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REMARKS ON METRIZÀBLE LOCALES 

Alei Pultr 

The notion of a locale is a generalization of that of a topo­
logical space, obtained by concentrating on the structure of open 
seta (for a basic information see, e»g.,[8]# for more detail the 
monograph [7]K I» this paper we inrestigate some properties of 
metrizable locales (defined in [63; see also [ll] ), In particular, 
we show that similarly as in the classical case, metrizable locales 
are always coliectionwise normal, that they have one of the proper* 
ties equivalent in the classical case with the paraoompaetness, 
and that the Bing and Nagata-Smirnov metrizability criteria hold. 
The proofs follow in a large extent the ideas of the corresponding 
classical ones (cf## e.g., [5],[9])• The notes in the last section 
concern preserving the metrizability in sublocales, sums and count­
able products of locales, 

1.Preliminaries 
1.1. A locale (see, e#g»,[l] ,[?],[8l) is a complete lattice L 

satisfying the complete distributivity law 

**VJN * V <*Ay4) • 
i€j * ilj % 

The bottom of L will be denoted by 0, the top by e. Recall that the 
distributivity law implies also that x v ( y M ) » (xvy)A (xvz) 
while in general the join does not distribute over large meets 
(see, however, 1.13 below)* 

1.2+ The complement x of an element x of a looale L is the 
largest y* L such that J A I • 0 (thus, more formally, x • 
V{yl ys L# y A x * 0 ) )• We easily see that 

1>3. One writes 

*<a y 
i f xvy • e . A locale L is renslar if 

V aeL a « N/{x{ x < a} • 

This paper is in iinal form and no version of it will be submitted for publication elsewhere. 
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One write8 

if there are *±fL» i=0,l,<... ; j - 0 , 1 , . , , . , 2 1 such that 

U> *00" * • * 0i*
 y » 

(2) X i ^ - ^ j , ! . and 
(3) xi+1.2j ' xi.j • 

A locale is completely regular if 
VacL . a « V { x l x < : W a i 

(see, e.g., [2] # [ l ] )» 
1+4. A basis of a locale is a subset B c L such that 

V a ^ L 3 B c B such that a = V B \ 
1.5, A cover of a locale L is a subset A c L such that 

VA = e • 
We say that a cover A is a refinement of a cover B (and write 
A-{B) if for each aeA there is a beD such that a«;b. 

For a cover A and an element x^L we put 
Ax = V l a l a G A » aA-tj- 0 }« 

If Jl is a system of covers, we write 
x-*q y 

if there is an A€ir such that Ax^y. We put 
L^«[xaL I x -- viy l y ^ * } • 

Note that x < y implies x <q y • Moreover (see[lO])9 L « L ^ for 
a system of covers iff L is regular* 

1.6, For a cover A put 
A* » { V B I BcA, (a*beB -=> aAb / 0)} . 

We say that a system Jh of covers is a uniformity basis (briefly, 
a u-basis) on L if 

V A * > 3B€J) such that B*-<A« 
By [llj , L = LJI with a u-basis Jh iff L is completely regular* 

We say that a locale L is metrizable if there is a countable 
u-basis A- such that L * Lj\ . (This is equivalent to the definit­
ion given in [6]; in the spatial case, i.e. in the case of a locale 
which is the lattice of open sets of a space, it coincides with the 
classical metrizability. Also in general it seems to be well mo­
tivated - see the following paragraph,) 

1.7, A pre-diameter on a locale L is a function 
dJL^B + 

( B^ is the set of non-negative reals) such that 
(1) d(0) m 0 , 
(2) a*£b *¥> d(a)*Sd(b) , 
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(3) Vs^O, £a 1 d(a)<.£$ is a cover of L. 
It is said to be a star-diameter if 

for any S c L such that a 9beL =£• aAb j- 0 , 
d(VS) < 2 sup {d(a) | a e S } ; 

it is said to be a metric diameter if 

(4) for a,b such that aAb j- 0 
d(avb) s? d(a) + d(b) , and 

(5) V x e L Vfc>0 3a 9b<x such that 
d(a)9d(b)<£ and d(avb)>d(x) -£ . 

