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n~-TILABILITY OF ACYCLIC POLYOMINOES

Igor K¥{%

The main result of this paper is to present a polynomial algo-
rithm for deciding, whether a given acyclic polyomino (roughly spea-
king, a connected finite configuration on infinite chessboard with-
out holes) is tilable by 1X n- and nXl-rectangles,.(n fixed)

The results on such tilings ([1,2,3,4,5]) so far known are ba-
sed on global characteristics of some simple polyominoes. In our
method we use & local analysis of the structure, which makes the
general result possible.

From further results included let us name for instance the con-

nectedness theorem (2,3.2.) or the theorem on the tilings of the
complement of a subpolyomino (2.4.3.).

1, Preliminaries

1.1. We will use the symbol E,Kﬁ,ﬁ, respectively, for the
segment, half-line, line, respectively, determined by the points
A,B of the Euclidien plane E,. The points A4,B are called the nodes
of the segment AB, An oriented segment is a couple (u,0(u)), where
u is a segment and O(u) one of its nodes (the origin); the other
node T(u) will be called the terminal. For two parallel oriented
segments we distfnguish coherent or reverse orientations:in the ob-
vious way. ’

If u and v are segments, u2v, we say u is an extension of v.
The length of & segment u will be denoted by Juj.

For subsets MCE,,JM[ is the interior, [M] is the closure and
OM is the boundary of M. The cardinality of a finite M will be de-
noted by # (M),

The plane will be endoved with a fixed coordinate system. The
lattice (integral) points provide the plane with the obvious struc-
ture of a CW-complex K. Its closed 2-cells (the 1x1 squares) will
be called simply cells. Refering to l-cells in the sequel, we mean,
of course, the l-cells of K. The system of l-cells obviously decom-
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poses into two classes (the vertical & the horizontal ones); these
will be refered to as the K-directions. When speaking of a direction
of a line or half-line, we mean the direction of the segments inclu-
ded.

The vcil with thc vertices (4,3),(4,3+1),(1+1,3), (i+1,5+1), will
be denoted by {i,j>. The translations of the plane given by the for-
mulas (x,y)*> (x,y+1) resp. (x,y)v> (x+l,y) are denoted by ¢“resp.T.

An oriented segment u is said to be right perpendicular to an
oriented segment v; if for T(u) - O(u) = (xl,yl), T(v) - O(v) = (x5,
y2) it holds

det (:;: Z;) > O.

(Realize the obvious geometrical meaning of this, somewhat clumsy,
definition,) Left perpendicular is &n inverse relation to right per

pendicular,

We say that the oriented segment ((0,0)(1,0),(0,0)) is right in-
cident with the cell{ 0,0) and use this expression for all the con-
figurations obtained from the mentioned one by translations and ro-
tations.

1.,2. A polyomino P is any finite regular subcomplex of K (i.e.,
we have [JPL] = P). Its volume is the number of its 2-cells, An I-
-component of P is the closure of a component of ]JP[. P is said to
be acyclic, if both]P[ and E, ~]1P[ are connected subsets of the plang
In the sequel, we will use the term rectangle for those rectangles,
which are polyomina,

Given a polyomino P, then each l-cell of 9P will be oriented
once for ever so that it is right-incident with a cell of P, This
will be refered to as the standard orientation. A side of P is any
segment a € QP guch that it is a subcomplex of K, its l-cells are
coherently oriented and it is maximal with respect to this property
(see fig.l).

A ” g//é///c//?
P
),

fig.1l

KB,BC are sides, AC 1s not. We can define the standard orientation
of a side to be coherent with the orientation of its l-cells.
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We deflne & function'succp iM—*M, where M is the set of &1l the
sides of P, putting
(4) T(a) = O(sucep(s)) for s¢ M
(11) If o’ satisfies T{a) = O{e”") and & is right perpendi-
cular to &, then 8" = sucep(s).
1.2.1. By Jordan Theorem, we immediately obtain
Lemma: P ia ascyclic 1ff succp is & cyelic permutation. O3
(3P 18 not necessarily a Jordan curve - for this we would have to

assume & connected E,\ P, But, it behaves, in an obvious sense, al-
moat as one: The exterior and the interlor is capgnically defined;

moreover, P = intaP.}

1.3, A side of P 1a said to be an edge of P, if succp(s) is left
perpendicular to g and succP 1(a) 18 right perpendicular to 8 (sae
fig.2 and compare it with the situation of the edges t,,ty).

o
7.

