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REMARKS ON METRIZABLE LOCALES

Aled Pultr

The notion of a locale is a generalization of that of a topo-
logical space, obtained by concentrating on the structure of open
sets (for a basic information see, 6.g.,[8], for more detail the
monograph [7]). In this paper we investigate some properties of
metrizable locales (defined in [6]; see also [11]). In particular,
we show that similarly as in the classical case, metrizable locales
are always collectionwise normal, that they have one of the propere
tiez equivalent in the classical case with the paracompactness,
and that the Bing and Nagata=Smirnov metrizability criteria hold,
The proofs follow in a large extent the ideas of the corresponding
classical ones (cfe, ©.g.,[5],(6] ). The notes in the last section
concern preserving the metrizability in sublocales, sums and count=
able products of locales,

l.Preliminaries
1.1, A locale (see, eege,[1],[71,(8]) is a complete lattice L
satisfying the complete distributivity law

‘Ai\e/in = 1\6/Jhrsy,) .
The bottom of L will be denoted by O, the top by e. Recall that the
distributivity law implies also that xv (yAz) = (xvy)A (xvz)
while in general the join does not distribute over large meets
(see, however, 1.13 below).
1.2, The complement X of an element x of a locale L is the
largest yc L such that yAx = 0 (thus, more formally, X =
V{yl yeL, yAx = 0} )¢ We easily see that
| Vg = A%y
13, One writes

XYy
if Xvy = e . A locale L is regular if
Y ael a=\{x|xaal o

This paper is in final form and no version of it will be submitted for publication elsewhere.
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One writes
x<<1y
if there are xiJﬁL. i=051,00¢ J=0.1.-u.3i such that
(1) x)0= X » X175 »
(3) xijqxi.jﬂ. » and
(@) X541,y = %5 ¢
A locale is completely regular if
YacL & a=\/{x|x<xa}
(see, eeges [3]1,[11)
1.4. A basis of a locale is a subset B L such that
VYael 3BcB such that a = VB®.
1.5. A cover of a locale L is a subset AcL such that
VA =0 o
We say that a cover A is a refinement of a cover B (and write
A<B) if for each acA there is a beB such that agb,
For a cover A and an element xc L we put
Ax = \/{a|aea, anx #0}.
It ﬂ is a system of covers, we write
x4y
if there is an A €A such that Ax<y. We put
Ly ={xeL | x = Viy |y&x} .
Note that x 3y implies x <1y . loreover (see[l0]), L = L, for
a system of covers iff L is regulare
1.6. For a cover A put
A* ={VB | BcaA, (aybeB => anb £0)} .
We say that a system S of covers is a uniformity basis (briefly,
a u-basis) on L if
Yaec 4 3Bep such that B"<A.
By [11] » L =Lg with a u-basis A iff L is completely regular,
We say that a locale L is metrizable if there is a countable
u-basis /& such that L = l‘./} +« (This is equivalent to the definit-
ion given in [6]; in the spatial case, i.e. in the case of a locale
which is the lattice of open sets of a space, it coincides with the
classical metrizability. Also in general it seems to be well mo-
tivated - see the following paragraph,)
1.7e A pre-diameter on a locale L is a function
d:L—>R,_
(R, is the set of non-negative reals) such that
(1) d(0) =0,
(2) asb = d(a)sd(b) ,
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(3) Vero, fald(a)<€} is a cover of L.
It is said to be a star-diameter if
for any ScL such that a,bel = aaAb £ O,
a(Vs) < 2 sup{d(a)| aeS} ;
it is said to be a metric diameter if
(4) for a,b such that aAb £ 0
d(avb) < d(a) + d(b) , and
(5) ¥xel Ve>0 3Ja,b<x such that
d(a),d(b)< & and d(avb)> d(x) -&
(ct. Ell] o S1)e Every metric diameter is a star diameter (see [,10].
Lemma 5.1) In the spatial case, the bounded metric diameters are
in a natural one-one correspondence with the bounded metrics
on the space in question such that the induced topologies are
weaker than the original one (see [Lﬂ. Theorem 2.7).
For any star diameter d ,
Ua) =§ {x|ax)<i} | n=1,2,0.. %
is a u-basis. More generally, if d, (i eJ) are star-diameters then

