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ON V - G - FOLIATIONS

Robert A.%Wolak

In recent years a lot of attention has been paid to the study
of Riemannian folistions. A great deal is known about their
characteristic oclasses, the geometry of leaves and the base=-like
ocohoniology. In this short note we would like to point out that
V=G=foliations have many properties similar to the properties of
Riemamnian foliations. The given examples are going to show that.
they are net naturally in the study of certain geometrical objeots
on menifolds. All the objects considered in this note are smooth
i.e. of class r® ,

1, Definitions snd exampvles,

Let ! be a smooth manifold of dimension n,snd N be a smooth
manifold of dimersion q€n,., Let B(N,G) be a G-structure ,on N, and
V a G-oorneotion, By PG denote the groupoid of germs of local
diffeomorphisms of N which are both affine transformations of the
oonnection V and automorphisms of the G-structure B(N,G).
Definition. A codimension q foliation F on the menifold M defined
by a I"G—Haefliger structure F is called a V =G=folistion modelled
on B(N,G),

Remark 1, Actually, a V=G=foliation is given by the following
cocycle [Ui'fi'gij} s Where {Ui} forms a covering of M, fizUi-aN
1s a submersion for eaoch i, gH are local diffeomorphisms,

gijgfj (Uinuj)' —>r1(U1" U;]) which ere at the same time both affine
transfornetions of the connoction V and automorphisms of the G=
-structure B(XN,G).

Remark 2, A codimension g, Riemennian foliation F is a V-0(q)-
-foliction for some 0(q) structure on a msnifold N and the Riema-
nnisn connection V of this structure (of, [6] e

Proposition 1, Let F be a V=G=foliation modelled on B(N,G). The
normal bundle of the toliation F admits & Gereduction and its
Chern-Weil homomorphism annihilates 1¥(G) for r>[e/2) .
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Proof. Let {U, , 7, , g5 | ve a cooyole defining the foliation F.
The normal bundle N(F) restrioted to U1 1s the inverse image by
fi of the tangent bundle TN 1.e. N(F)IU f:TN. Thus, on each

U1 , N(F) admits a G-reduotion. ‘Sinoce 8,4 are automorphisms of
B(N,G), the G=reductions of N(F) glue together to give a global
one, The conneotions r’;V are conneotions in the corresponing
tronsverse G=structures (of, [19] ),and since gij are affine
transformetions of the connection V7, these connections glue toe-
gether and define a transversely projectible Geoonnection. Its
ourvature form §2 is transversely projectible, thus 2T = 0 for
r>[a/2] . Hence the Chern-Weil homomorphism annihilates I¥(G) for
r>[a/2]

Example 1, Let F be a G=folietion modelied on B(N,G), We shall
show that if the first prolongation g(1 of the Lie algebra g of
the group G is trivial, then in many oases the foliestion F 1s a '
V =G=foliation,

Proposition 2. Let F be a Gefoliation modelled on B(N,G) whose
stucture tensor vanishes and g“) is trivial, Then F is a V=GC-
~foliation for a torsionless oconnection V.
Proof, Since 3(1) is trivial, a Ge=connection is determined by its
torsion (of. [9] ). Choose V to be the torsionless connection in
B(¥,¢). Since the imege of a torsionless oonnection by an auto-
norphism is a torsionless conneotion, any automorphism of the G-
~struoture is an affine trensformstion of the conneotion V', thus
the foliation F is a V=G=foliation,

The abovs proposition can be generalized in the following way.

Proposition 3, Let F be a @=foliation modelled on B(N,G). Assume
that the space Hom(R%RY,R?) admits a subspace C such that
(G)(c) = C, where L 1s the natural representation of the group
GcGL(RY) onto the vector spooe Hom(RY L\r%,RY), and Hom(RRY,R)=
= C® imd, where 3 1s the antisymmetrization d: Hom(R%,8) =->
Hom (RY Rq,Rq). If the first prolongation g of the Lie algebra
€ 1s trivial, then the foliation F is a V=G=folistion,
Proof, According to [8,9] , in this csse, there exists & conneo-
tion V which is left invariant by any sutomorphism of the G-
=-structure B(N,G). This means precisely thet F is a V-G—folia-
tion,
Proposition 3 oan be ;/Jsed to furnish & muoh simpler proof of a re-
sult due to G.Ceirns (of.[3]).
Theorem 1., Let F be an oriented Riemannian foliation. If the folia-