(cf • D--Q t SD« Every metric diameter is a star diameter (see D.Oj9 

Lemma 5.1). In the spatial case, the bounded metric diameters are 
in a natural one-one correspondence with the bounded metrics 
on the space in question such that the induced topologies are 
weaker than the original one (see Clll, Theorem 2.?)* 

For any star diameter d 9 
Wd> « { {x I d(x)<£} | n=l,2.*.. \ 

is a u-basis« More generally, if d, (ieJ) tire star-diameters then 

VUdiUSJi) «{{.*l*1<*
)<nJ ( n«l92#-. ; iej} 

is a u-basis* By [ll](Theorem 4.6)9 

L • LJ.L with a countable u-basis Jf- iff L • L^.j 

for a metric diameter d. 

(Which fact gives the formal definition of metrizability a more 

concrete contents.) 

1.8. We say that a diameter d separates v from u in L if 

(1) d(v) -* 0 and d(u) = 1, 

(2) if XAVJ* 0 and d(x)<l then x^u* 

By [lOj (Theorem 4.11) there is a metric diameter separating v from 

u iff V<KJ u. (Moreover, one can always chose a d witt\d(x) ̂  1 

for all x.) 

1»9. The following is straightforward : 

Lemma : Let d. (ieJ) be star-diameters on L such that d.(x)^l 

for all i and x. Put d • sup dJL« If all £ x \&{x)<l\ are covers# 
d is a star-diameter. Q 

1#10. In the sequel, countable systems of covers Jt • fA.>A^#oe 
...9An»... } will be considered. The symbols A will be used 

always in this sense. Furthermore9 we put 

<V s Vfy Uny^x}# 
We have 

Lemma : 1. AM*6Mx < x . 
- n n wmmmm-

2 . 06 x < x (or, squivalently, oi-xVx « e ) . 
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3. If L = La then Vec x • x for ail x. 
Proof J 1 follows from the distributivity# 2 follows from 1 

and from [icQ (Proposition 2.2). 3 is an immediate consequence of 
the definition of L^ • 0 

1-11. A system £x.\ie J*£ of elements of L is said to be dis­
joint if 

i ji j =$> x.Ax, « 0 • 

It is said to he discrete if there is a cover C such that 
VccC* C A X . /* 0 for at most one ieJ* 

It is said to be co-discrete if there is a cover C such that 
V c e C , c ^ x . for at most one ieJ» 

A subset B c L is said to be ^-discrete if B * v_jBQ with 
B n discrete*

 n 

1.12. We have c *£ x^ iff c A ^ t 0. Thus, we make an 
Observation : fx^} is discrete iff {x^l is co-discrete. • 
lol3. Lemma : Let {x^j *>« co-discrete* Then, for any y# 

Proof : It suffices to show that c A f y v A ^ ) * * c A ( A t y ^ ) ) 
for all C € C where C is a cover (indeed, this implies that 
y v A x i ^ / M y v x i ^ an^ *he ^ -inequality holds anyway). 

Take the C from the definition of co-discrete* For ceC we 
have c * A * i s /\io^%^) * c/^x±ic\ Jfor a suitable i(c)eJ. 
Thus. 

cA(yv/\x i) « (cAy)v (CAX1(CJ) * CA<7VX1(C)) > 
> c A A < y v x t ) . D 

1,14» Lemma : Let { x / J j b* discrete and x ^ y for a l l i e J f 

Then \f*±<$ y • 
Proof : By 1 .2 . 1.12 and 1.13 we obtain 

"VXjV y s (Axi)Vy * A<*iv y> • • • D 

2•Normality and collectionwise normality 
2ml. A locale L is said to be normal if for any x.yeL such 

that xVy = e there are a.beL such that 
avy s e -xv'b and a Ah * 0# 

It is said to be collectionwise normal if for each co-discrete 
system t x ^ j there is a discrete {y^l* such that 

