WSAA 12

Wojciech Lisiecki
Coisotropic bundles and induced representations

In: Zdenék Frolik (ed.): Proceedings of the 12th Winter School on Abstract Analysis, Section of
Topology. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 6. pp. [201]--214.

Persistent URL: http://dml.cz/dmlcz/701840

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/701840
http://project.dml.cz

COISOTROPIC BUNDLES AND. INDUCED REPRESENTATIONS

Wo jciech Lisiecki

0. Introduction

This paper deals with some problems from symplectic geometry
connected with a symplectic analogue of the induction procedure.

A procedure of "symplectic induction" was introduced by Weinstein
[We2] in connection with a gauge-invariant description of phase
spaces of classical particles in Yang-Mills fields and was further
developed by Guillemin and Sternberg [GSZ]. According to geometric
quantization (see e.g. [B], [6S1], [Ki], [Ko], [We1]), a symplectic
model of a unitary representation of a Lie group G is a Hamilto-
nian G-space. Given é Lie subgroup H of G, Weinstein’s procedure
associates to each Hamiltonian H-space a Hamiltonian G-space which
is a symplectic model of the representation of G induce@ by the
representation of H corresponding to the Hamiltonian H-space. The
"induced" Hamiltonian G-space has an additional structure of a
coisotropic bundle over G/H. Basic facts concerning coisotropic
bundles and Weinstein’s procedure are briefly summarized in sec-
tions 1 and 2. These sections contain also some results on classi-
fication of Lagrangian bundles,which are special cases of coiso-
tropic bundles.

Principal results of this paper concerning symplectic induction
in the case of semisimple Lie. groups are contained in the next -two
sections. Ti:e main technical device is the use of complex symplec-
tic geometry, which allows us to replace (real) coisotropic bundles
by (complex) Lagrangian bundles. In section 3 we study some geome-
trical properties of holomorphic Lagrangian bundles over complex
flag manifolds. Results of this section are applied in section 4
to the study of some class of coisotropic bundles over real flag
manifolds of a real semisimple Lie group G which correspond to the
representations of G induced by finite dimensional representations
of parabolic subgroups of G. In particular, we establish a rela-
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tionship between the bundles of this class and coadjoint orbits of
G thus extending some results of [GS2].

This paper is a considerablv extended versi... of my talk during
the Conference. This talk deals with holomorphic Lag.angian bundles
only, which constitute; approximately, the material of section 3.
Since then a detalled exposition of the results of this section has
been prepared (see [L]). The entirely new section 4 is a prelimina-
ry version of a publication which is now in preparation.

1. Coisotropic bundles

In this section M is a fixed real or complex manifold. All ziber
bundles to be considered have M as a base space (in the complex
case they are assumed to be holomorphic). For the basic notions of
symplectic geometry used here the reader is referred to [Mﬂ], [GS1L
[We1] and [Wo] (all these references deal with real symplectic
geometry; transition to the complex case is obvious).

(1.1) A coisotropic bundle is a quadruple
A= (E’ﬂa Mvw)’

where Tt : E — M is a fiber bundle and « is a symplectic form
on E such that each fibver E; is a coisotropic submanifold of
(E, @ ). A morphism of coisotropic bundles is a fiber preserving
symplectomorphism; an M-morphism is one which induces the identity
on M, E carries a natural isotropic foliation whose restriction to
-each Ep coincides with the kernel foliation of “ﬂEm . We shall
assume that this foliation is a fibration g : E — N. Thus E has
two compatible structures of a fiber bundle, that is, we have a
commutative diagram

(1.1.1) si\

N-—;—-)M.

Moreover, the fibers of & are symplectic manifolds.

In the special case where the fibers of ¥ are Lagrangian sub-
manifolds we obtain the notion of a Lagrangian bundle. In this
case g coincides with 7¢ .

(1.2) Polarizations ([B], [6S1, [¥e1], [Wo] ). A polarization
of a real symplectic manifold (X, w) is a complex involutive La-
grangian subbundle F of the romplexified tangent bundle TX ® C.
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Tf F = F (where bar denotes the coaplex conjugation in TX@C),

P is called a real polarization. Thus real polarizations are in a
one-one correspondence with Lagrangian foliations of X. In particu-
lar, any structure of a Lagrangian bundle on X determines a real
polarization of X.