ON V/=G=-FOLIATIONS 331
tion F admits an odd, q'-codimensional extension F’, then the base
=like Euler olass venishes,

Proof, The fact that the folistion F is & Riemsnnian foliation
means that F admits a bundle-like .metric g, Let F’ be the given
extension of F i.e. (F, F’) is a flag structure. Let [(Uia Pi)} be
an adapted atlas to this flag structure such that Vi(U ) = 11XIE ,
where Ii’ Ig denote n=q dinengional q dimensional cube, respectiwly.
For each i the bundle=like metric g induces a metriec on Ig such
that the transition transformations cre local isometries, But these
transformations preserve the natural foliation Fi of Ig. Thus, they
also map F{ into Fj . Hence the foliation F is a G = SC(g=q’ )x
S0(q’' )=folintion, But the group G is seni=giriple, so its natural
representotion on Hom(RqARq,Rq) is semi=simple, And, sinoce 3(1)= c,
al). the assumptions of Proposition 3 are satisfied. Therefore, the
base=like Euler class of the foliation F is given by the image of
the polynomial 1*Pf e I(S0(q-q) xS0(q’)) via the Chern-¥eil homo-
morphisn of the conneotion 7 , where Pf is the Pfaffian, i the
patural inclusion, ond V the conneotion of Proposition 3, Directly
from the dofinition of Pf (of. [7] ) this class vanishes.

Exanple 2. A.Goetz devised a way of induoing G-connections from &
ziven linear connection {'or some Lie groups Ge. Let H be a reductive
subzroup of G, Then the Lie algcbra g of the group G can be de=
coniposed into the direot sun g = h @ n, where - h is the Lie aljsbra
of H and Advmcm for any veH, There is one~to-one correspondence
vetween the invariant projections of g onto h and the decomposi-
tions g =h®n .

Let 3(,H) be an H-reduction of a Ge-structure B_(N,G)e Let w
be a conﬂection on B and 1 the inclusion of B into B « Then
w'=s pi¥y is a connecuon on B (ofe[10,11]1 ).

Proposition 4, Let F be a V=G=toliation, U a reductive subgroup
of the group G, If the transition transforms tions gij ere auto-
morphisms of an H-structure, then F is a €7-P-foliation.

Proof, Let W be the Geconnection. Then w'= pi w is an H=conneo-
tion, One can easily check that the transition transformations
g4 ere affine transformations of the connection w',

We shall apply the above to the following (of.[24]).

Let V = (V1,..,V}) be a set of smooth distributions of oonstant
dimension, assume thet the set V is olosed under intersections.
The set of indiges {1,..,r} is partielly ordered by 1 £j iff
vic;va, Define V, = §:i Vyor ¥y =01f 1 1s minimal, Let ny =
= dim Vi/Vi. The set V will be oelled an independent system of -
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distributions 1f V,+...4V, = TV end n,>0 , Y n, = n = the dinmen-
sion of the ambient menifold. Let D1 be a complementary distribu-
tion to Vi in Vg, then V, = % D,, Such a system D of distribu-—
tions will be oaslled a basis for V, Having a basis D one can de-
t+ine a system of projectors Pgs Pyt ™ -e>D , pi Py pipd=0

for 1 # 3.

To relate Goetz’s construotion to our ocase of a basis D oonsi-
der the following operstor, As n = > ni, D defines an almost
oroduct structure and therefore a GL(n1,..,nr)-struoture. Let Py
be the projectors defined by the struoture. Then for any linear
conneotion w, the form w'=2§2p1w considered on a GL(n1,..,nr)-
structure defines a GL(nq,..,nr) connsction, as the projection
S py of s1(n) onto gl(n1,..,nr) 1s GL(n,,+s,n )= invarient. There-
fore in this case we can apply Goetz’s construction and as a
ccrollary of Proposition 4 we obtain the followihz proposition:

Proposition 5, Let V be an independent systzm of distributions on
a manifold N, F be & V=foliation (i.e. the transition transforma-
tions 84 4 preserve V) and V=GL(3)=foliation, If the transition
transformations 813 preserve a basis of V, then F is a V-V=foliag~
tion,

Izanple 3. Degenerate Riemennian foliations, The theory of de=-
generate Riemannian structuras difters a great deal from the Rie-
mannisn one, The most importent differsence, for our purpose, is
that there exists no canonicel metriec connection for such a
stracture, Fortunately, V.Oproiu found a2 general forrmla for con=-
nections in these structures (ct,[20]). Using this formula, after
lorng and tedious computations one can prove the tollowing proposi-
tion,

