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ON THE MECHANICS WITH NONCONTINUOUS HAMILTONIANS 

W.Kondracki, M.Kozak 

INTRODUCTION 

In physical applications we Lave sometimes to deal with mechanical 

systems with nondifferentiable, noncontiguous or even numerical ha-

miltonians. Such systems appear, for example, when we consider a 

reflection from a perfectly hard wall, a passage of a particle 

through a potential barier or in a control theory with noncontinuous 

controls. It appears a natural necessity to extend Hamilton mecha­

nics on a bigger class of hamiltonians - formulas until existing were 

demanding a differentialability of hamiltonians. A purpose of this 

paper is a formulation of mechanics with nondifferentiable or non-

continuous hamiltonians. In order to do it we have introduced a 

notion of an overflow, which is more common as the notion of a flow 

and more adequate to describe a dynamics of the mechanical system. 

§ 1. HAMILTONIAN MECHANICS IN SYMPLECTIC FORMALISM. 

Let a) be a nondegenerated and closed differential two-form on 

2n-dimensional smooth manifold S. Let us consider a mechanical 

system (S,w,H) with hamiltonian H being a smooth function on a 

phase-space S,A dynamics of the system (S,w,H) is described by a 

flow ipH:S xiR1 3 D9 (s,t) -• tpH(s,t) = (p!!(s) G S. The flow cpf is uni-
d H i 

cely determined by a following equation: ĝ |0
(f)t-' w = *H^® = ~dH w n e r e 

X denotes a vector field of the hamiltonian H. From a physical 

point-of view the flow ought to satisfy following postulates: 

1 •1 • Axiom of symmetry. ., 
i ^ 

If £ is a symplectomorphism and H = H o £ then tpt = £ o tp̂  o £ 
1*2* Principle of locality. 1 

If 9 is an open subset of S and H1 I = H91 then ip r 

'"e z,e t|e 
H2 

- t I . 
1.3. Calibration of energy 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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H1 H2 If H- = H + ef e= constant then cp. = cp. 

1.4. Connection beetween time - unit and energy 

H1 H 
If H. = cH, c = constant then cp . = cp. 

1.5. Principle of conservation of energy and laws of mechanics 

cp. keeps H and ^w : Vs € S -j--- H ( cp (s) ) = 0 cp. to = to, where 

cp : r°°(A T S)-*7*(A T S) is a transport of skewsymmetric two-forms. 

Sometimes in physical applications it is very useful to distinguish 

a n-dimensional configuration space M of the system (S,to,H) in 

it's 2-n dimensional phase-space S. We can do it on a following 

way: 

1.6. The phase-space S of the mecanical system is the space of a 

cotangent bundle (T M,TT,M). Each fibre of the bundle is a 

vector space of momenta p of the mechanical system. 

1.7. The hamiltonian H is a smooth function on T M H:T M-*JR . 

In each of fibres we can define a Riemannian structure <*,•> 

and the hamiltonian H as follows: H(x,p) = <p|p>+V(x), where 
/s/ 

V(x) = V ( T T ( X ) ) is a lifting by a mapping IT of the potential 

V with a domain on the configuration space M <p|p> has a 

sens of a kinetic energy, V(x) a potential energy of the 

system (S,to,H). ) 

1.8. The skew-symmetric two-form to is defined as follows: 
Let a be any smooth section of the bundle T M. (a £ r°°(T M) ) , 

* * oo 2 * 

Two form to satisfies a formula: a to = da, a € r (A T S) -> 

"•r°°(A T M) S = T M. It appears that so defined form to is 

closed and nondegenerated. 

Let us notice that a procedure of describing the dynamics of the 

mechanical system by a notion of the flow concerns situations when 

i 

hamiltonian is of class C . In a practice we deal often with sys­

tems with nondifferentiable or even noncontinuous hamiltonians. In 

order to describe the dynamics of such systems let us introduce a 

notion of a more general object - an overflow which could globally 

describe a history of the mechanical system, also after a reaching 

hamiltonian nondifferentialability points. 

