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1989 ACTA UNIVERSITATIS CAROUNAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

A Note on the Prime Ideal Theorem 

JAN PASEKA 

Brno*) 

Received 15 March 1989 

The Prime Ideal Theorem is shown to be equivalent with the following two statements (1) 
Any compact nontrivial quantale has a prime element, and (2) Arty compact normal complete 
nontrivial distributive lattice has a maximal element. Some another equivalents of the Prime Ideal 
Theorem are given. 

The lattice-theoretical investigations of complete lattices equipped with an ad­
ditional binary operation • which distributes over arbitrary joins in each variable 
can be traced back to Ward and Dilworth [14]. Such a gadget is called quantale 
(following C. J. Mulvey). Some topological properties of quantales were obtained 
by Borceux [4]. 

The original motivation for this paper was the question whether the Prime Ideal 
Theorem (every nontrivial distributive lattice has a prime ideal) is strong enough 
to ensure the existence of a prime element in arbitrary compact quantale, rather than 
just in compact frames (see [3], [7]). We present some new relationships between 
this principle and quantale-theoretic conditions, e.g. the existence of a maximal 
element in arbitrary compact normal frame. 

All unexplained facts concerning frames and quantales can be found in [7], [9] 
or [10]. Detailed accounts of choice principles appear in [6]. 

§ 1. /n-prime ideals yields prime elements 

1.1. Definition, (i) A (weak) m-semilattice is a v-semilattice S with the top 
element 1 and the bottom element 0 equipped with an associative operation • so 
that • distributes over finite (finite nonempty) joins in each variable and 1 . x = x 
for all x e S. A morphism of weak m-semilattices is a mapping preserving finite 
joins, • and 1. 
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(ii) An element a of a weak m-semilattice S is called 

(1) 2-sided if a . 1 = a9 

(2) idempotent if a . a = a. 
The set of all 2-sided (idempotent) elements will be denoted by § (E(S)). It is easy 

to check that § is a weak m-semilattice. 
A weak m-semilattice S is said to be nontrivial if it has at least two 2-sided elements. 
(iii) A weak m-semilattice S is called 2-sided (idempotent) if any its element is 

2-sided (idempotent). 
The following is well known (see [4], [5]). 

1.2. Lemma. For any elements a, b9 c in a weak m-semilattice S we have the 
following 

(i) b ^ c implies a .Jb _ a . c, 
(ii) a ^ b implies a . c ^ b . c, 
(iii) a . 0 = 0, 
(iv) a is 2-sided implies a .b ^ a9 

(v) ae § n E(S) implies a v (b . c) = (a v b) .(a v c), 
(vi) ae S n E(S) implies a . 1 = a. 

1.3. Corollary. Let S be a weak m-semilattice. If E(S) = S then § n £(5) consti­
tutes a distributive lattice. Moreover, a weak m-semilattice is a distributive lattice 
iff S = E(5) = £ 

1.4. Definition. Let S be a weak m-semilattice. (i) An ideal of S will be just an 
ideal of the v -semilattice S. An ideal I is called m-prime if x . y e I implies x e I or 
y e I for all x9yeS. 

(ii) An element p #= 1 of S is called prime if x. y g p implies x ^ p or y ^ p 
for all x, y e S. The set of all prime (maximal) elements of S will be denoted by P(S) 

(IX*)). 
As for weak m-semilattices, we shall introduce the notion of a weak quantale. 

1.5. Definition. A (weak) quantale K is a complete (weak) m-semilattice K in 
which • distributes over arbitrary (nonempty) joins in each variable. Congruences 
on (weak) quantales are congruences with respect to • and V- A frame K is a quantale 
K satisfying K = E(K) = £ . 

Let us recall that a complete lattice L is said to be compact if E _ L, \/E = 1 
implies there is F _ E9 F finite such that \/F = 1. 

The following is well known for m-semilattices (see [10]). 

1.6. Proposition. Let Id(S) be the compact weak quantale of all ideals of a weak 
m-semilattice S (I. J being generated by [x. y; xel9 ye J}). Then the prime 
elements of Id(S) are precisely the m-prime ideals of S. 
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1.7. Remark. Let K be a weak quantale. We put a C b if and only if (a . 1 v c = 
=3 1 o 6 . 1 v c == 1 for any c e K) for all a,b eK. 