Froposition 5, Let F be a V=GL{q)=toliation and g be a degenerate
Rinmennian metridé on s nanifold N, Let F be definad by a cooyocle
{Ui’fi’hij] such that h1 are affine transformations of the con-
naction {7 and automorphisms of the degenerate Riemannian metrio

8« Lot there exist locally 1=forms Wy defining a distribution H
supplementary to kerg suoh that h“wk K* Then there exists a
degenerate metric connection V’suoh thet the toliation F is a
V'-degenerate Riemannisn foliation,

Example 4, Let V be an almost-multifoliate structure on a mani-
fold N, In [21] I.Vaisman proves the existence and uniqueness of
a linear connection on the manitold N given by the following ocon-
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ditions:

Let D be a basis of V derined by taking the orthogonal comple-
ments of V to V,, i) Vb D43 i1) Vég(x Y) = 0 for any ¥,7 »Z€D, ;
T (X,Y)=0 ror X Yeni, where T> is the Di-oomponent of the torsion
tensor, g denotes a Riennnnisn metric on the manitold N compatible
with the almost-nultifoliate struoture V; the basis D hes been
taken with respect to this metric.

This connection allows us to prove the following proposition,

Propozsition Y. Let F be a Riemannian almoste=multifoliate folia~
tion, i.e. the folintion F is detined by a cocycle {Ui’fi’gij}
such that the local diffeomorphisms gy preserve agn slmost-multi-
foliate ctructure V and they are isometries of a Riemannian metric
compatible with the almost-multifoliaste structure V, Then the
Chern~Weil homormorphisms of the normal bundle of the foliation F
factorizes through I(O(Q)"GV)[q/e]' where Gy is the atructure
sroup of the almost-multifoliste structure V,

Proof., The local diffeomorphisnms 8y 4 are isometries of the Riema-
nnian metric, hence they preserve the distributions Di‘ Therefore
they are aftine transformations of the Vaisman connection V of

the slmost-nultifoliate structure V., From the definition V is a
connoction in the 0(q)n Gy~reduction of the frame tundle of the
manifold N, Thus the folintion F is a V= O(q)n Gy~foliation,which
together with Proposition 1 yields the result.

2+ Secondary chnracteristic classes,

The theory of secondary oharacteristic classes of V-G-follia-
tions is very similar to the corresponding one for Riemeannian fo-~
liations developped by Lazarov-Pasternack and contained in [15] -
W7e shell consider a V=-G=foliation with the trivial normsl bundle,
The oharaoteristic olasses considered will measure how nuoch the
foliation differs from a transversely parallelisable one.

Let G be a conneocted reductive Lie group. Then I(Gf is iso-
morphio to the polynomial algebra R[c1,..,or], where o, are
transgressions of a basis of the space of the prinitive elenments
of the Lie algebra g. Let WG, = R[04sess0,] [q/2]®/\{ le =1+ The
cohonology of this complex is equal to the cohoriology of the
cauplex W(J(>a/2), J(0)) (ofe[16]). The homomorphism Alw,wg) :

WGq ~—> A(M) is defined by a connection w = the transversely
projeoctible connection in the frame bundle of the foliation F
induoced by the connection V', and the flat connection Vg defined
by a trivialization S of the G~reduced normal bundle, The homo-
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morphism A(w,wg) defines a morphism in oohomology denoted by
A (F,S).

Theorem 6,3 of [16] provides us with a basis of the space
H(wcq). We leave to the reader to restate this theorem for the
conplex WG .

3 -1

Let t be the trensgression t:H' (BG;R) =—=> H'~ ' (GjR), r»1. The
napping t 1s a homomorphism of the additive structures, maps
primitive elements into primitive elements and products into O.
The detrinition and basic properties can be found in[2]. A poly-
nomial PeIr(G) can be considered as an elemnent of the space
Har(BG,R), because of the Weil homomorphism (cfe[7],[2]). We oan
write explicitly a form f% on the group G which represents tP ip
cohonology

= (=1/2) 7 AL p(w, [ww) e fnw] ),

where w 1s the Meurer-Certan form on the group G,

Thcorem 2, Let F be a V-G=foliation and S = { 1,..,sq] and
s'= {81,..,5 ] be two trivializations of the reduced G-normal
bundle and s’ => gg 840
Then
1/ AF(F,S)hy = AF(F,S )y = g¥toy,
11/ for P = 011...01 ® hy 1/\ ...Ahj » Where 2(1,+..+1.)<q,

3°=m1n{31,...3 ] . e, fon ot )
* ’ k—1 §
N (F,S)P = NE(F,S' )P —%(-1) g toJk.