At the other extreme are thler polarizations which are charac-
terized by FNF = {0Y. They are in one-one correspondence with com-
plex structures on X with respect to which & has type (1, 1).

A polarization P is strongly admissible if PN TX and (F + F)n TX
are involutive subbundles of TX and the corresponding foliations

are fibrations. Such polarizations are in one-one correspondence
with structures of coisotropic bundle on X such that, for esach
mell, 6'1(m) (see (1.1.1)) carries a Kahler polarization which
depends smoothly on m.

In some cases we can find a complexification (Xc,(»c) of (X, w)
such that a polarization F of (X, @) induces a structure of holo-
wmorphic Lagrangian bundle on (Xc, w®). On the other hand, if (X, )
is a real form of a complex symplectic manifold (X@, wc), each
structure of holomorphic Lagrangian bundle on (XC, we) determines
a polarization of (X, w).

(1.3) The isotropic fibers of a coisotropic bundle A carry an
additional structure. Yamely, the M-morphism of bundles '

(1.3.1)  TM*,B — I8 1 (p,e) > 5P(e) = ((1o90)* (p))%
where sharp aenotes the isomorphism T*E — TE induced byw , is an
infinitesimal action of T¥M (viewed as a bundle of Abelian Lie
algebras) on E, that is, for each m€M and all p,p’ &€ T;M, the
vector fields &P and ?P', defined on Ep, commute. YNoreover,
(1.%3.1) is a vector bundle isomorphism onto the subbundle Ler Ts
(i.e. the action is free). Thus the isotropio fibers of A are
parallelizable affine manifolds. ’

We say that a coisotropic bundle A is an affine coisotropic
bundle (AC bundle) if the infinitesiwal action (1.%.1) is induced
by a (necessarily unique) action

™M X 6 — E
of T¥u (now viewed as a bundle of Abelian Lie groups) on E. (This
is so 1ff all isotropic fibers of A are simply connected and all
vector fields ;p are complete,) Thus the isotropic bundle $:E—N
of an AC bundle is an affine bundle; the corresponding vector
bundle is &*7*M,

The remainder of this section is devoted to the classification
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of nolomorphic affine Lagrangian bundles (AL bundles) over a fixed
complex manifold M (in the real case the classification is well
known; cf.[Wo], Prop. 4.4.2 and the Remarks that follow it).

(1.4) The simplest AL bundle is the cotangent bundle
x
Ty = (1*u, s M, o)
with its canonical symplectic form. The underlying affine bundle is
T*M itself. It turns out that any AL bundle is locally isomorphic

to 'U;;. More precisely, we have the following.

(1.5) Proposition. Let A be an AL bundle over M. For each me M,
there is an opén neighborhood U ® m in M together with a U-isomor-
. X
phism P : NU—)'U .

see [L], (1.9) for a simple proof.

(1.6) The above proposition allows us to classify holomorphic
AL bundles over M. In fact, it follows from the theory of fiber
bundles (see e.g. [G], Prop. 5.1.1) that the M-isomorphism classes
of fiver bundles over M which are locally isomurphic to a given
model bundle are in one-one correspondence with the elements of
the first cohomology space of M with values in the sheaf of germs
of M-gutomorphisms of the model bundle. In the case of 'c';ﬁ, this
sheaf is isomorphic to ’Z:', the sheaf of germs of closed holomor-
phic 1-forms on M; the isomorphism is obtained by assigning to
each ¢ € %1(U), U open in ¥, the U-automorphism p —> p + ol s
m = ﬂ:-.l(p)' Thus we obtain the following.

(1.7) Proposition. There is a natural bijection between the

set of li-isomorphism classes of holomorphic AL bundles over M and
B, x1).

2, Hamiltonian coisotropic bundles and symplectic induction

In this section G and H.denote real or complex Lie groups and
& and 4 their Lie algebras.

(2.1) A Hamiltonian G-space (X,w,J) consists of a symplectic
space (X, w), an action of G on (X, ) by symplectomorphisms and

a G-equivariant map J : X —) «g"‘ such that
1(5g)w =az*(¥) Y B¢Y>
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where & —) EX is the infinitesimal action of o on X and J is a
map from 0} to analytic functions on X defined by
(J¥(E))(x) =<3(x), 8> VBeoyV xex.

J is called a momentum mapping for the action of G.