1.9. DEFINITION 

Let S be a manifold, D an opened subset of R * S. A mapping: 

D9 (t,x) ->cpt(x) € S is an overflow if are satisfied the following 
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conditions: 

1° Let (x,s) € D. There exists an open subset 0c S such that 

s£0 and cp.(') is a smooth diffeomorphism 0 on cpt(e)c:S. 

2° vs G S <p, . (s) is a smooth curve in S, parametrised by opened 

subset of such t for wchich (t,s) €D 

3° If (t,s) , (l,s) , (t+l,s) € D then (l,<pt(s))€D and cp1(cpt(s)) = 

=<P1+t<s) 

The notion of overflow allows us to consider integral curves 
1 

<P/#v(s) defined on nonconnected subsets of R . Two following 

theorems give connections beetween flows and overflows: 

1.10. Theorem 

If M is a manifold, N it's submanifold and cp. (x) a flow on 

domain d c M then ^ t ^ ==s <Pt'x' Id w n e r e d is a set of such 

points belonging to d for which xEN and cp. (x) €N is an 

overflow. 

1-11. Theorem 
i 

Let cp.(s) be an overflow defined on DcIR x s. We denote D 
^t o 

as a set of such points (t,s) GD for which (at,s) €D for every 

a€ [0,1] . Then D is opened and connected subset of IR x S and 

an overflow cp, (s)|D is a flow. 

Let us notice, that overflow determines unicely a vector field 

but a vector field gives in general a lot of different overflows. 

1.12. Example 

Let M = IR . Let us consider a flow cp°(x) = x+ t with domain 
1 1 * D = IR x IR . if we remove a point 0 from M, then D will be 

a set of such points (t,x) for which x ?-0 and t + x ^ O . Then 

cpt(x) is an overflow on IR - {0}, because integral curves 

cp, .(«) aren't connected. 

§ 2. THE EVOLUTION OF A MECHANICAL SYSTEM WITH A NONCONTINUOUS 

HAMILTONIAN. 

We consider cases in which a configuration space M =IR : 

2.1. A reflection on an ideally hard wall. 

Let us consider a hamiltonian given by a formula: 

3R1 3 (x,p) -> H(x,p) = §- + V(x) €IR1 , where 
2m 

V(x) :Ш1
 Э x-* V(x) 

0 for xЄШ
1
 - {0} 

for x = 0 

We approximate the potential v(x) by a sequence of smooth functions 
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V (x) satisfying following conditions: 
n J 1 
2.1.1. V (x) converges pointwisely to V(x) for x eiR 

n 1 
2.1.2. V (x) converges almost uniformly to V(x) for x EIR - {0} 

n 
2.1.3 VE>0 BN-jClN Vn>N1 V^(x)>0 for x€]-oofxQ[ V1 (x) < 0 for x e ]x* ,»[ 

n i 

2.1.4. VE > 0 .1N2 e-N Vn> N2 Vn* (x) ̂ O for x € ] -«,XQ[U]x.1 , »[ 

where x ,x1 :V(xQ) =V(x1) = E, E is an energy of a system 

2.1.5, Theorem 
If a sequence of functions Vn satisfies the above conditions, 
then a sequence of flows <pk corresponding to hamiltonians 
H= E_+ v (x) converges pointwisely to an overflow 

2m n 

(x,p) = <-|x+£| ,P sgn(^- t)), p> O, x< O, t / S- on 

TR2- ({0} xIR1) 

we say that the overflow corresponds to hamiltonian H with a 

potential V. 

From a theorem, that if coefficients of a vector field converge almost 

uniformly, then flows.corresponding to them converge at least 

pointwisely, we obtain a convergence of flows for x€ ]-°°,0[ 

and t < ---x-m- . To prove the convergence for the whole flow, it 
P ' 

means for t > ̂ ^ it is enough to show that a time of passing from a 
P 

state (x ,p), x <0,p>0 to a state (xQ,p) with a reflection on a 

wall converges to |2xQ|^ . Conditions 2.1.3, 2.1.4 ensure that a 

sequence of times of passing from a state (xQ,p) to a state 2 

(x ,-p) corresponding to a sequence of hamiltonians Hn(x,p) = ̂  + 

+ V (x) will be convergent. One should, for example, eliminate ca­

ses in which V (x) satisfies conditions 2.1.1. and 2.1.2 and has a 

saddle (it means Vn(x)=0) with vale E on interval ]xn,6[ 

,<AW*) 