(F,s’ oo, o b (A(F,5')n, +&¥to, )
(A Yo, °1, 1<k$s( (F,57)hy *e °k,ﬂ

The proof is the same as that of Theorem 4.2 of [15].

Proposition 8, Let (Ft’s ), t€I, be a differentiable family of
V7-G-foliations with trivial normal bundles, Then

A (F ,SO)P A (Ft,S )P for any teI,

where the polynomial is of the form P = oth, 2(11+...+ip+30)>q+2.
Proof. Since all the reduced normal bundles are isomorphic - the
trivializations define these isomoyphisms =~ we can reduce the
above problem to the case of one trivial G=bundle and a differen-
tiable family of G-connections. Therefore we can apply results of
[14]. We use them to show thet the form 9/asA(Fg,S,)P =0/osA(W,,
°)P is an exact one, The oomputations are long and tedious but

straightforward,and we shall leave them to the readers The impor-
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tant condition is that 2(11+...+1p + Jo) -2>q .

Theorem 3, Let F be a given V=-G-foliation, V/, & differentiable
family of Ge=oconnections such that the foliation F is a Vt"G'
foliation, Let st be a differentiable family of trivializations
of the reduced normal bundle. Let Wy be the connection of the
normal bundle induced by the connection $7t,and Vg be the flat
cbnneotion induced by the trivielization Sge Then For any tel

A"(wt.wst)P = A¥(w g )P,
0
for P = o,h, such that 1/ 2(11+...+1p+30)> q+2, or i1/ j = (3,)
and 2(11+...+1p+;].,)> q+1.
Proof, If 2(11+...+ip+30)> q+2, we obtain from Proposition 7 what
we want, If j = (31), then A*(wt,ws ) does not depend on the
t

trivialization, and therefore we have only to oconsider A*(wt.ws )

)
and applving Theorem 4 of [14] as in the proof of Proposition 7
we get that B/t A*(wthO)P =0 1F 2(44+..0ti +) ) >4, as
the forn ft is loocally the inverse imege of a 1=form on the mani-

fold ¥,

Theoren %4, Let G,H be two reductive connected Lie groups, G being
a closed subgroup of the group He Let F be a given g-codimensional
Toliation with trivial norrial bundle, Assume that the foliation F
is a Vt’-c-foliation for a differentiable family of connections

_V@ of an H-structure on a manifold N, and Ge-oconnections for some
differertiatle family of G=substructures of the He=structure. Let
St be a differentiable famlly of triviaslizations of the H=reduced
normal tundle being at the same time trivializetions of the family
of the Ge-reductions of the normal bundle, Then, if 1¥:I(H) -=1I(G)
is the homonorphism induced by the inclusion i : G ==> H

A"(Wt'wst) P = A"(wo.wso) ,

for Pein i* and of the form i, ii of Theorem 3 or P = o, hy ir
* 172
2(11+12))q+1 and 0110125 im 17,

Proof, Since the considered G=structures are reductions of a given
Hestructure snd the homomorphism A¥® 18 functoriel in the struocture
groups, the first part of the theorem is a corollasry of Theorem 3,
The second part results from the following equality proved by
S-Se Chern and J.Simons (of.[4]). Let ¢ = oiojeI(H),/fhen
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Alw,wo)h = o, A AlW,Wo)hy + aW = oy A Alw,mg) By+d¥y,

vhere Wo ’ W1 are some forms, Therefore applying the above equality
and the first part of the proof we get the result.

3. Normal bundles of order r and characteristic olasses.

Let F, = be a Vg-G—toliation modelled on B(N,G) snd F, a V%G—
~foliation modelled on B(N,G)., We say that the foliations Fo and
F1 are affinely G=homotopic if on the manifold MxI there exists
a G-foliation F modelled on B(N;G) such that

1) F 1s transverse.to Mx{t} for any teI,

2) Fjmx {0} = F, , Fldx{1} = F, ,

3) F is defined by a cocycle {Ui A gij} such thet if
é& (x,t) = (gid(x),t) and p:NxI —> N is the nstural projection,
in the rrincipal fibre dundle p*B(N,G) there exists a oconnectionV
of which Ei. ere affine tronsformations and V|Nx{0}= Vo and
vinx{1}= ¥, .