A morphism ¢ : (X,w, J) = (X, w’, J’) of Hasiltonian G-spaces
is a G-equivariant symplectomorphism satisfying

Jeg = 7.

Bach coadjoint orbit of G in ¢* has a natural structure of a

homogeneous Hamiltonian G-space. If (X, w , J) is a homogeneous

Hamiltonian G-space, J ¢+ X — J(X) is a morphism and a covering.

Hamiltonian G-spaces are symplectic analogues of unitary repre-
sentations of G; the homogeneous ones are counterparts of irreduc- .
ible representations. See [B], [Ki], [Ko] for details.

(2.2) An (affine) Hamiltonian coisotropic G-bundle ((A)HC G-
-bundle) over a G-space M is a pair (A ,J), where A = (E,®,M,w)
is an (affine) coisotropic bundle on which G- acts by automorphisms
in such a way that the total space & is a Hamiltonian G-space, and
J is the momentum mapping for this action. A morphism of (A)HC G-
-bundles is a map which is both a morphism of the underlying (af-
fine) coisotropic bundles and a morphism of the underlying Hamil-
tonian G-spaces. We write [(A,J)] for the M-isomorphism class of
(A,d). »

There is a natural relationship between HC G-bundles and G-
-invariant polarizations of Hamiltonian G-spaces which is a G-
-equivariant counterpart of the rélationship between coisotropic
bundles and polarizations described at the end of (1.2).

(2.3) Marsden-Weinstein reduction. This is a general method of
producing new symplectic sﬁaces from a given Hamiltonian space. We
shall use it below to construct AHC G-bundles over a G-homogeneous
base. Let (X, @ , J) be a Hamiltonian H-space. Fix a regular value
£e 4 of J and let Hp denote the stabilizer of f£. Then J-'(£) is
a Hf—invarlant submanifold of X so the orbit space

J-1(2) fug
is well defined. Assume that Xf has a structure of manifold such
that the natural projection V¢ : J1(£) —> Xy 1is a submersion
(this assumption is satisfied, for instance, if the action of He
on J-1(£) is free and proper). Then a theorem of Harsden and Wein-
stein ([AM], 4.3.1) asserts that there is a symplectic form We on
Xy which is uniquely determined by
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-\); . = 150,

where i, : J"(f) —> X denotes the inclusion. The symplectic space
(Xf,cof) is called the (ilarsden-deinstein) reduction of X at f.

There is an alternative description of Xf which is sometimes
more useful. Let Op be the H-orbit through f and let Of =
={-f | £ e OfS. Then Xf is symplectically isomorphic to the reduc-
tion of the product lamiltonian H-space X * 0% at zero., #hen viewed
this way, Xy is usually denoted by Xof and called the (larsden-
-Weinstein) reduction of X with respect to Of. liore generally, we
may define the reduction Xy of X with respect to an arbitrary Ha-
miltonian H—spéce Y replacing Of by Y in the above construction.

(2.4) Reduction of a cotangent bundle to a Lie group. T¥G has
two natural structures of left and right affine Hamiltonian La-
grangian (AHL) G-bundle, the corresponding actions of G being co-
tangent to the actions of G on itself by left and right transla-
tions, respectively. If H is a Lie subgroup of G, we may view T*G
as a right Hamiltonian H-space. Change the right action of H into
a left one letting each h€H act on G as the right translation by
h-1. "or each Hamiltonian H-space Y, the assumptions of the l.ars-
den-Jeinstein theorem are fulfilled so we may form the reduced
space (T%G)y. Since the actions of G and H on TG commute and the
womentunm mapping for the action of G (resp. H) is invariant under
H (resp. G), the structure of a (left) AHL G-bundle on ™G induces
a natural structure of AHC G-bundle on (T*G)Y. Je shall denote
this bundle by A(Y). In the special case where Y is a coadjoint
orbit Up through f we shall write Ag rather than A(Og).

The structure of ﬂf-can be described more closely. In fact,
using the left trivialization of %6 we obtain an isomorphism

(1%6), = ¢ “H, (),

where r : 07*——) 47* is the restriction map, Tt follows that the
space of isotropic fibers is isomorphic to

Gxy Op & Gxy H/Hp & G/Hf

and the space of coisotropic fibers is isomorphic to G/H. Lioreover,
the commutative diagram (1.1.1) becomes
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: -1
G *H r (£)

1N

G/Hf —_—)GH,

where all arrows represert the natural G-equivariant profiections.
It is easy to see that (A}f,Jf), where J, is the momentun

mapping for the action of G on Af, is an AHL G-bundle <ff f is

J-invariant., Actually, we can prove a stronggr result.