Є 

In such a case a passing from a state (x
Q
,p) x

Q
 < x

n
 < 0, p< 0 

p= /2mE to a state (x ,-p) is not possible in a finite time 

because when a saddle is achieved by a system, it's state is not 

changing. We call such behaviour of mechanical system as a waste 

of time. 
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Let us consider a state (x ,p) with an energy E; we will realize 

our argumentation for a left half-axis, whatever doesn't brake a 

generality of our considerations 

Let us introduce a following notation: 

t - a time of passing a system from a sta ?x ,v.; to a state 
xox1 r 

(X.. , p ) 

t ox ~ a t i m e o f passing a system from • ; t a te (x ,p) to a s t a t e 
o o . v 

( x Q , - p ) 
Le t e : 0 < e < E , x e . V n ( x e ) = e , x E . V n ( x E ) = E 

- A1 
We have a common formula t = /•=• / dx' 

'o*1 * xQ /E-V(x') 

Let us notice that t ^ is limited below by t . ~ -a time x Ox •* min x ox_ o o o o 

of passing from a state (x ,p) to a state (x ,-p) with a potential 

V(x) = 0, for xe [x ,0[ and t Q x = -x / ^ xQ< 0. It is easy 
o o 

to see that we haven't any waste of time because from assumptions 

2.1.3 and 2.1.4 there exists for t n a top estimation 
X AUX 

o o 
t _. defined by an approximation of V (x) by linear func-
sup x Ox ** n 

tions L. and L~ on intervais [x ,x ],[x ,x„] 
1 z o e E £• 

L1 (x) - X -X 
e o 

We can write t 

Є
"

V П ( X Q )
 (x-x

o
)

+
V

n
(x

o
), L

2
( X ) = ^ (x-x

є
)

 +
 є 

E є 

sup x 0x
A 

ľ o o 
explicite 

ЧuP ,„<*„ • * ! £ ( / 7 = ^ • í т-^--;) • -V 
2m 
E 

є+0 

Let us notice that t /-•. > t ~ > t . ~ and u
 sup x Ox - x O x

A
- min x 0x_ r

 o o o o o o 
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t s u p x O x n
= t m i n x Ox = " V T ' s o w e o b t a i n fcx Ox " " V ? w h a t 

c O o o o o o 

we w a n t e d t o show. 2 

2 . 2 . Now we c o n s i d e r a h a m i l t o n i a n IR 3 ( x , p ) -> H ( x , p ) = S— + V (x ) 

ДR1 Э x-> V ( x ) 
0 x Є ] - ~ , 0 [ 

E x є [ 0 , ~ [ 

a) let us consider a state with energy E < E. We approximate 

a potential V(x) by a family of functions V (x) satisfying 

following conditions: 

2.2.1. V (x) converges almost uniformly with a first derivative 

to V(x) for x€IR1 - {0} 

2.2.2. V (x) converges pointwisely to V(x) for x=0 

2.2.3. Vn(x)>_0 for xC ]-«>,«»[ 

2 . 2 . 4 . 3NG1N Vn > N VM ( x ) > _ 0 on i n t e r v a l ]TCO,X O [ 

Using the same procedure as in the case 2.1 we obtain that a time 

of passing from a state (x-,p) to a state (x..,-p) is equal -2X . .- . 

An overflow has a form: 

<Pt(x,p)= <-|x+£|,p sgnt^-t)), t * f-

b) States with energy E = E. An evolution of a mechanical system 

has a physical sense only to a moment of achievement of a point 

x = 0 by the system. 

c) States with energy E > E. Overflow has a form <p.(x,p) = i 

= (x + E— , p - e(x) /2mE) , where we have chosen x G ]-°°,0[, p > 0. 