(of* [2]# [s]). 
2*2. Proposition : In normal locales we have the implication 

x <i y «-> x < w y • 
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Consequently, a normal regular locale is completely regular* 

Proof : It suffices to show that whenever x < y , there is a 

z such that x < z < y , Let x <q y. Thus, xvy - e and hence we 

have u,z, such that xvz = e, uvy = e and U A Z = 0. Thus* 

u <: *z and hence also zvy = e • D 

2.3. Lemma : Let there exist sequences x • yQ such that 

x n ^ x • V̂  y 

and 

(V*n>
vy = e = xv(\/yn) • 

Then there are a,b such that a v y = e = xVb and a Ab = 0 , 
Proof : Put n n 

V s xnA A / k • bn = y n A ^ x k » a s V a n # 
b " Vbn . . 

We have a
n

v y s ( * n v y ) A A ( y ^ v y ) = x
n ^ y a n d h e n c e a v y = 

= V x
n v y = e , and s imilarly xVb = e. Obviously, a n Ab k • 0 

and hence a Ab e N/(a A b . ) » 0, Q 
*»K n K ^ 

2 . 4 . Theorem : 1. Each regular Lindelof locale i s normal. 
2 . Each L such that L = L* for a countable system of 

covers i s normal. 
3» Each regular locale with a <£-discrete basis i s normal. 

Proof : The statements follow from 2.3 : Let xVy = e • 
1 : Consider countable subcovers t x

n ^ u i y i °* i u \u<-ix|oJy} 
and i y n ^ { - « 3 of { u | u < y } u i x l * 

2 : Put x^ » od x , • = ô  y (see 1 ,10) . 
n n * *n n" / r 

3 : Let Bn be d i s cre te , L)Bn a bas i s . Put xn* Vlb 1 b e B Q # 

b < x } , and s imi larly yn# By 1.14, *n<a* • y n < y • by t h e r e ~ 
gular i ty V x

n
 s x» V y n

 s y* 0 
2»5» Theorem : Let L = L^ with a countable J} • Then L i s 

co l lect ionwise normal* 
Proof : I . F irs t we w i l l prove a weaker statement 

for each co-discrete i ^ j there i s a d i s jo in t 
* * * { y ^ j such that \/± \^y± • *• 

Let C be the cover from the def in i t ion of co-discreteness # Put 
v t * V { c \ c e C . V j ^ i c ^ x j l • 

Obviously 
(1) V j # i . V ^ X j 

and, s ince V c s V { c \ c s x ^ J u V{c 1 c ^ * i J a-nd the second sum-
mand i s ^ v^ » 

(2) \f± • x i V T i * e • 
Put 
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řiлåvi» "i-ӯ̂  u in =
 S ^ І - Í : , ^ • " i - v « i n 

We have 

« S/ix+Vuv,) * X-iVV^^^ * x . v • . » e J i x n i x j f n x i 1 n n 
(see 1 .10) . 

Let i j f j , k ^ n . Then u i n A e p ^ j < op k * ± A ^ k ^ A » 0 (as v,*-S x̂ ^ f 

we have ^ j ^ j ^ ̂ fcxi a n d bonce °^ k
x i< ^ ^ 1 * s o t h a t ttinAuJkm 

» 0 . Consequently* u . A n , - 0 i 
II* Take the u. from I and denote 

D' » [ d e L | dAu. J- 0 for at most one i } * 
In part icular , u^eD* and hence u . ^ V D * s o that Csee 1.13) 

Y D V A ^ - A ( V ^ V x . ) ^ A ^ v x . ) . e • 

Since L i s normal (see 2*4*2), we have a , b e L such that 
a v ( /\x^) * e f \ / b vb * e and a Ab = 0 * 

