(n)~(n+1)log (n;l) of
Fg{ a2 n, E 1/a, =00 we have limsup G(a )/a, 2 ligsup
(k 1/ag)- 1 =00, 80 that there exists f¢L) such that adr)) ¢L,.
) o From now on, we can continue as in Example 1.

Corollary, Let T be a power buunded linear operator on L,, i.e.
0<1i.gsupu'r"lh4°°. Then i) and ii) of Theorem 2. hold.
Remark 2, Theorem 2. solves also another problem of clasic ergo-
dic theory: what conditions on {a,} assure

(4) BRPlSnf/anléLl
for all measure preserving transformations S on (X, 2 , m ) ’
reLly (X, %, m). It is easy to see that for convergent ?-; /s,
does (4) hold., The proof of part ii) of Theorem 2, shows that for
divergeént § 1/a, the condition (4)may be false!

For a general linear operator T on L1 with O <ligsupllTannk<
4 ®© we can easily generalize the part i) of Theorem 2, We are
so far unable to generalize or modifly the part ii) .
Theorem 3, Let O CliﬂsupuTnI{/nkCDO/ or let Ocligauplmnlg/nk V4
400 /, Then for any increasing sequence {an} of positive reals
with the property

(5) Zn%a, <o

and for eny £&€L, it holds T"r/%——-) 0 , a.e.
Conjecture, The condition (5) in Theorem 3.is best possible.
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