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SELF-DUAL MAGNETIC MONOPOLES AND GENERALIZATIONS OF 

HOLOMORPHIC FUNCTIONS 

W. Nahm 

Among the functions of two variables the holomorphic ones 

have a special importance both in mathematics and in physics. It is 

less evident, how to generalize the Cauchy-Riemann equations to 

functions of more variables, not because such generalizations are 

difficult to invent, but because there are so many possibilities. 

However, we shall see that for four and probably for six variables 

the most obvious generalizations together form- a tight and unique 

structure and that a reduction of the four-dimensional case to three 

variables yields nice results, too. At first we shall consider the 

local forms of the equations, later the consequences of global con­

straints. 

In 2n-dimensional oriented Riemannian manifolds M one may 

introduce local complex structures in the tangent spaces TM of 

points xGM. If these structures can be integrated to a global com­

plex structure J, holomorphic functions f:M+C can be defined by 

Uf • /*//. ( i ) 

However, J is not unique for n>l. Thus one is led to introduce" the 

fibre bundle E over M which has as fibre over x the complex struc­

tures in TM . This bundle has n(n+l)/2 natural complex coordinates. 

Instead of functions on M one may now consider meromorphic functions 

in E. At first this seems to introduce unwanted new degrees of free­

dom, but this is not really the case, as the fibres are compact and 

support only restricted classes of meromorphic functions. 

For n-1 the unique J is given by the Hodge * operation, such 

that one obtains the. Cauchy-Riemann equations 

*J{ . ;Jft (2) 
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This suggests the alternative generalization 

^ C(CJ » i * JoJ ^) 

where o> now is an (n-l)-form. Eq. (3) is called the self-duality 

equation for dm. We shall pay little attention to the distinction 

between self-duality and anti-self-duality, as f changes sign for 

reversed orientation. 

We see that natural holomorphic maps from M to C do not exist, 

but that either M or C has to be enlarged to a space of more di­

mensions. This also applies to the generalizations discussed below. 

Eq. (2) implies 

where 

лf - 0 

д г d*Jџ - Xc/* d 

(4) 

(Ч) 

is the Laplace-Beltrami operator. Thus another generalization of 

eq. (2) is obtained from the search for a linear equation the solu-

tionsof which belong to the kernel of A . This is basically the way 

the Dirac equation was discovered. At least locally one may asso­

ciate a spin bundle S to the tangent bundle TM and write for sections 

if> of S 

fґ$* f °• (6) 

The fibres of S are 2 -dimensional and the a are matrices 

acting on the fibres and satisfying 

(7) 

where g is the metric. For conformally flat spaces eq. (6) implies 

the Laplace eq. (4) for the components of ^ • 

Actually eq. (6) is the Weyl equation, which also was used by 

Fueter as a generalization of the Cauchy-Riemann equations. Indeed, 

for n-1 the q are numbers and may be normalized to (l,i). The 

Dirac equation is written with 
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ÏГ " («Г 0J (8) 

and also may include a mass term. 

If the metric is not conformally flat, the Weyl equation does 

not imply the Laplace equation. Instead one may use the factoriza­

tion 

A • (d* + td)(d*-*d)
 ( 9

) 

leading to the Ka'hler equation 

!y*- *J) v - o. do) 

Here the differential form u) has components of various degrees, 

which may, however, be restricted to be even or odd, writing 

(-) ĹO * -ł CO , (Ц) 

where K is the operator which gives the degree of homogeneous forms, 

Once such a restriction has been imposed, one has 

,к*(j*-*d)* ± нщ;(J*-* J)ІK* (12) 

and one may impose i n a d d i t i o n 

ІK*tJ » £U ( i з ) 

where the constant e has to satisfy 

e * - ± (-/ (14) 

With these restrictions, OJ has 4 components. Finally for even n 

these components may be required to be real. 

Restricting w to a homogeneous form of degree n, eq. (13) 

means that it is self-dual and eq. (10) that it is closed. Thus 

eq. (3) may be regarded as a special case of the Kahler equation. 

On conformally flat spaces, the KShler eq. (10) reduces to 

2 Weyl equations, as one sees easily by transforming conformally 

to flat space and using the translationally invariant forms as a 

basis. The restrictions of eq. (11) and (13) reduce this number to 
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..l . If in addition one uses real w, one sees that for n«-2 the K2h-

ler equation becomes no more redundant than the Weyl equation. 