Vg lidd) ={{x|a;(x)<L} [ n=1,2,00. 5 163}

is a u-basiss By [11)] (Theorem 4.6),
L =Ly with a countable u-basis H iff L = Lmd)
for a metric diameter d.
(Which fact gives the formal definition of metrizability a more
concrete contents,)

1.8. We say that a diameter d separates v from u in L if

(1) d(v) =0 and d(u) =1,

(2) it xAvd O and d{x)<1l then x<u,
By [10] (Theorem 4.11) there is a metric diameter separating v from
u iff v<aq u. (Moreover, one can always chose a d withd(x) <1
for all x,)

1.9. The following is straightforward :

Leuma : Let d; (ieJ) be star-diameters on L such that di(x)sl
for all i and x. Put d = sup djo If all L= \d(x)<£} are covers,
d is a star-diametere [l

1,10, In the sequel, countable systems of covers A= {‘1 AQ.“
""An‘“‘ } will be considered. The symbols A will be used
always in this sense. Furthermote, we put

= \/{y | Anny} .

We have
Lemma : 1, A o x <X o
2. o x<1x (or, squivalently, < XVvx = e ).



250 ALES PULTR

3. If L =Lgthen Ve x =x for all x.
Proof : 1 follows from the distributivity, 2 follows from 1
and from [10] (Proposition 2.2), 3 is an immediate consequence of
the definition of L, « O
1,11, A system {xi\ieJ‘; of elements of L is said to be dis-
joint if
ifgy = xi/\xj=0.

It is said to be discrete if there is a cover C such that
YecaC, cAx; £0 for at most one ieJ,

It is said to be co-discrete if there is a cover C such that
¥ceC, csx; for at most one i€ Js -

A subset Bcl is said to be c-discrete if B =\ )B ~ with

Bu discrete. n=l

1,12, We have ¢ $;i iff cAx; # 0. Thus, we make an

Observation : §x;} is discrete iff {;1} is co-discrete.[]

1,13, Lemma : Let {xiiJ be co-discrete. Then, for any Yy,

yv(/;\xi) = {,\‘y"‘i) .

Proof : It suffices to show that cA (yv /\xi) 2 c/\(/\(nyi))
for all ce C where C is a cover (indeed, this implies that
y \//\xi > /\(nyi) and the < -inequality holds anyway)e.

Take the C from the definition of co~discrete, For ce C we
have c¢a/\x; = Alenx,) = eAX; (o) for a suitable i(c)eJ,
Thus, )

cA(yv/\xi) = (cAYIV (CAX; (o)) = cAlyVE () >
2 eaN\yvx)) . O '

1,14, Lemma : Let {x,}; be discrete and x;<y for all i€ J,

Then inq y

®

VEvy = (AT )Ivy = AFivy) =e . O

2o.Normality and collectionwise normality
241, A locale L is said to be normal if for any X,y el such
that xVy = e there are a,belL such that
avy = e = xvb and aAb = 0,
It is said to be collectionwise normal if for each co-discrete
system {xi}J there is a discrete {yi}J such that
x,vy. = e for all ielJ
(ct. [2], [5])e
22, Proposition : In normal locales we have the implication
XQy = xXx<QY e
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Consequently, a normal regular locale is completely regulare
Proof : It suffices to show that whenever x 1y, there is a
z such that x<qz<ay. Let x<1y. Thus, 'x'vy = ¢ and hence we
have u,z such that Xvz = e, uvy = e and uAz = 0, Thus,
u<z and hence also zvy =e o O '

2.3, Lemma : Let there exist sequences x , Y, such that

) ¥y
and

(Vxn)vy =@ = xv(\/yn) .