1.8. Proposition. Let K be a compact weak quantale. Then C is a congruence on K. 

Proof. Let x C y, uCv, x . u . 1 v c = 1. Then x . l v c = w . l v c = l i.e. 
y.lvc = l = v.lvc. Now, we have y . v . 1 v c = 1. 

We have to show that x£ Cyf, iel, I =# 0 implies xCj ; ; here x = V{*i> * e /} , 
^ = V{yi5 i e / } . Let x . 1 v c = 1. Then by compactness of K there is F c /, 
F finite such that 1 = c v V{xt; i e F} . 1 i.e. 1 = c v V{yiJ * € F} . 1 = c v y . 1. 
The symmetry argument concludes the proof. 

For a compact weak quantale K, we denote K/c = Kc. It is easy to check that Kc 

is a conjunctive frame (see [11], [13]). 

1.9. Lemma. Let K be a weak compact quantale. Then Kc is a compact frame. 

Proof. Let ateKc, iel, K}/ai = !• Clearly, {af; i e / } £ fc. Since K is compact 
we have V^i C 1 i.e. 1 = (V^i) • 1 =5 V^i- Consequently, we have V^i = 1 a nd the 
rest follows from the compactness of K. 

1.10. Theorem. The following statements are equivalent, 

(i) Any nontrivial compact frame has a prime element. 

(ii) Any nontrivial compact (weak) quantale has a prime element, 
(iii) Any nontrivial (weak) m-semilattice has an m-prime ideal, 
(iv) The Prime Ideal Theorem. 

Proof, (i) => (ii) Let K be a compact (weak) quantale. From 1.9 and (i) we have 
that Kc has a prime element p which is clearly prime and 2-sided in K. 

(ii) => (iii) It follows from 1.6. 
(iii) => (iv) It is evident, 
(iv) => (i) It results from [1]. 

1.11. Lemma. Let S be a weak m-semilattice (weak quantale), a e S. Then the 
v -semilattice (complete lattice) |(a) = {x e S; a ^ x} is a weak m-semilattice (weak 
quantale) with respect to a multiplication • defined by 

x . y = x . y v a for all x, y e |(a) . 

Moreover, if a e S n E(S) then |(a) is an m-semilattice (quantale). 

Proof. It is immediate. 
The following proposition is a generalization of the result of Banaschewski [2, 3]. 

1.12. Proposition. The following are equivalent: 

(i) The Prime Ideal Theorem. 
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(ii) Any nontrivial compact complete m-semilattice such that its 2-sided elements 
constitute a complete sublattice has a prime element. 

(iii) Any nontrivial compact complete weak m-semilattice such that its 2-sided 
elements constitute a complete sublattice has a prime element. 

Proof, (i) => (ii) Let K be a nontrivial compact complete m-semilattice, £ a com­
plete sublattice of K. Clearly, £ is a compact complete m-semilattice. We can sup­
pose that R. -# {1} i.e. the coproduct M of 2-sided m-semilattices | (a) = ( x e i t ; 
a ^ x}, ae £-{1} is a nontrival m-semilattice M with coproduct maps ha: ](a) -» M. 
For any a e£ -{ l} there is an m-prime ideal Pa = ha

i(P) of ](a)9 P is an m-prime 
ideal of M. We may define a map a: £-{1} -» -^-{1} putting a(a) = \/Pa. It is easy 
to check that the definition of a is correct and the assumptions of Bourbaki's fix 
point lemma are satisfied. Now, we have that a has a fix point, say c. Without any 
difficulties we see that c is prime in K. 

(ii) => (iii) Let K be a nontrivial compact complete weak m-semilattice, fc complete 
sublattice of K. Clearly. Q = ](a) is a nontrivial compact m-semilattice satisfying 
assumptions of (ii); here a = 0 . 1 e& n E(K), a =f= 1. Since 0 =f= P(Q) s P(K), we 
are ready. 

(iii) => (i) It is evident. 

§ 2. Normality yields the Maximal Ideal Theorem 

2.1. Definition. A weak m-semilattice S is said to be normal if, given a, be S 
with a v b = 1, we can find d9 ce S with d . c = 0, dva = l = bvc. 