(2.5) Proposition. leep the above notatioh and let also (4

NG
)

denote the subspace of H invariant elenments in‘h

(a)
()

(e)

Tor each f‘e(47) , ( Af,Jf) is an AHL G-bundle.

If (A ,J) is an AHL S-bundle over G/H, then r((3,))
(where o stands for the coset H) consists of a single
element f, which therefore must belong to (4f)H, and the
map .
Py ¢ E—)G/Hktry*: e (T(e),d(e))

induces a (G/H)-isomorphisa between (A ,J) and (A f,Jf)
(the latter being identified with a subbundle of G/ xo¢X),
The map f > [( Rf,Jf)] is a bijection of (4y Y onto the
set of (G/H)-isomorphism classes of AHL G-bundles over

G/H.

see [L], (2.6) for a proof.

(2.6) Symplectic induction. It is easy to see that tha corre-

spondence Y > A (f) establishes a covariant functor from ths
category of Hamiltonian I’-spaces tu the caterory of Fa:uiltorian
G-spaces, In the real case, this functor is a syuplectic counter-
part of. the induction functor. The analogy'between these functors
"is based on, the theory of geometric quantizatiqn'which in somé
cases allows us to "quantize" the actions of.H on ¥ and G on
A(Y) in such a way that the resulting unitary representation of
G is equivalent to the representation induced by the representa-
tion of H corresponding to Y., Cne such case will be con51dered in

‘section 4. .

Holomorphic AHC bundles seem to be natural candidates for
Symplectic models of holomorphically induced representations. lore
about this will be said in section 4.
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3. Holomorphic Lagrangian bundles over couplex flag wanifolds

for the proofs of the fullowing results the reader is referred
to [ L]. Throughout this section G denotes a covnectad cuwplex scui-
simple Lie group ard P a parabolic subgroup of G; the Lie algebra
of F is denoted by £ . (.Je shall sometimes view G and P as linear
algebraic groups.) By a Lagrangian bundle we shall always wmean a
holoworphic Lagrangian bundle over the couglex flag wanifold G/F
(o will stand for -the coset F). The irterest in this case is woti-
vated by the following theorea whose part (a) is due to Uzeki and
sanisoto ([u.tal, Th,2.2) while part (b) follows from starndard pro-
perties of invariar-t polarizations (see e.g.[3], Chap.I7).

(3.1) Theorea. Let (X,% ,l,®,J) be a IL G-bundle with houoge-
neous total space X (here we make no assumptions about i.). Then:

(a) . is a flag manifold, K = G/P for some F;

(v) r(J(%y)) = {1£Y with e bpﬁP and the map

Py 2 x> (7(x),d(x))
induces a morphism from (X, ,i,w,J) to (A ¢, J¢).lorsover
®3(L) is a Zarisanl open G-orbit on the total space &f of
A p. (Zr has a unique structure of algebraic variety com-
ggtible with its manifold structure.)

Tt is natural to ask whether this theorem can be reversed,
i.e., whether every AHL G-bundle over G/P has a Zariski open G-
-orbit on its total space. The affirmative answer to this question
follows easily from a theorem of itichardson [Ril which asserts
that each parabolic subgroup of a linear reductive algebraic group
over an algebraically closed field has a Zariski open orbit acting

by the adjoint representation on the nilradical of its Lie alge-
bra.

(%,2) Froposition. For each f e ($¥)P, G has a Zarisxi open or-
bit Xg on the total space 3p of the bundle (Ag,Jg).

(3.3) Corollary. Jg(dg) = Je(Xp) (Zariski closure).

The next result, which does not seem to be related to the
representation theory, illustrates the difference between real

and complex symplectic geometry - it has no analogue in the real
case.
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(3.4) Theorem. Any affine Lagrangian bundle over G/P has a
unique structure of an affine Hamiltonian Lagranglian G-bundle so
that the natural map (#*)F 5 ul(e/p, 1) (induced by fergetting
about the G-action) is a bijection (actually a linear isomorphism).