Then there are a,b such that avy =e = xvb and aaAb =0,
Proof : Put

----- n -
af"n’-‘{__h’k' y/\/\xk.a= \/a
. - W,
We have a Vy = (xnv y)A /\Gr'kvy) = x,Vy and hence avy
= \Vx,Vy = e, and similarly xvb = e. Obviously, ap,Ab =0
and hence aAb = \/(a ADL) =0, a
2.4, Theorem : 1. Each regular Lindelof locale is normal.
2., Each L such that L = Lﬁ, for a countable system of
covers is normal.
3« Each regular locale with a g -discrete basis is normal.
Proof : The statements follow from 2.3 : Let xVy =e
1 : Consider countable subcovers {xn} uiyt of {u \uaxioiy}
and {y 3o {x3 of fu)u<ytuixl.
2: Put x = ox, y = o4y (see 1,10),
3 : Let B be discrete, UB_ a basis. Put x = Viv | bEB_ ,
b<ax}t, and similarly Yn* By l.14, x <X, y QY ., by the re-
gularity Vx = X, Vy = y. O

245, Theorem : Let L = Ly with a countable # o Then L is
collectionwise normal,

Proof : I. First we will prove a weaker statement
for each co-discrete {xi}J there is a disjoint
(%) {yih such that VYi X VY, = e
Let C be the cover from the definition of co-discreteness, Put
v, = ViclceC, Vj#i csxj}
Obviously
(1) Vik, vsx

and, since VC = Vic|lesx,iv o Vie| ctxy } and the second sum-
mand is < v, »

(2) Vi, xVv, =e.,
Put
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u. = W V A AQ X u. °
in i k=1 | 3 S },,/1
We have
xvu, = \n/(xivuin) = \n/((xivq,nvi)/\ k/,\l,(xiv“k‘i” =
= \/(xiv«nvi) = x,..v\n/oz,nv:.l =xvv, =e
(SBe 1010).
Let i#j, k< n. Then u; Ao(,kvls °"k i Ao v, = 0 (as v
we have eckvjs kai‘ and hence ook 1‘ ock J ‘80 that u
= 0, Consequently, u; A =0 4
II. Take the u; trom I and denote
D’ = {_de.l.ld/\u # 0 for at most one i .
In partxcular. iel) and henca u, SVD so that (see 1.13)

VD Ax
i /i\(VD vx;) > /i\(“ivxi) =0 o
Since L is normal (see 2.4.2), we have a,beL such that
av(/\xi) =e, \/DVb=e¢ and anb =0,

1.
iAnJ.

Put
y; =ujAha, D= D'U{b} .
D is a cover and de D meets at most one Yie Finally,
VY = (xvu ) Alx va) =xva x (Axdva = e, a

3. -discrete refinements of covers of LsLﬁ
with c¢ounsable A
3,1. Construction : Let A= {AI.A seee § be such that L=Lgp o
Let B = {bik eg De an arbitrary cover of L. Consider a fixed
well-ordering < on the set of indices J, For ieJ and n natural

t
pu - vh .

3.2, Lema : For each n, {ciniie.l is a co-discrete system.
Proof : Consider the cover An o For aeAn let 'i be the least
index such that asgcin. Thus, in particular, a¢ aPi® hence
aAw, by # 0 so that agb, (see 1.10) and hence agey, for all
J>i (and aSan for j<i by the definmition of i), O
3',3, Construction continued : By 3.2 and 2.5 there are dis-
crete systems {d, %}, ; such that
°in‘/din =@ for all i,
Put
*
din= din by o
304, Lemma : For every i ,
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d
\</1 (l}ﬂ‘/1 w2 \/bJ .
Proof : I. Let i be the first olemont in (J,<). Thus, we have

to show that \/djLn > b, which will follow from \/dm 2 bt .
We have d aV o 5 = e and hence d1n> %nbi o Thus

\x{di“ z \n/ex.nb = b, (see 1.10).

II, Let the statement hold for j<i. We have

AV \/(\/d )VYd{; > }éij\n/“fn

Jsin ‘n Jn
so that it suftices to show that
(1) b v\/d 2 by
. j<i
We have o = ¢, vd, = (d V\/b )V D, so that
4 d h
}!1 3

and hence, finally, we obtain (1) using 1.10, (
345, Theorem : Let L = Ly for a countable # + Then each
cover of L has a ¢ ~discrete refinement.
Proof : Notation from 3.1 and 3.3, The system D = {a*

inldi,n
is @& =~discrete and din < i e Thus, it suffices to prove th;t
D is a cover. By 3.4 we have