From now on the manifold M will be assumed to be conformally 

flat. We have found three different ways to generalize the Cauchy-

Riemann equations: Analytic function theory on the bundle E, the 

self-duality equation and the Weyl equation. For n=2 all three 

approaches are closely related, which is the basis of Penrose's 

twistor method 

In general thev fibres of E are of the form S0(2n)/U(n). For 
1 3 

n=2,3 these spaces are projective, namely CP and CP respectively, 

as one sees from the isomorphisms 

SO(H) = (SUU) x SU(Z))/ZZ , ( 1 5 ) 

So(Q- Su(tf)/zl (16) 

2 4 
The underlying linear spaces C and C may be identified with the 

dual of the fibre of the spin bundle S, as it also happens trivial­

ly for n=l, where the fibre is a C . The dimensions are correct, as 

olimc($0(Z»)/VMyi * ^ for n-l.2.3. (.7) 

2 4 
For uGC or C , resp. ,, analytic functions on E satisfy the equations 

2£ a o (is) 
9=u 

and 

w i t h 

ІDu)f '0, ,,„ 

Þ ' fr > ( 2 0 ) 

when f is written as a function of x6M and u. For n-»l,2 the compo­

nents of eq. (19) are independent, due to 

H s ^ for n-1 ,2, (21) 

but for n-3 among the four complex components only three are linear­

ly independent. The latter case has been studied much less than the 
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by now standard twistor formalism for n-=2, and we shall not conside: 

it further. 

There are no globally holomorphic non-constant functions on 
1 3 CP or CP , so one has .to investigate functions with simple poles as 

the next simplest case. The poles introduce additional degrees of 

freedom, which one eliminates by forming equivalence classes, using 
x 1 

the Cech cohomology H (E(-l)). Its elements can be written in the 
form 

where each g. has only one simple pole.. Now according to eq. (19) 

Du annihilates g, but it also maps the g. into analytic functions 
1 . 1 

of CP , which have to be constant, as they can be extended to a 
common globally analytic function. Thus 

^ = ID*)], - (D<u)jz (23) 

only depends on x. Because of eq. (7) one has 

u7 zD*Du - 0 (-*) 
and 

* rf />V- 0 f " U (25) 

for all u. Thus i|> satisfies the adjoint Weyl equation 

- O D+f (26) 

Conversely, this equation is the integrability condition of eq. (24). 

We have seen that for n-s2 indeed the various generalizations 

of holomorphic functions are closely related. But this case has 

another important feature, which was discovered first by physicists, 

though there is now also compelling reason for its study inside pure 

mathematics: The statements made so far generalize easily to the case 

where M is replaced by a principle fibre bundle, lo-cally MxG, and 

derivatives are replaced by covariant derivatives given by a connect­

ion on this bundle. The connection can be written locally as a 

1-form A taking values in the Lie algebra of G. Acting on sections 

of some associated bundle given by a representation P of G, the 
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covariant derivative can be written in the form 

dA { * ct/ + {(A)A f (27) 

One h a s 

(c/AJ ' J>(F)A ( 2 8 ) 

where the 2-form F is the curvature of the connection. 

The twistor approach works as before, as long as the compo­

nents of eq. (19) remain compatible, when derivatives are replaced 

by covariant derivatives. The compatibility condition is 

F * * F (29) 

i.e. the self-duality equation for th* curvature. 

Conversely we shall show that small deformations of the self-

duality equation yield the Weyl equation in Kahler form. First we 

have to exclude variations of the potential of the form 

(TA * *(AF } (30) 

as these only yield gauge transformations, i.e. reparametrisations 

of the bundle. One can achieve orthogonality of 6A to all local 

gauge transformations by requiring 

dA * SA m 0 . on 

Moreover one has 

SF - cŕлÍA . (32) 

Thus small deformations of the self-duality equation yield solutions 

of the Kahler equation of type 

u : <Г/4 — J* <Г/4 (33) 

i.e. just those solutions of odd degree which fulfil eq. (13) with 

e — i. 

So far all considerations have been local on M. With suitable 

global restrictions one can do much more. In particular the differen-
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tial operators introduced above become elliptic operators with cal­

culable index. The solutions spaces of the generalizations of the 

Cauchy-Riemann equations become finite dimensional. As the self-

duality equation for the curvature is no longer linear, its solution 

spaces have an interesting topology, which can be related to the to-
4 

pology of M. For M-S all solutions of eqs. (26) and (29) are known, 
2) 

at least up to algebraic manipulations . 
3) 3 1 

Another interesting case is MsR xR , with an SU(2) connection 

which is required to be invariant under translations in R . Moreover 
3 one requires the curvature to be square integrable over R . If one 

writes the connection in *\*i form 

3 

A * Z- A; c(x; + f **H , < 3 4 > 

the self-duality equation for the curvature is 

Fit3) - * ^ / . < 3 5 > 

This is now an example of a differential equation in an odd dimen­

sional space, which nevertheless is closely related to the Cauchy-

Riemann equations, as we shall see. 