Pig.2

t1 is an edge, t2 is not.
1.3,1s Lamme: In every polyomino P there la at least one edge

in any direction and orientation,
Proof: Consider the least rectangle C containing P. It 1s easy to
see that esch of the sides of C containa 8sn eppropriste edge of P, (0

An edge h of P 1a maid to be left regular (resp. right regular)
1f there 18 & k ¢ (N,such that a‘ucc?,k_q:‘l ‘v) (resp. sucey”™" (h)) is
an edge left (resp. right} perpend:leulm to h, while for 1 = 0,...
+a,2k+1l are succP(h), succP 2(!1) parallel and coherently oriented
(reap. aucc-P (h), succP (h) are parellel and ccherently oriented).

rig.3 %

left regularie,d,e,f,g; right reguler:a,d,e,f,g; neither:b.
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1,3.2, Lemma: In every polyomino P there is at least one left re-
gular and at least one right regular edge in any direction and orien~
tation.

Proof will be done for left regular by induction on n = |P|. (the vo-
lume of P) The statement is obvious for n = 1, Let the statement hold
for n{k. Choose a direction and an orientation., There is at least one
corresponding edge a, Let « be the cell of P incident with 0(a), We
w111 distinguish two cases:

1) lal = 1, In [P~ «] there is a left regular edge h of our di-
rection and orientation. Let 2k+l be the least number such that
succtp\“] (h) 1s an edge left perpengicular to h. Obviously, « is not
incident with any of the sides succ[P\‘](h), 0{m¢k, Thus, either it
isn"t incident with any of the sides succu,“] (h), too, and then h is
left regular, or it {8, and then a is left regular.

2) lal 7 1, Consider C, the I-component of [P: «] containing a
l-cell of a. By the induction hypothesis, C has a left regular edge
h parallel to a and coherently oriented. If h is not incident with a,

then it is left regular in P. Otherwise, & is left regular. O}
Let C be an edge of P and let n be the smallest number such that

succP(c) (resp. succ:P D(c)) 1s an edge left (resp. right) perpendicu-
lar to c. The closure of the interior of M ={Al31¢{0,...,n}3 B¢

€ succP(c). ABecP, BBLc (resp. of M= {A|31e{0,...,n}31B csucé'(c):
ABcP, fBlc}) will be called the left (resp. right) semisector of P
over c. The intersection of both semisectors will be called the sec~

tor of P over c. ,
/

/.
M

¢ fig.4

(We have to take[IM[], since M is not necessarily a polyomino, see
fig.4.)

1.4, Lat s be a direction., A subset M of E, will be called s=
convex, if pnM is connected for any line p of direction s. A poly-
omino P is said to be K-convex if it is s-convex for the both K-di-
rections s,

1,4.1, Lemma: An acyclic polyomino P is s-convex iff no two of
its s-edges have coherent orientations.
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direction s, Suppose P is s-convex. Then P has to lie in a halfplane
determined by both °1’°2' Thus, the edges ¢y lie in a common line and
hence P is not s-convex, which is a contradiction.

On the other hand, let P be not s-convex. Since P is acyclie, we
see easily that there is & line p in the direction s, dividing 1P[ in-
to three components at least., Thus, at least two of them, say Pl,Pz;
share a half-plane determined by p. Put Pi = [Pi]. We have polyomina
P, such that all the l-cells of Pin p have the same orientation. Thus,
according tp 1.3.1., there are edges hi of Pi in the direction s with
the opposite orientation. This concludes the proof, since hi are ob-
viously edges of P, O

1.4.,2, Lemma: Let ¢ be an edge of P. Then the left (resp. right)
semisector I of P over c¢ is K-convex, iff c is left (resp. right) re-
gular and there are no two edges of I parallel to ¢ with opposite
orientation to that of c.