= * = * = = °
Vo \/‘\/d) \{f‘;é(Ydin))zYMbj VB =e,0

3¢69 Remark : In the spatial case it is well-known that the
existence of ¢§ -discrete refinements of all covers is equivalent
to the paracompactness (see, ©+ge., [9_]). In the case of general
locales this question seems to be open (cf.[3])s It may also be
80 that the two properties do not coincide in general while still
being equivalent for the case of L = L A with countable A » S0
far, Theorem 3¢5 is all we are able to tell on the question of
paracompactness of metrizable localese

4.Bing and Nagata-Smirnov metrization theorems
4,1, Lemma : Let L = L& and let there be given for each

Le A a refinement BeJ3 o Then UBR is a basis of L.

Proof : Obviously x4 y = x3 y and hence L = Ly o Thus,
it suffices to prove that U/ is a basis. Take an xeL and put
R(x) ={u lu<‘“) xt o For ue fx) chose an A€ S such that
Ausx and put A = talaci, anu # 0%+ We have ug \/A £x
and hence x = Vc where C = Ufa|u chix)} o 0O
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402, Theorem : If L = Lﬁ with a countable 4 then L has a
¢ -discrete basis.
l_’gggg'z For Aneﬂ' consider a &' -discrete refinement Bn (re-
call Theorem 3.5)s By 4.1 we obtain a & -discrete basis by put-
ting B= UB, . 0
4¢3. Theorem : The following statements are equivalent :
" (i) L is metrizable
(i1) L =Ly for a countable A .
(iii) L.is regular and has a & ~discrete basis.
Proof : (i) = (ii) is trivial,
(ii) = (iii) follows from [10](Theorem 2,8) and Theorem 4.2.
(iii) = (1) : We have a basis B = UBn with B =
= f_bni\ieJ(n)} discrete. Since L is regular, each x equals
Vib lbeB, b x}e Consequently,

boi =>e/.ﬂcnki where c¢ .. =\/{c \ ceB,, c bn;';-.

( IN is the set of natural numbers.) By l.14, and

hence, by 2¢4.3 and 2.2,
Cnki bai *
By [lol(Propoition 4,8 and Construction 4,3) there are metric

diameters dnki separating Coki from bni « Put
d

<3 bn

®nki i

nk = SupP dnki o
Take a cover C such that each c&€C meets at most one bni' b
Take an &> 0. We can write

c =\/D, with d

n,i(c)*
n.k.i(c)‘“k‘ for all ue D,
(put D, = fcAv | dn,k.i(c)(”< €% )o For ueD, and J ¥ i(c)
we obviously have d  .(u) = O and hence d  (W)<E + 4s \){Dc\cec}
is a cover, {uld  (u) <t} is one and the assumption of 1.9 1«
satisfied, Thus, .
each dnk is a star-diameter,
We easily see that
for x<b,, one has dnk(x) = dnki(x) -
Consider the system
' U= ’U’({dnk[n,k e N}
(recall 1,7)¢ Now, by [11] (theorem.4.6) it suffices to show that
L = L) o We have °nk1% b,; and hence b . =\/{y]| ygbm} "
Finally, for a general x we have
x =Vib lbeB, bsx} =\ Viy 1y9bf |beB, bexl g

S Virlyasl < =. 00
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4.4, ‘temark : The equivalence (i)<> (ii) in 4.3 is a generalize
ation of the Bing metrization criterion, the equivalence (i)&>(iii)
is a generalization of the Nagata-Smirnov metrization theoremw
(see [ﬂ]. pp.408 and 351 respectively). )

d. Sublocales, products and coproducts
of metrizable locales

S5el, So far we have been concerned with individual locales
only. Now, however, we will have to deal with merphisms between
theme This forces us to be more particular about the terminolagy.
The category of cemplete lattices satisfying the distributivity
law x A (\/yi) = \V(x /\yi) and the mappings between them preserv-
ing finite meets and general joins is usually referred to as the
category of frames and frame homomorphisms. The category of locales
is its dual; thus, representing a topological space by the locale
of open sets, and a continuous mapping £f:X—>Y as the -frame ho-
momorphism sending U to £ " (U), we obtain a covariant embedding
into the category of locales instead of the contravariant one into
the category of frames, A sublocale L of a locale L is represent-
ed by a frame homomorphism of L onto Le A product of locales 'is
represented as a coproduct of frames and vice versae