One can show that the connection reduces asymptotically to a 

U(l) connection. Thus asymptotically the curvature becomes an exact 

2-form, and <p satisfies the Laplace equation. More precisely one 

can write 

¥ * 9 !fAs * o(**i>(~cr^• o6) 

where <p is of unit norm and asymptotically is a covariant constant, 

ciAf - 0(eyf>(-cr)), (37) 

whereas cp is a scalar function satisfying 

Лf *s

 = ° -•- (38) 

Asymptotically 

fat «/- £ * 0(r-2):.- - (39) 

with integer k, such that (p a g is the potential of a magnetic mono-
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pole configuration of total charge k. The charge is magnetic rather 

than electric, because the curvature is in spatial planes, not in 

space-time planes as for electric charges. Actually, time has not 
3 1 

been introduced at all, and the metric in R xR has been taken to be 

the standard positive one. 
3 

(p can be continued to the whole of R with the exception 

of a finite number of closed algebraic curves and isolated points. 

If continued around those curves, it becomes multivalued. From the 

curves and points one may reconstruct the whole solution, though 

this has not yet been worked out in detail. 

Instead, all solutions can be constructed using the Weyl 

equation (26). The solutions of this equation admit a Fourier ana­

lysis, such that one may write 

у(х,2.) ~ ехр (IX**.), (40) 

Let i|̂ (x,z) for given z be an orthonormal ized vector of solutions 

of eq. (26), spanning the space of all solutions which are square 
3 

integrable over R . Furthermore adjust the z dependence, such that 

írér^"',v 
(41) 

Then one can prove easily that the matrices 

VЫ) - fү+*:f •/'* (42) 

fulfil the equations 

icijkT>MT*M. 
(43) 

The matrices T (z) are k-dimensional for |z|<c and vanish outside 

this interval, as one sees by calculating the index of the Weyl 

operator for the fundamental representation of SU(2). 

The eq. (43) is itself the self-duality equation for the cur­

vature of a U(k) connection 

Г - T7W J/>І (44) 

in a space with coordinates (p ,z), which is invariant undet transla­

tions of the p . Eq. (43) is integrable in terms of Riemannian 

9-functions. The potential A can be obtained back from T using the 
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Weyl equation in (p ,z) space with connection T. 

All this seems to be rather far removed from the usual theory 

of holomorphic functions. But using eq. (43) Donaldson has shown 

that for fixed c the space of self-dual SU(2) monopoles of charge k 

has the same topology as the space of all holomorphic maps of degree 
1 . 4 ) 

k of CP onto itself which fix one point . These maps are rational 

and can be written as quotients of two polynomials. The denominator 

is given by 

Q($) -• Jeif-UiT'Uhp', (45) 

where u is a fixed isotropic vector. By eq. (43) this expression is 

independent of z. 

In Donaldson's construction u has to be fixed, but if it is 

varied the projective space with coordinates (u ,r , ) can be identi-
3 

fied with the space of oriented lines in R . Eq. (45) determines 

a curve in this space, and eq. ( 4 3 ) translates" into a linear flow 
3 

in the Jacobian of this curve. Moreover, the family of lines in R 

given by this curve has an envelope^ consisting of closed algebraic 
3 

curves in R and isolated points - just those curves and points on 

which cp is singular, 
as b 

It is not yet clear, how Donaldson's results generalize to 

other gauge groups, but at least for the description of the moduli 

space of more complicated self-dual monopoles, there are plausible 

conjectures. Let cp be the value of the Higgs field at some point 

of the sphere at infinity. At other points of that sphere one obtains 

the value by conjugating cp with some element of the gauge group G. 

All possible values correspond to the coset space G/G(cp ) , where 

G(cp ) is the subgroup of G which commutes with cp . Such coset spaces 

have a natural complex structure. Now new results by Atiyah indi­

cate that the moduli space of self-dual monopoles with this asympto­

tic behaviour corresponds to the holomorphic maps from CP into 

G/G(cp ) . For G*-SU(2) one has 
o 

G/G(fJ - Su(z)/u(i) - CP\ (46) 

which yields Donaldson's result. 

Non-linear partial differential equations have not received 

very much attention by mathematicians, as there are few general 

results and there seemed to be no point in studying special equations 

to great depth. Due to many nice results concerning the self-duality 
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equation for gauge field strengths in four dimensions this attitude 

seems to be changing. It is certainly significant that this equation 

turned up in mathematical physics. 
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