Let us notice that a time of passing from a state (x.. ,p) to a state 

(x2,p), where x . .x2 > 0, p>0 is equal | x̂  —x2 I m * 

We ought to examnine if it appears a waste of time by passing from 

a state (x..,p) to a state (x2,p- /2mE) x.. < 0, x2 > 0, p>0. For this 

purpose let us calculate a time of passing from a state (-e,p) to 

a state (e,p- /2mE) , 

m % dx1 
є > 0:t =•£ / T -є /E^-Vtx1

) 

Finding lim t = 0 we see that we haven't any waste of time. 
e-K) "

e e 

2.3. Let us consider a hamiltonian 
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1RZ 3 (x,p) -+ H(x,p) = §^ +V(x) where 

V(x) 

183 

2 
} _ _ 

2m 

O for xЄШ
1
 - {0} 

E f or x = 0 

a) States with energy E < E. On the same way as in the case 2.2 we 

will approximate a potential V(x) by a family of smooth functions 

keeping following conditions: 

x :V (x ) = E
л
 x = 

o n o o o 

x
o1l

 x
o

< 0 

x
o2l

 x
o

> 0 

2.3.1.
 v

n
<

x
) converges almost uniformly with the first derivative 

to V(X) oh a set 1R
1
 - {0}. 

2.3.2. V (x) converges pointwisely to V(x) for x=0 

2.3.3. VE < E3N
1
 EN Vn > N

1
 V" (x) > 0 for x6 ]-~,x ..[ 

1 ¥iT 

V (x) < 0 for xЄ ]x 

"oľ 

o2' »[ 
2 . 3 . 4 . VE Q <E 2N2€ N Vn> N2 Vn' (x) >_ 0 for x € ] - ~ , x o l [U]xo2,oo[ 

In t h i s case an overf low has a form 

«p t(x,p)- ( - | x + ^ | , p B g n ( - S . - t ) ) f ttf 

(b) States with energy E = E. If a initial state is (x,p) 

x<0,p>0 then an evolution of a system we can characterize only to 

a moment, when a system achieves a point x=0 

(c) States with energy E > E. Overflow has a from: 

<Pt(x,p) = < 
(x+ ̂ / P - /2mE) , x= 0 

(x+ ̂ гrP), XЄШ
1
 - {0} 

where we have chosen x6 ]-»,0[,p> 0. 

A time of passing from a state (x-,p) to a state (x
2
,p) for 

x
1
x

0
>0,p>0 is equal t = |x

1
 - x91£ . t v is also equal 

i <& x^x^ i -* m x,|Xn 

|x.. -x 2|^ for p> 0, x-j x
2 < 0 because there is no waste of time 

by passing from a state (x,.,p) to a state (x2*p),x1x2< 0: 

we have lim t = lim (/̂  / dx' 
e-*0 "ee e-K) Z -e /E -V(x') 

) = O on the samé way as in 

case 2.2. 
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2.4. As the last, the us consider hamiltonian: 

3R1 3 (x,p)-> H(x'P> = 2lii + v* x ) where 

•ax for x E ]-"°°rO[ , a>0 

]R1 3x -*V(x) = -i 

Let us consider a state with energy E> 0. As in above cases we 

approximate a potential V(x) by a family of smooth functions 

V (x) satisfying the following condition: 

x o : V x o ) = E ' 

xo1' xo < ° 

x^o x~ > ° Oz, o 

2.4.1. Vn(x) converges almost uniformly with the first derivative 

to V(x) on a set 3R1-{0}. 

2.4.2. V (X) converges pointwisely to V(x) on IR . 

2.4.3 VE>0 ЗN
1
ЄNVn>N

1 

V
n
(x)<0, xЄ]x

Q І
-є,0[, є>0 

V
n
(x) > 0, xЄ Ю/X

o 2
 + є[, є>0 

dx' 

2.4.4. VE> 0HN2€ N Vn > N2 V£ (x) >_ 0, x 6 ]X Q 1 - e ,X Q 2 + e[. 

- X2 
we have, of course t = /--* •/ 

X1 X2 z
 X l /E-V(x') 