52, Proposition : Let «{.L-—»L be a rrame homomorphism,

If A is a cover of L, ¢(A) is a cover of L ‘and we have
Y x () cr(x) (P(Ax).
Consequently, if A is a system of covers and if we put A=
= { Cf(A) lAG.,Qi’ s We have the rollowing imphcatlon H
qu in L = 9(x)< ¢ly) in L,

Proof : We have \/?(A) = ¢(VA) = ¢(e) = o. Now, let
@(a)A@(x) £ 0 for an a&A. Then (f(an. # 0 and hence aAx ¥
'# 0 so that ¢@(a)< C((Ax). U

5.3, Proposition : Let a frame morphism tf:L-? L’ be onto, let
L = L-& ¢ Then, in the notauon of 5.2, L’= Lﬂl °

Proof : Take an xel. we have an xgL such that x’= ?(x).

Since L = Lg , X =V{y| yqx§ so that by 5.2

= Vi) y<1x} Vigty) | (e(y)<x xt<\iz lz<1x tsx. 0

5.4. Corollary : A sublocale of a metrizable locale is metriz-
able. (1

5.5, Proposition : Coproduct of any system of metrizable
locales is metrizables

Proof : Let Ly =Ly, with A = {4, 0A g00e3¢ The copro-
A
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duct L of the localee Li is the product XLi of the corresponing
L .
frames. For xeLi put xy = (yj)JeJ where yjt 0 for j#i and ¥;=

= Xeo Put
-{x;" | xeay -k
Thus, VA"‘R e: and, since \/e” = o in L,
A*' = )A
ied
is a cover of L. Put ﬂ {AT.Az.... } °

B .

For y<tx in L; we have y1<1 x¥* (indeed, if AL ysx, we
have A7 y*< x¥ )o Thus, for each xel. o X} = \Viu|\ ud x* i3
and slnce {xi \ xel.i. ieJ} is a basis ot L, the statemont
follows, [

506, Theorem : Product L of at most countably many metrizable
locales is metrizable,

Proof : Let L, = L.ﬂi s izl z....; By = {A 1eh gsecede Wo

have (in the frame language) L = ®L1 and frame homomorphisms
i=1

"i“‘i'_"' such that the elements of the form

/\ Yy (x, with x, &L,
k=1 g k

constitute a basis of L. (For a handy description of the product
of locales - coproduct of frames - see e.g. [4]). Put

A;'n = U j6) aea, ¥ = ¢ (4, ),

”*
/\A A eeeNA »
iy i it

ﬂ 8{‘(11'....]..";111....'"!]) \m. 1....,im.ll1.....nn=1.2....},

A(ilgooo. lgcoo.n ) "

Obviously, A is a countable system of covers of L.

Now, let
Ay
’k<kx
for Kk=1¢3,¢e0om. We have ikn yks x, for a suitable n, .
Hence, by [10] (Proposition 1,7.2) and 5.2,
Alijeesssn (A L (7,)) Al L /\t. (x,)
1"'m.k/=\11kk \(\111 (r) < i
80 that
Al 003 A e
y x
k=l 17K ksl 1 K7 °

Now we have
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Fe
\/i/\ (.1 (yk)lyk<lxk. ekl 'x \/ \/ /\ Ly (yk) =

ylﬁ man
mel . '
NVoees N/ A Ly A N/ ta )

A, ﬁn-!
1< x1 ym-fq xm-l ’h<a Xn
m-l

= \/ - \V /\ i, D avy (x) = ee0 =

Frmet n
7f<3 X1 ’h-f:I‘ -1

/\ L (x.)
k=1 i K

80 that

A c)<sVER L G0 | A ouB A L eubs
L. (%)< L
k=1 i Kk MRS Tt LA T AR M

K R
QAL ()< /\L (x)
\/_{z\z ko1 A K §s ik

and since the elements

/\Li (x})

constitue a basis of L, we obtaia that L = Lj} - d0

[
{21

(3]

41
(81
(6]
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