One cen easily check that the characteristic olasses of a V=G-
~foliation depend only on its aftine G-honotopy class,

Lot T te a V-G-foliation modelled on B(N,G), and N' (F) be its
norrial tundle of order r (of,[22]). On Nr(F) we have a Vr-Gr-fo-
liation F¥ of the tsame dimension as F such that on the zero sec-
tiorn 1 of the bundle Nr(F) the foliation F* induces the foliation
¥o The inverse image of the ring of characteristic olasses of the
folietion Fr by the mapping i is equal to the ring of charscteris-
tic classes of the folistion F (of,[22], Lerma 14). We say that
a Vg-G-foliation F° nodelled on B(M,G) and Vq—c-foliation PH
modelled on B(N,G) are affinely C-=homotopic of order r if the
lifted folietions Fz and F: modelled on Br(N,Gr) are affinely G -
homotopio., Therefore the following theorem 1s true.

Theorem 5, The characteristic olasses of V=G-folistions depend
only on att'ine G=homotopy classes of order r,

Remark, Theorem 5 is a generalizstion of Cordero’s result contaired

in [5] .

4, Struoture theorem for V-G-folistions.

Let F be a V=G=foliction modelled on B(N,G). Let B(M,F;G) be
the transverse G-struocture and w the tronsversely projectible ocon-
neotion in B(M,F;G) induoced by V', On B(M,F;G) we have a csnonical
foliation FG of the same dimension as F given by € = 0, 40 = 0,
where @ is the fundamental form of the G-struoture B(M,F;G) (of.
8], [19]). et A, , 1=1,..,k be & basis of the Lie algebra g =
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= Lie G. Then the vector fields A? i=1,..,k and B(ej), J = 1,004
form a trivialization of the normal bundle of the foliation Fj ,
, where Af is the fundamental vertical vector field defired by Ai
and B(e,) the horizontal vector field detined by €(B(e.)) =
=e,e Ra. One can essily ocheck that because F is a V-G=foliation,
these vector fields are locally projectible and these projections
are just the vector fields A? and B(ej) of the G=-structure B(N,G)
with the connection /. Therefore the foliation F; 1s transversely
paralleliseble, Hence we can define the transverse central sheaf
C of the folistion F (of.[18],[19]). The secctions of this sheaf
are the 1ifts of trsnsverse infinitesimal automorphisms of the
transverse G-structure B(L,F;G) vwhioh are at the same time affine
transformations of the connection w., Actually, let X be a section
of the sheaf C. Then[X,Ay]= O and [X,B (e,)] = O. This is equi-
valent to the condition that Lxe = 0 and Lyw = 0. This means
exactly that X is a 1ift of a transverse vector field on M which
1s a transverse infinitesimal sutomorphism of B(M,F;G) end an
infiritesimal stfine trensformation of the oconnection w . Locally,
these vector fields are mull~backs of irnlinitesimal automorphisms
of B(N,G) which are atrire infiritesimal trenstormations of the
connection V .

Proposition 9. The transverse central sheaf C of a V-G-foliation
T is the sheaf of germs of 1lifts of transverse infinitesimal auto-
morphicms of the trsnsverse Gestructure B(M,F;G) whiok are at the
sane time infinitesimal aftine transformations oI the connection
We' '

Renierk, Proposition 9 corresponds to Theorem 1 contained in [37]
proved by P,tiolino for Riemonnien folistions. -

Defirition, A /-G=folirtion T on M modelled on B(N,G) is trans—
versely corivlete if a transverse parallelism defined by the veotor
fielés AT , 1 = 1,..,k , Bley) , 3 =1,..,a 1s complete.

Theorem 6, Let I' be a transversely complete V/-G-foliation on the
menifeld I, Then the closures of the leaves of the foliation FG
form a locally trivial fibre bundle called the basic fibre bundle.
Proof, It is an immediate consequence of Moliro’s structure lemma
(ef.[18], [19]). '
Let p: B(M,F;G) =3 W be the basioc fibre bundle of the folia=-

tion F., Sinoe any central vector field must commute with the pull
=back of any veotor field on the manifold W, it is tangent to the
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fibre, Thus the transverse orbits of the transverse central sheaf C
are the olosures of the leaves of the folistion FG' As for Rieman-
nian foliations (of.[18],[19]) for any leaf L of the foliation Fo »
the folistion of T by leaves of the foliation FG is a Lie folia-
tion with dense leaves,

Remarke Un a ocompact manifold M, for any oompact Lie group G, any
V =G=foliation F is transversely complete. It is so, because the
total space of the transverse G-struoture B(M,F;G) is compact.