, s;fficiency from 1.4.1. O

l.4.3. Theorem: Let P be acyclic. Then for every direction s the-
re is an edge ¢ of P in the direction s such that one of the semisec-
tors of P over ¢ 1is K-convex.
of left (right) regular edges ¢y @nd corresponding semisectors Ik of
P, Put I_1= 2. By 1.3.2., there exists a left regular edge ¢ of P in
the direction s and an arbitrarily chosen orientation. Put c°= c and
let Io be the corresponding ;I.eft semisector of P. Now, let. us have
ci’Ii for i<k, Let, say, Cp1 be left regular. Then if I, is not
K-convex, we have, by 1l.4.2., two parallel edges of I, with the ori-
entation opposite to that of Cp-1° Thus, at least one of those is not
incident with I, ». Ob'wﬁously, for some sides a,,8, of P we have &,¢
c suchk_‘(a), ayc sucer, (a). Denote by a; the maximal (oriented)' ex-
tension of &, such that 0(&;) = O(a;), T(&,) = T(a,) and &, ,8,< P,
Fupther, denote by C_,L the closure of that component of ]P» 'a'i.[, which
is incident with a. Since P is acyclic, we have by 1.4.2. 1C;n Ik_2[=
=0 or]Cz\ Ik_2[= @. Let, for instance,]Cy+ I [ = @. Then, accor-
ding to 1.3.2., the polyomino C, has a left regular edge cl| .y and
inverse oriented. Thus, c is also a left regular edge of P. Put S =
= ¢ and denote by Ik the left semisector (right in the case]Clx Ik_2[
= @) of P over c. According to the acyclity of P, we havell, aI.[= g
for (k-¢1>1.0
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Remark: The acyclicity is essential (see fig. 5)

,///)

fig.5
2, Tilings
2.1.1. Put Gy , = {x, ) 1 0gcgr1 ¢y -1}, An p-tiling

of a pélyomino.P 1s a get M of rectangles congruent with Cl (or,
equivalently, with C, ;) such that UM = P and for a,be M we have
Jala)bL = g, If there is an n-tiling of P, we say that P is n-tila-
ble.

Special tilings: We will use the notation M ={o* ¢, 111 =0,..
vook-1}, Np = {rlc; 11 =0,...,k-1). Let P, m = 1,...,k be n-ti- °
lings and let i ,;] "be the smallest natural numbers with Upcc S, ik
(supposed they exist) We will use the following notation

k U g"

P,.=P,+ P toeoot P
TR kl 2 k “af wel
k.P, = ]Z.‘ Py, 0.P; = 2.

Further, for L =«n+p , B=0,...,n-1, «c Ny, k ,k,<n rut

n . - n n n
P8 5ky k) = AN+ My + (& - fL)Nkl

(see fig.6)

7

P:(w; 2,4)

“ig.6

For an edge v ur & polyomino P put k; = min (lsuccP(c)l n), k, =
minflsuccP (c¢)V,n). Then there is a unique congruence ¢ :E, > E,
mapping the segments (0,0)(0,|cl|), (O, 0)(k1 0), (o,lel ) (ky, Tel) to
¢, succp(c), succlgl(c), respectively, Put

P(c,P) = ¢ (PXJel iy ,kp)), Ble.P) = ¢ (M),



n~TILABILITY OF ACYCLIC POLYOMINOES 195

(As a rule, we will be able to assume ¢ = Id without loss of genera-
1ity. Then we have O(c) = (O,[c|), T(e) = (0,0) and the edge ¢ will
be refered to as an edge in the normal position.) Moreover, we will
use the notation

Pn(c P) = Pw'l (c,P),

wherelld/nd is the low integral part. Let us note that () Py A(e,P),
U@*‘(c P), UPn(c P) will be in typical cases subsets of P, al-
though this is not the general case,.