Put 
y. * u. A a , D • D#u£b^ • 

D i s a cover and deD meets at most one y .* F ina l ly , 
x i V y i * * * i V t t i * A ^ v a ) * x t v a ^ ( A ^ l v a * e . 0 

3 . -d i scre te refinements of covers of L-Ln 
with Countable A 

3*1. Construction : Let J)= { A , » A 2 , . . . } be such that L*--o-, • 
Let B « l ^ i ^ i e j fee a n arbitrary cover of L. Consider a fixed 
well-ordering < on the se t of indices J . For i e J and n natural 

c i n " V b j v ^ n T i • 
3*2. Lemma : For each n , Lc±n\ ±$j i s a co-discrete system* 
Proof : Consider the cover AM • For aeA_ let i be the least 
••••• n B -

index such that a^c
in* Thus* in particular, a^ 0£ b., hence 

aA<J6nbi ^ ° *° tnat a< bi (see 1.10) and hence a^c. for all 
J>i (and a^c.n for j<i by the definition of i). n 

3*3. Construction continued : By 3*2 and 2*5 there are dis­

crete systems i*in^i#J auo^ *ha* 

Put 

c^v/dj^ • e foг all i 

<
n

a d
i n

A b
i -

3,4* Lemma j For every i , 



(1) V b ^ V d i . . . > b i • 
j< i J n 
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V(N?C)> Vbj • 
jN<in=l J n j ^ i J 

Proof 2 I . Let i be the f i r s t element in ( J , < )• Thus, we have 
to show that N/d*n > b i which w i l l follow from V<* i B > b t . 
We have d. vlSJIE* « e and hence d. > 06«b. . Thus in n i in ^ n i 

V^^n ^ V ^ b i * b± (see 1 .10) . 
n & 

II* Let the statement hold for j<i» We have 

V<V*i) - V i V O * V«£ ^ Vb.vVdj; 
j*i n Jn j<i n J° n ln j<i J n xn 

so that it suffices to show that 

V 
We have e « c i n v d i Q * (d. v N / b , ) V «t b^ so that 

*nbi« dinVV^j 

and hence» finally, we obtain (1) using 1.10* Q 
3*5* Theorem : Let L * L^ for a countable Jf- • Then each 

cover of L has a (j1-discrete refinement* 
Proof ; Notation from 3.1 and 3*3. The system D « ldinli n 

is d -discrete and d^n ̂  b. • Thus, it suffices to prove that 
D is a cover* By 3.4 we have 

VD - ViVdfj - V ( V ( V < » > V V b , * \/B « e • a 
i n ln i j$i n xn i j4 J 

3*6* Remark : In the spatial case it is well-known that the 
existence of tf-discrete refinements of all covers is equivalent 
to the paracompactness (see, e.g., [o})* In the case of general 
locales this question seems to be open (of*[3])* It may also be 
so that the two properties do not coincide in general while still 
being equivalent for the case of L - L ^ with countable M- :. So 
far, Theorem 3*5 is all we are able to tell on the question of 
paracompactness of metrizable locales* 

4»Bing and Nagata-Smirnov metrication theorems 
4*1* Lemma : Let L = Lj^ and let there be given for each 

k&Jl a refinement B <£ *B • Then U<£ is a basis of L* 
Proof : Obviously x o y *& x<3 y and hence L « L ^ • Thus, 

it suffices to prove that USh is a basis* Take an x e L and put 
^(x) « £u lu<2 x\ * For at; Jr(x) chose an k<=J} such that 
Au^Tx and put A • £a \ a&A. aAu ̂  0} • We have U ^ \ / A ^ x 
and hence x « V c where C « Vj{Aulu € - $ ( X ) } • Q 
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4*2» Theorem : If L > U with a countable *# then L has a 