We sketch the proof. The elements of (’P* )P can be thought of
as biinvariant 1-forms on P. Since these are closed, we can define
a map (/P*)P —> H1(P,C) which is easily seen to be an isomorphism.
Yext, the spectrél sequence of the fibration G — G/P gives rise
to an isomorphism H1(P,C) —-)H2(G/P,C). Mnally, there is a map
H1(G/P, %) — H2(G/P,C) resulting from the long exact sequence
of cohomology groups corresponding to the short exact sequence of
sheaves

Um0 5 X' o,
where @ denotes the sheaf of ‘germs of holomorphic functions on
G/P. Since H1(G/P,@) = 12(¢/P,®) = 0, this map is an isomorphism.
*ow it is guite easy to show that the diagram

(P 5 u'(p,0)

ul(a/p, %) — H2(G/P,C)

consisting of the above described maps commutes, which clearly
implies that (%P — u1(6/P, % 1) is an isomorphism. Thus any
affine Lagrangian bundle over G/P has a structure of an affine
Hamiltonian Lagrangian G-bundle which is unique up to an k-auto-
morphisu;. The group of (G/P)-automorphisms of any AL bundle over
G/P bein‘g trivial (since it is isomorphic to HO(G/P, X') = U),
this structure is in fact unique.

Tnally we shall characterize those AHL G-bundles whose total
spaces are G-homogeneous.

(3.5) Theorem. For an AHL G-bundle (A ¢,Jf), € (t’G*)P, over
G/P, the following conditions are equivalent:
(1) +the total space Ef of A ¢ is G-homogeneous;
(11) Ep is a Stein manifold;
(111) the orbit Je(Xg), where Xp is the unique Zariski open
G-orbit on Ep, consists of semisimple el.ements (here we
identify 0}* with ¢ by means of the killing form).
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4., Coisotropic bundles over real flag manifolds

'lere G has the same nmeaning as ir the preceding section. lloio~-
over, we assume that G is defired over R (as an algebraic group)
and let Gr derote the.corresponding group of real points. Gy is
viewed as a real algebraic group or as a real Lie group. G, deno-
tes the connected component of identity of-the real Lie group GR.
For simplicity reasons the results of this section are formulated
usually in terms '0f G. QR denotes a parabolic subgroup of GR,
that is, the group of real points of a parabolic subgroup Q of G
‘which is defined dver R. The homogeneous space Gr/lg is called a
real flag manifold. Je write 4R for the Lie algebra of LR and
g for the nilradical of ¢ g. #e denote by big (resp. m g) the
compact component of a Langlands decomposition of wp (resp.qﬁﬂ.

(4.1) Suppose that Qr has a compact coadjoint orbit of positive
dizersion on ¢R. It can be shown that this orbit must be con-
tained in (C}R/Wta)* (which we identify with a subspace of 1&).
uoreover, if choose a Langlands decomposition of'qm, the compact
orbit is also an I'g-orbit and if we identify it with an adjoint
orbit in the Levi component of Q»R, then this adjoint orbit gehe-
rates a compact ideal. Thus Qi has a compact coadjoint orbit of
positive dimension iff some (and hence any) Levi component of 4R
has a compact ideal.

(4,2) vWe shall be considering AHC Gg-bundles Ap over Ggr/QR
(see (2.4)) for which the space of isotropic fibers is coapact.
These split into two classes: real AHL Gg-bundles (which exist
for any Q) and bundles for which uy is a compact orbit of posi-
tive dimension (which exist only for certain <R 8s we saw above).
Tor the reasons of simplicity we assume that the orbit Of is con-
nected (in the usual topology). The total space of A, will be
denoted, as usual, by Ee.

(4.3) Complexification of Af. Let £ denote the complexifi-
cation of f. Then the AHC G-bundle A,€ over GA is a complexi-
fication of Ap, That is, if we view the total space E¢€C as an
algebraic variety, then it is defined over R ir such a way that
Zp coincides with the set Zp€(R) of real points of Ep .

(4.4) It is well krown that the compact vrbit up has an in-
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variant polarization which is necessarily Kéhler., This polarization
is determined by a parabolic subalgebra of the reductive algebra
4/4 (¢ being the Lie algebra of Q and # the nilradical of % ).
This parabolic subalgebra can be written uniquely as P/, where
’P is e parabolic subalgabra of g. contained in 9. It is easily
seen that £ ] is left invariant by the parabolic subgroup T of G
CorrBBponding to o . Thus fcl defines a holoworphic AHL G-bundle
fqp over @/P (cf. {2.4) and (2 5)).