2,1.2. An equivalence of n-tilings. Write Adl B for A,B n-ti-
1ings, MCE2, if there exist i,J €Z such that A~ @ igd N" B~
~¢*s} uy, whilel oiri N} cM, and denote by ~ the least equivalence
containing Qn « To the relatlon ~ we will refer as to the M-equiva-
lence. In the case of M = E2 we will speak simply of the equivalence
and write A~ B,

2.2,

2.2.1. Theorem: Let ¢ be an edge of P, If the sector I of P
over ¢ is K-convex (which is the same as being convex in the direc-~
tion of c), then each n-tiling of P is I-equivalent with an n-tiling
containing Py (c P) for an i,

Proof. An induction according to the length lcl of c. If le] ¢ n, the
statement is obvious. Now, let d = lcl » n and the statement hold for
lel < 4. ’I‘ake an n-tiling A of P, Put k= min(] sucep(e)l,n), Xk, =
= min( lsucc (c)l n), We can assume that ¢ is in the normal position.
Now, the K-convexity of I implies the existence of 1,,..., iy, +1e(N,
and of jl,...,JHIe{l,...,n} such that 11 %eeetly  4q=lcl and

n Lot 11

ADQ = i‘N Z’;‘ (M‘;zm+ e RE

Moreover, we can assume 15,...,15, Donzero, Put P’= U (A~ Q). Then
P’ 18 a polyomino and for 2€m §o« is either

oy = O 1ateeetipa-e - J"(O!O)(O'iZm-l) (+)

an edge of P’ and IsuccPo(cm)l,lsucc;;L(cm)l yn =g, or g4 =0
Similarly, for m = 1 (resp., m =d+ 1) (+) is either an edge of P’
and lsuccpke )l)kl - 3, (resp. IsuccP:(c W 3ky=3), or 32 k)
or 1,= 0 (resp. Jued ¥ k2 or i,,,, = 0).

In any case, if ¢, is an edge of P, the sector I, of P over
is K-convex. Moreover, the sectors Im are mutually disjoint. Con=
sequently, by the induction hypothesis,

A~ Qryp B, where Pn(cm,P') cB
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for some numbers o, . Since, however, nllc | = iZm—l’ we have
Pf”(cm,P) > ¢ totertlimy LN‘_) ,
where
k’l form =1
£ =<k2 form=& + 1
n for other m.
Thus,

- 1,00, S Symit N n *ua
Pryp (BuQ) D N, + Z (M?2m+ w Np) Y ML Mg ™
b PP . § :..ot n o=
o ~_lN + M% + Nkl C.
Let Z‘» = ng+ b ("peN,, b =0,...,0-1), Then C~ 1¢Nn + Mp +
BNy o+ .b_NE > i‘Nn + M+ ((l "“" )Nn = Pn‘./n(c P) (see fig.7)

j ( in &u'v‘l'l'% l\\, Po“u.x CS)

1

r
-
——
- I
] ] [T 4

fig.7

2,2,2, Corollary: Let us have besides of the assumption of
2.2,1. moreover lsuccP(c)l n (resp. IsuccP (e)l'2 n). Then each n-
-tiling of P is I-equivalent to an n-tiling containing P (e,P)
(resp. Pn'(c P)). If we have both lsuccp(c)l2 n, lIsucep (c)lb n,
then each n-tiling of P is I-equivalent with an n-tlling containing

fbn(c,P).
Proof: follows from 2.2,1, and the formulas

PR 3n,k,) = AND + M+ (« = DNG~ Mp g, + (%= NG
~UR o+ AND 4 (K = NG D M+ «NR = POC8 sn,ky).
Pf( ¢ iky,0) ~ Pf_‘uu( l;kl,n) (analogously)

P?(e;n,n) = 1N2+ Mg + (&= 1)Ng~ vy, O
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2,2,3, Theorem: Let c be an edge of a polyomino P, Assume that
111 the edges of P have length at least n., If the left (resp. right)
semisector I of P over c is K-co-vex, then each n-tiling A of P is
I-equivelent with an n-tiling containing Po(c,P) (resp. B”(c,P)).
Proof will be done for the left semisector. According to 1 4,2,, the
edge ¢ 1s left regular. Let hi = succP(c) and denote by P the least
natural number such that h22 +1 is an edge of P. We will use the in-
duction on € . It will be of an advantage to consider the fact in a
somewhat stronger formulation: we will restrict the assumption to
Thyest| 2 n only.