£ -discrete basis* 

Proof : For A e i f consider a 6*-discrete refinement B_ (re-•••••— n n 
call Theorem 3*5)• By 4,1 we obtain a ^-discrete basis by put­

ting B « U B n • fj 
4*3* Theorem : The following statements are equivalent : 

(i) L is metrizable 

(ii) L « Ljf. for a countable A • 

(iii) L i s regular and has a d-discrete basis* 

Proof : (i) *$> (ii) is trivial* 

(ii) :=-> (iii) follows from CLO}(Theorem 2,8) and Theorem 4*2* 

(iii) ̂ 5> (i) : We have a basis B = (jBn with B n « 

* [b . \ieJ(n)^ discrete* Since L is regular, each x equals 

\/{b I b eB, b<q x\. Consequently, 

bni e ̂ C n k i where cnki = V { * I « * B
k . •<» * B iV. 

( US is the set of natural numbers*) By 1*14, °Qki
<<^ bni and 

hence, by 2*4*3 and 2.29 

••k**3 bni ' 
By flO^(Proposition 4*8 and Construction 4*3) there are metric 

diameter© dnki separating cnk± from b n i • Put 

dnk B SUP dnki • 

Take a cover C such that each ceC meets at most one b .« b -s(c)* 

Take an £ ^ 0* We can write 

v c n,K9iic) c 

(put D c = £cAv I dn k i(c)(v)< *\ >• For u«sDc and J j* i(c) 

we obviously have d - ^ u ) » 0 and hence d||k(u)<£ • As \J{DclceCj 

is a cover, £u | d . (u)<*$ is one and the assumption of 1 9 1'« 

satisfied* Thus, 

each d . is a star-diameter* 

We easily see that 

for x<t>ni
 on* *-«• dnk*x* * dnki*x* • 

Consider the system 

(recall 1«7), Now, by [1.Q (theorem.4*6) it suffices to show that 
L * L ^ * We have cnki<5 b n i and hence b n i • V { y | y<J

b
nj^ • 

Finally, for a general x we have 

x *V(b IbeB, b$x\ « V* Vly Iy£bj IbeB, bsx} < 

^ \f{j\y£*\ < * • Q 
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4*4* Remark : The equivalence (i)<^>(ii) in 4*3 is a generalize 

ation of the Bing metrization criterion, tne equivalence (i)O(iii) 

is a generalization of the Nagata-Smirnov metrization theorem 

(see [5~]. pp.408 and 351 respectively)* 

o. Sublocales* products and coproducts 
of metrizable locales 

5*1* So far we have been concerned with individual locales 
only. Now, howevert we will have to deal with morphisms between 
them* This forces us to be more particular about the terminology* 
The category of complete lattices satisfying the distributivity 
law x/\(\/y.) » Vtx/xy^ and the mappings between them preserv­
ing finite meets and general joins is usually referred to as the 
category of frames and frame homomorphisms» The category of locales 
is its dual; thus, representing a topological space by the locale 
of open sets, and a continuous mapping f :X—»Y as the frame ho-
momorphism sending U to f~ (U), we obtain a covariant embedding 
into the category of locales instead of the contravariant one into 
the category of frames* A sublocale L# of a locale L is represent­
ed by a frame homomorphism of L onto L* A product of locales is 
represented as a coproduct of frames and vice versa* 

5.2. Proposition : Let <{:L-->L' be a frame homomorphism* 
If A is a cover of L. tf(A) is a cover of L'and we have 

Y x ((>(A) (f(x) ^ cp(Ax)* 
Consequently* if ̂  is a system of covers and if we put KA « 
= {<-f(A)|A€*#]; • we have the following implication : 

x <i y in L :=> y(x) <j <jp(y) in L*. 