Let xA,xB:V(xA) = V(xB) = E 

It is easy to see that a system has not any waste of time. It could 

be only in neighbourhoods of the points xA and xfi, but the con­

dition 2.4.3 dispels our doubts. The overflow has a form: 

<p.(-t,p) -= (x(t);p(t)) where we have chosen a state (-x,p) , where 

x>0, p>0 as an initial state. 
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x ( t ) 

- x + m - t + 2 T - ' t Є A 

2 2 2 
/E-+ 2 x o [ t + - E - - l / E . r + 2xa] - | [ t + - — - 1 / E - + 2 x a ] 2 , t £ B 

m2 m a a m2 2 m a a
 m

2 

2 2 2 

Í ( ^ 2 + 2 x a ) - ! [ t - F / ^ 2 + 2 x a ( 1 + | ) + m T l ' t £ C 

- / 4 + 2 x a [ t - l 4 + 2 x a ( 2 + i ) + i L ] + 

m m 

+ | [ t - l 4 ^ x a ( 2 + i ) + ^ ] 2
 t £ D 

m 

p ( t ) 

p + atm, t Є A 

2 2 
m/*Ц- + 2xa - mß ( t + ------ 1 / E_ + ma a 

2 + 2xa) , tЄ B 

-mß [ t - 1 ł-Ц- + 2xa (1 + i ) + -£-] , t Є 
ß 2 

2 2 
-m / Ь-г + 2xa + ma [ t - 1 / Қr + 2xa (2 + ---) + -2-] , t Є D 

.~,-* P .„-^ a roa 
m m 

[ n T , - ^ + / - - 2 + 2 x a 1+nTÍ-
m 

2 2 
B = ] nT + - / Ь- + 2xa - £ - , 1 / Қ- + 2xa (1 + i ) - -£- + nT[ a n . 2 

m 
ma' ß 2 m 

C= ] n T + l / ^ + 2xa(1 + i ) - - £ - , 1 / Қ , + 2xa(2 + ̂ -) - -£- + nT[ 
ß 2 
p m 

a' ma' ß 2 m a' ma 

D = ] n T + l / 4 - 2 x a ( 2 + i ) - ^ , ( f + | ) / 4 + 2 x a - m ^ + n T l 

m m 

9 9 T. 

where T= («•+-) / ?• + 2xa is a period of a movement of system a' 2 

It is easy to generalize all above cases on a case of n-dimensional 

configuration space. We have the following theorem. 

2.5. Theorem. 

Assumptions: Let a differentiable manifold M be a n-dimensional 

configuration space of a mechanical system. Let M be.a (n-1)-

-dimensional submanifold in M. Let in a vector bundle T M be a 
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Riemannian structure <.,.>. let us assume that on T M we have a 

hamiltonian H= <p|p> +V, where V is gfven by lifting by IT of 

V being a function defined on M, smooth in points of M-M . V 

has besides a following property: VxG M there exists such mapping 

that open neighbourhood U 3 x is mapped on K(U) c3R and 

K ( U O M )-• K (U) nm n~ 1 , V| =\T(K(U)) where V(x1 , . .. ,xn) = V(x1) and 
9 n n —1 /N 1 

(x ,...,x ) are coordinates of IR and V(x ) has in point 
1 

x = 0 a germ equal germs in 0 of potentials considered in case 
1,2,3,4. 

Thesis: There exists the unique overflow corresponding on a natural 

way to hamiltonian H. The physical postulates from a 

chapter one are fulfilled. 

Outline of a proof: if we write a problem in the map as in the 

assumption of the theorem 2.5 we obtain one of the cases presented 

above. Smooth hamiltonians considered in those cases are satisfying 

our postulates and it is easy to see that they are also fulfilled .03 
a limit of flows (p corresponding to hamiltonians H . 

As we see the introduced notion of an overflow enable us to describe 

a dynamics of mechanic systems with nondifferentiable or even non-

-continuous hamiltonians. A history of a mechanical system described 

in terms of a flow was coming to the end in singularity-points of a 

hamiltonian-using the notion of an overflow we overcome these diffi­

culties and we are able to describe the dynamics of a mechanical 

system also after reaching the hamiltonian-singularity points. 
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