Let T be a \/-G=foliation modelled on B(N,G) and defined by a
cocyole {Ui » Ty 813} « By imF we understand a subset Uinf, of
the manifold N,

Theorem 7, Let G be a oompact Lie group and M be a ocompact mani-

fold. Let F be a V=G-foliation modelled on B(N,G)., If a stalk of
the sheaf B of germs of infinitesimal automorphisms of B(N,G), be-
ing at the same time iInfinitesimal affine transformations of the

connection V,is trivial at some point of imF, then all the leaves
of the foliation F are compaoct,.

Proof. The proof is almost the same as the proof of Theorem 1 of

[17]. Let x Ve a goint at which the stelk B, is trivial. Thus for
any point m of r; (x) the stalk C 1s trivial, henoe the leaf of

the foliation FG through m i1s ocompact; thus all the leaves of FG
are compact, so the leaves of the foliation F are compact,

One of the ressons that Riemannian foliations on oompact mani-
folds hsve very nice topological and geometrical properties 1is
that the 1ifted folistion to the transverse O(q)=-structure is
transversely complete. This can be proved because the group 0(q)
is oompact and any Riemennian foliation is V-G=foliation for the
Riemanrian oornection V . Very often we oan reduce the struocture
group of the normal bundle to some compaot group (of. Theorem 1),
but rather rarely the Riemannian oonnection is a oconnection of
this reduced G=structure, This 1is equivalent to vanishing of the
structure tensor of this reduced transverse G=structure, But fore
tunately, we can show that any G=foliation, with G being a compaot
group, is a V/=G-foliation for some G-oonnection V . Therefore
some theorems, for example, on base=like cohomology true for Rie-
mannian foliations are true as well for such G=-foliations., Thus,
in many cases, we ocan find easier ways of computing the base-~like
oohomology of Riemannian follations with some additionel trans-
verse struocture.
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Proposition 10, Let F be a G=foliation modelled on B(N,G) for some
compact Lie group G. Then F is a V=G-foliation for some connectionV
in B(N,G).
Proof, Since G is a compact group, the first prolongation of the Lie
algebra g of the group G is trivial, Since all finite dimensional
representations of the group G are semi=-simple, so is the natural
representation on Hom(RqARq,Rq)." Therefore the assumptions of Pro-
position 3 are fulfilled and F is a V=G-foliation.

Let F be a G=foliation with the group G connected and compact on
a compact manifeld M, Since the foliation FG on the total space of
the trensverse Gestructure B(M,F;G) is transversely parallelisable,
using the same méthods as in [1] we can prove  the following theorem,

Theorent 9, Let G be a compact Lie group and F a G=foliation on a
oompact manifold 1M, Then the basio Lercy=Serre spectral sequence of
the principal fibre bundle B(H,F,G) —-=> I has the seoond term

qu‘= HP(HJFW ® Hq(g) and is convergent to H*(B(M,F;G),FG).

To complete this short note we would like to point out how the
struoture of the group of automorphisms of the model G=structure in-
fluences the behaviour of the leaves of & given C=foliation; for the
proofs and more Aetaile see [23] ., Let I' be a pseudogroup of local
diffeomorphisms of the manirold N, ile say that the pseudogroup I'
has the property Ek , k any integer, if for any point x of the mani-
fold N, the spaces {Jgr 1 fe F(Uh)} are equal for some sequence of
open subsets Uy such that U, = N and 17U, = {x] . Let G be a closed
subsroup of the linear group GL(q) of finite type k, let B(N,G) be
a G=structure on the manifold N, Let I" be a pseudogroup of auto-
morphisms of the Gestructure B(N,G) having the property E, « Let F
be a M=foliation on an n-manifold M in the sense of Haefliger (of,.
[12]) ). Then we have the following.

Thoorem 10, The lifted foliation F to the universal covering‘ﬁ of
the menifold M is simple i.e. defined by a global submersion.

Theorem 11, Assume that the manirfold M is compaoct. The growth of
the leaves of the foliation F is dominated by the growth of the fun-
damental group ’U1(M) of the manitold M.
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