For 0 = o, k1 = huu.gl} n and the theorem follows directly
from 2,2.2, Let U'=0,70 and the theorem hold for { =¢,-1. Put k =
min( lsucey(e)f,n), x, = min(\succgl(c)l n)., If k;= n, the theorem
follows from 2.2.2. Let k ( n. According to 2.,2.1., we can assume
Pn(c ,P) € A for some i. If either 1 = O or n)lc|] and kz(kl, we have
Pn(c P) C.P?(c P) and the proof is finished, Assume the contrary,
Put P’= U(Aﬁ\P?(c P)). We can assume that ¢ 18 in the normal posi-
tion. Then ¢’= hyu Fh ((0,0)(0,n1)) is an edge of P: The left semi-
sector I°of P over ¢’is contained in I and hence K~-convex. Putting
hi= succ%(c), we have hi = hy,, and hence -1 is the least natural
€ “such that hye'sq 18 an edge of P. From the induction hypothesis
it follows that A\Pn(c P) is IZequivalent with an n-tiling B, con-
taining Pn(c P’) =Ih(iNe_g.), where

= ¢ b for nllc[
kyfor nlicl
Hence, setting |lcl=dn +¢, *'N. ’ = 1,...,0-1, we have AN; Bv
p“(c P)>iND + M} + (« -1)Nk ~ Mujap + (« =1)NG o~ Mg + iN +

+ (« ~1)NE, > Mg+ N, = Po(e P) a

Remark: The assumption of Ihag,y| 7 n is essential (see £ig.8)

hy

hy

howe
fig.8

2.3+ The necessary and sufficient condition ror n-tilability
of acyclic polyomina

2,3.1. Consider a polyomino P with acycli. I-components. We
have proved the following facts:
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(1) P is n-tilable, iff each of its I-components is n-tilable,

(2) Assume P has an edge c of length < n. Then P is n-tilable,
1er U P2(c,P)cP and [P ~ U PJ(c,P)] 1s n-tilable.

(3) Let P have no edges of length { n. Then there exists an edge
¢ of P such that the left (resp. right) semisector of P over
¢ is K-convex, Now P is n-tilable, iff UPg(c,P)CP (resp.
UPg'(c,P)C—P) and [P \UPg(c,P)l (resp. [P~ UPg'(c,P)])
is n-tilable (see 1.4.3.,2.2,3.)

These statements yield an obvious "reduction algorithm" for testing
the n-tilability, which consists of a construction of a certain n-
~-tiling of P. The time complexity of this algorithm depends or‘the
time needed for finding the convex semisectors. If we use the trial
and error, we obtain the complexity of O Il ?).

2,3.,2, Theorem 2,2,3, gives a stronger result than the reducti-
on algorithm, By the same method, we obtain quite analogously
TheoremfThe connectedness theorem): Let P have acyclic I-components.
Then any two n-tilings of P are n~equivalent, O

2.4, Tilings of complements of subpolyomina

Let P be a polyomino, Assume that for a set jCOP it holds

J = busucep(a)y succ%(a)u coe usucc];(a)uc

for some k € No and for some segments bca,c csucc§+l(a), which are
subcomplexes of X and satisfy T(b) = T(a), O(c) = 0(suc011§+1(a)) in
the standard orientation. Then j is called an interval of 9P. An
interval is sals to be p-correct, if |b|,lsuccp(all,..., Isucc%(a)\ ,
lel<n. A polyomino P is said to be an n=correct subpolyomino of Q,
if P< Q and WP 9Q< j for some n-correct interval j<OP,

2.4.,1., Proposition: Let P be a 2-tilable polyomino and a 2-cor-
rect subpolyomino of Q. Then any 2-tiling of Q contains a 2-tiling
of P.

even), It is obviously necessary for a polyomino to be 2-tilable
to have the same number of black and white cells.

Suppose now that a:2-tiling A of Q not containing a 2-tiling
of P exists. In particular, the polyomino Q°= U{xeAllxa P( # g¥pQ
is 2-tilable. Since a1l the cells inciding with a 2-correct interval
are obviously of the same color and since P is 2-tilable, the number
of black and white cells in[P~ Q‘]1s not equal, which is a contre-
dictions O

Note that 2.4.1. obviously does not generelly hold for n) 2, It
holds, however, under the @ssumption P is acyclic. Our aim in the
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rest of this paragraph will be to prove this fact.