{4,5) Proposition. The Hami}tonian G-spacea Ef¢ and £p€ are
iscmorphic.

Proof. Lat J,; and Jp denote the momentur mappings for the ac-
tions of Q end P on T%G, respectively. Then Jp = rpq ¢ Jy, whers
req ¢ ¥ — 40* 15 the restristion map. Thus

and we obtain a commutative diagram

J"1

& (£%y —--—-)J;"(f" )

|

Eft———-—‘)EfclP

whose top horizontal arrow ie the inclusion. It is easy to =see
that the bottom horizontal arrow i1s the desired isomorphism, O

(4,6) Suppose that the orbit Of is quantizable, i.e., it gives
rise to a unitary repredentation U of Qg (U is necessarily finite
dimensional and irreducible). Let Ind(GR,QR,VU) be the representa-
tion of Gy induced by U. According to {2.6), A, is a symplectic
" model of Ind{Gj,QR,VU). Geonmetric gquantizetion associates to R:f
the representation Indy,{CGg,(QR)ss Xg, P) holomorphically in-
duced by a unitery character Xf of (Qﬂ)f corresponding to f
(which exists because Cp 18 quantizable) and the parabolic sub-
algebra 4o (see (4,4); we assume that 4 'has been chosen in such
a way that the corresponding polarization of Of 1a positive,
which 1s always possible). Indy,,{Gg,{QR)s, Xg,p) can be ob-
tained in two steps (cf.[B]), the first being the holomorphic
induction from (Qg)e to QR which gives U (here ws use the Borel-
-¥eil-Bott thecrem) and the second belng the ordinary induction

Knthovna mat.-frz. fokulty UK

odd. meocamatické

18600 Praka-Kalin, Sckolovskd 33
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from QR to GR. It follows that Ind (Gr,Qr,U) and Indy ;(Gg,(Qg)e,
Xe, r) are equivalent.

These facts suggest that A fq is a symplectic model of
Indhoi (GR, (QR) £» Xf,1o) and the isomorphism (4.5) is a symplectic
counterpart of the equivalence

Ind(Gﬁ’QIRyU) ~ Indhol(G'IR1(Q[R)f’ xf,’P)-

(4.7) Theorem. G has a Zariski open orbit X¢ on the total space
B¢ of Af. ”

Proof. It follows from (4.5) and (3.2) that G has a Zariski
open orbit Xg€ on Ef€. 3ince Ef is Zariski dense in Ept, Xp =
= Xg€N B is nonempty. It is easy to see that X¢ is a Zariski open
Gr-orpit. O

demark. Xfr splits into a finite number of Gy-orbits.

(4.8) Tt follows from (4.7) that Jf(Ep) is a Zariski closure
of a coadjoint orbit (cf. (3.3)). If Ep is Gg-homogeneous, it is
isomorphic to a Zariski closed coadjoint orbit (cf. (3.5)). If we
identify gﬁ with R by means of the Killing form, Zariski closed
coadjoint orbits become identified with Zariski closed adjoint
orbits. Such orbits are semisimple (i.e. consist of semisimple
elements); however not every semisimple adjoint orbit is Zariski
closed. .Indeed, we can prove the following fact (which geheralizes
some results of Rothschild [Ro]).

(4.9) Theorem. Let X be an adjoint Gg-orbit. Then the following
conditions are equivalent:
(1) X is Zariski closed;
(11) X is isomorphic (as a Hamiltonian Gg-space) to some Egp;
(11i) X is semisimple and has an invariant polarization with
a compact space of isotropic fibers.

Remark, If X satisfies the above conditions, then it is connec-
ted in the usual topology hence it is also a G,-orbit.

(4.10) If QR is a minimal parabolic subgroup, the induced re-
presentations corresponding to the bundles Zf belong to the
unitary principal series. Symplectic analogues of some of those
representations were studied by Guillemin and Sternberg who ob-
tained a special case of (4.7). More precisely, they have proved
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([es2], Th. 3.1) that, for some choice of £, Ep is isomorphic to a
coadjoint orbit. (4.7) seems also to be related to the results of
Wakimoto [Wa] who used non semisimple orbits to realize the princi-
pal seriea representations.
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