Proof : We have Vf(A) = (f(VA) - <f(e) =- e. Now* let 
(^(a)A(p(x) / 0 for an a&A* Then ^(aAx) j* 0 and hence aAx / 

> 0 so that cp(a)£ <.f(AxL Q 

5*3* Proposition : Let a frame morphism <f :L-> L# be onto, let 
L -* L^ * Then, in the notation of 5*2* L = Lj^f * 

Proof : Take an X£L'; we have an x*£L such that x'= <p(x). 
————— A i 

Since L * Lj± , x =- \f{y \ y < x } so that by 5.2 
x'= V{(f(y)J y < x } < ; V{^y) I < t > ( y ) ^ x ^ V { x | z ^ x # ^ x # . 0 

5.4. Corollary : A sublocale of a metrizable locale is metriz­

able* a 
5*5* Proposition : Coproduct of any system of metrizable 

locales is metrizable* 

Proof : Let L. • L A* with J}^ « L A ^ A ^ * * * * * ] * The copro-
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duct L of the localee L. is the product X L i 0Jf the corresponing 
frames. For x e L put x£ • (JAK^J where y,« 0 for j/i and y.« 
= X. Put 

Thus, V*^ 1 8 eT a*111* since \/ e* * * in L9 

A*" « I j A r J 
n iiJ in 

is a corer of L* Put /̂r » { A?,A*#««* J o 

For y<fx in ̂  we have y?<<3, xj^ (indeed, if * i ny<
x» w© 

have V L y j ^ *£ )• Thus, for each x e L 9 x? « \/£u \ u ^ xj ̂  
and since [xj"( xeL.f i e J ] is a basis of L, the statement 
followst> Q 

5o6» Theorem : Product L of at most countably many metrizable 
locales is metrizable* 

Proof : Let L± « L., , i*l,2,..,., Jh±
 a tAii»Ai2*###^ We 

have (in the frame language) L * €£)L. and frame homomorphisms 
i=l x 

li : Li—^ L such that the elements ojC the *orm 
m 
A t, (x.) with X . 6 L 
k«l *k * * xk 

constitute a basis of L# (For a handy description of the product 
of locales - coproduct of frames - see e.g. [4]). Put 

4 n ' fcx<«M •«* ! • * - C jUJ^, 
A ( i l V n l nm) * Af,n A A i 0 n A - - ' A A f n • 

1 1 2 2 mm 
** a c Aiiifr###*im'nlt#*#*nm^ \ ••*!•• •••*»•*!•• •••ntoB**2»~J. 

Obviously, 4 i s a countable system of covers of L« 
Now, let 

*"i 
y k < " x k 

for k»l#2,...#in. We have A . n yk «£ x. for a suitable n^ . 

Hence, by [lcfj(Proposition 1.7*2) and 5*2, 

A(i1#...,n ) ( A L± (yk))-^ A
A i * n Lk (*k } ̂  ^ Li ̂ k* 1 m k-1 *k * k=l *knk * * k-1 *k * 

so that 
m JJ- m 
A l4 (yk)<a A L± (xk) • 
k«l -k * k-1 -k. * 

New we hare 
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V/H* 

VIA L i íyk) l v ^ v yke L i ^s V . • •• • V A u (yk)» 
l k»i -k- * * K xk yx ym k»i xk k 

- V " ' V ( A t 4 (yk)A V L t (y)) -
A ^..t k-l xk * A-. » " 

y l ^ x l y- .-f xm-l V 3 x« 'm m 
m - 1 

• ( V . . . \ s A L ± (y k ) )A L± (X ) « • • . « 

- A L i (*k) 
k-1 xk * 

so that 

A L± ( x k ) ^ V t A L± (yk) \ A Lt ( y k X A L4 U k ) W 
k - l x k K k - 1 xk * k= l xk K k -1 x k k 

< VT - I - < A L4 U k ) ] < A L, ( O 
k= l x k * k-1 xk * 

and since the elements 

A Lik(xk) 

constitue a basis of L, we obtain that L = LA • Q 
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