The following result is well known for m-semilattices (see [10], Theorem 4.5). 

2.2. Proposition. Let S be a weak m-semilattice. Then the following conditions are 
equivalent: 

(i) S is normal, 

(ii) Id(S) is normal. 

Note that 2-sided maximal means maximal with respect to the weak m-semilattice 
of all 2-sided elements. 

2.3. Theorem. The following statements are equivalent: 

(i) Any compact normal nontrivial (weak) quantale has a 2-sided maximal 
element. 

(ii) Any compact normal nontrivial frame has a maximal element, 

(iii) Any normal nontrivial (weak) m-semilattice has a 2-sided maximal ideal, 

(iv) The Maximal Ideal Theorem for normal distributive lattices. 
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(v) Any compact normal nontrivial complete distributive lattice has a maximal 
element. 

(vi) Any compact regular nontrivial frame has a maximal element i.e. it is spatial. 
(vii) The Prime Ideal Theorem. 

Proof, (i) => (ii) It is evident, 

(i) => (iii) It follows immediately from 2.2. 
(ii) => (iv) Using 2.2 for distributive lattices. 

(iii) => (iv) It is evident. 
(iv) => (v) Let K be a compact normal nontrivial complete distributive lattice. 

Then there is a maximal ideal M of K. Clearly, by compactness of K we have that M 
is principal i.e. M = J,(w) = [x eK; x ^ w} for some meM. It is easy to check 
that w is a maximal element of K. 

(v) => (vi) Using the fact that any compact regular frame is normal (see [7]). 
(vi) => (vii) It is well known (see [7], [12]). 
(vii) => (i) Let K be a compact normal nontrivial (weak) quantale. Then Kc is 

exactly the compact regular coreflection of K i.e. there is a maximal element w of £ . 
because any prime element of a regular frame is maximal. The rest follows from the 
fact that there is not any 2-sided element =f= 1 which is greater than w. 

Next we shall consider a particular class of weak w-semilattices (for distributive 
lattices see [8]). 

2.4. Definition. We shall say that a weak w-semilattice S is semi-normal if, 
whenever a v b = 1, we can find elements c9de S with avd=l = c v & and 
l(d . c) C {0} in Id(S). Clearly, any normal weak w-semilattice is semi-normal. 

2.5. Proposition. Let K be a quantale so that C is a congruence on K. Then the 
following are equivalent: 

(i) K is semi-normal. 
(ii) a v b = 1 implies there are c, deK such that avd=l = cvb and 

d . c C 0 in K. 

Proof. It is enough to verify that j(x) C {0} in I d(K) if and only if x C 0 in K. But 
this is an immediate reformulation of 1.7. 

2.6. Corollary. Let S be a weak w-semilattice. Then the following conditions are 
equivalent: 

(i) S is semi-normal, 
(ii) Id(S) is semi-normal. 

Proof. The proof is analogous to [10], Theorem 4.5. 
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2.7. Theorem. The following statements are equivalent: 

(i) Any compact semi-normal nontrivial (weak) quantale has a 2-sided maximal 
element. 

(ii) Any compact semi-normal nontrivial frame has a maximal element, 
(iii) Any semi-normal nontrivial (weak) m-semilattice has a 2-sided maximal ideal, 
(iv) The Maximal Ideal Theorem for semi-normal distributive lattices, 
(v) Any compact semi-normal nontrivial complete distributive lattice has a maxi­

mal element. 
(vi) Any compact normal nontrivial complete distributive lattice has a maximal 

element. 

Proof, (i) => (ii), (i) => (iii) => (iv), (v) => (vi) It is transparent. 
(ii) => (iv) Using 2.6 for distributive lattices. 
(iv) => (v) Let K be a compact semi-normal nontrivial complete distributive 

lattice. Then there is a maximal ideal M of K. Clearly, by compactness of K we have 
that M is principal i.e. M = [(m) = {xeK; x = m] for some meM.lt is easy to 
check that m is a maximal element of K. 

(vi) => (i) Let K be a nontrivial compact semi-normal (weak) quantale. Clearly, 
Q = |(a) is a nontrivial compact normal weak quantale satisfying assumptions of 
2.3(i); here a = V{x; x C 0}, a e £ , a # 1. Since 0 =t= D(Q) c D(k) we are ready. 
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