2,4.,2, Lemma: Let P be an acyclic n-tilable polyomino and let
JCOP be an n~correct interval., Then there exists an edge ¢ of P and
an n-tiling A of P such that

caj=¢g (1)
§"(c,P) c A, (2)
Proof will be done by induction on the volume \P| of P, For |P|{n

the fact is obvious. Let now |{ = m>n and the fact hold for |P| { m.
We have three cases: :

1) P contains an edge c, lc| <n, ¢cnj = B. Then any n-tiling A
of P satisfies §%(c,P) c A,

. 2) For all edges ¢ of P, satisfying cnj = @, it holds lecl 2 n,
but there exists an edge d of P with dNj # @ and |d| £ n. Then any
n-tiling of P contains $™(d,P). Let C be an I-component of [P
~UB"a,p)]. Put 3°=3ca(jv U(4,P)). Then §° is an n-correct
interval of 9C, By the induction hypothesis there exists an n-i 2
~tiling B of C and an edge c<dC with ¢ nj’= B such that B2d"(c,C).
Obviously, c¢ is also an edge of P with cnj = @ and any n-tiling A
of P containing B (which necessarily exists) satisfies (1) and (2),.

3) All the edges of P are of length » n. By Theorem 1.4.3.,
there exists an edge cc®P such that one of the semisectors (assume
it is the left one) of P over ¢ is K-convex, Then there exists an
n-tiling B of P with P"(c,P) <€ B, Denote by Q an I-component of
[P ~ UP™ec,P)] inciding with succ"%(c). There exists a B’€ B with
UB’= Q. Let = U(@Me,P)nd%c,P)). Put j=2an®. Evidently, J
is an mecorrect interval off @Q. By the induction hypothesis there
exists an edge d € Q not inciding with J and an n-tiling D’ of Q
such that Qn(a,D) €D It is easy to see that d is either an edge
of Pord c succl',l(c)'. In any case we have an edge d of P containing
d such that §™(a,P) © (BNB’)uD’=D, If dnj = @, we can put D = 4,
¢ =4, concluding the proof. Let now dnj # @, Assume, for instance,
T(d) € J. Then D is obviously equivalent to an n-tiling E with E 2
=’P'::’(d,P). Denote by Q° an I-component of [P \UPg(d,P)J, inciding
with auccl';l(d). There exists an E°’cE with UE’= Q! Put §'= 9Q’n
n (U (Pg(c,P)aQn(c,P))u 3). Obviously, j’is an n-correct interval
off 9Q; By the induction hypothesis, we have an edge ¢’of Q not inci-
ding with j’and an n~tiling F of Q° with $"(c’,Qf cF, As above, ¢’
is either an edge of P or c’ succ'I',l(d). In any case, we have an ed-
. 88 ¢y of P with c’c c, and Qn(cl,P) cA =Fu(ENE"), We see easily
that ¢;n § = 2.0
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244.3. Theorem: (The separation theorem) Let P be an n-correct
acyclic subpolyomino of Q. (qneedn't be acyclic). If P is n-tilable
then any n-tiling of Q contains an n-tiling of P, In particular, if
P,Q are n-tilable, then [Q>P] is n-tilable.

Proof will be done by induction on IP|. For |P| { n the statement is
obvious. Let now |Pl = m»n, and the theorem hold whenever |Pl <m.
Let j be the n-correct interval of 3P such that 3P~ 9Q < j. If P is
n-tilable, then, by lemma 2.4.2., there exists an edge ¢ ¢ 9P, cnj=
# and an n-tiling & of P such that §™(c,P)cA, Now suppose that c
is in the normal position., Let B be an n-tiling of Q. As ¢ is ob-
viously an edge of Q, there exists a C €{C,y ,Cm4}with CeB, In
any case, A is equivalent with an n-tiling A”; containing C. Then
[P+ c] is n-tilable, As all the I-components of [P- Clare obviously
n-correct subpolyomina of [Q‘ C], B~ {C) must contain an n-tiling of
[P\ C). Putting A° = A”“y4{CY, we have B2A’. O '

Acknoledgement: I am very indebted to A.Pultr for a valuable
discussion of this manuscript.
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