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1989 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

Asymptotic Decomposition of Smoothing Positive Operators 

J. KOMORNIK 

Bratislava*) 

Received 15 March 1989 

A very mild criterion of asymptotic periodicity, established in [4] for Markov operators, is 
generalized for positive power bounded linear operators on L1. 

Let P be linear operator on L1 = l}(X,Z,[i) where \i is a a — finite measure. 
Recall (cf. [5], [10], [7]) that P is said to be 

(i) positive if it preserves the conus L+ = { / e L 1 : / ^ 0}; 
(ii) Markov if it preserves the set of densities 

(iii) power bounded if the inequality 

(1) \\Pn\\ = M 

holds for some MeR and all n eN; 

(iv) weakly almost periodic if for every a e L1 the trajectory {Pna}neN is weakly 
precompact; 

(v) asymptotically periodic if there exists reN and a finite subset E = 
= {QD •••> 9r] c £+ such that P(£) = E and the convex envelope 

(2) F = co(£) - = { £ * * , : 0 = Af; £ * i = 1} 
i = l i = l 

satisfies 

(3) lim d(Pnf, F) = 0 for all / e D , 
W-+00 

where d(h, F) = inf {\h - g\\: g e F}. 
Note that the elements gl9..., gr satisfying (2) and (3) can be chosen as the vertices 

of the polygon F (that may be degenerated). Moreover, there obviously exist a per-
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mutation a of the set {1 , . . . , r} and a number q ^ r! such that 

(4) P9i = d*(i) and Pqgi = gi for f = 1, . . . , r . 

This fact easily yields that for every fe L1 there exists a strong limit 

(5) Q(f) = l™P"9f=iUf)9t 
n-+oo i = l 

where Al9...,Ar are uniquely determined positive linear functionals on L1. 
The main result of [4], that is to be generalized in this paper, provides a very 

mild sufficient condition for asymptotic periodicity of Markov operators. It is so-
called smoothing property that can be generalized for positive power bounded linear 
operators as follows. 

Definition 1. A positive power bounded linear operator P on L1 is called smoothing 
if there exist a set K <=. Z, ii(K) < oo and positive numbers e and 8 such that 

(6) lim inf $K_B Pnf d/j > e for all feD and B e I, fi(B) < 5 . 

Theorem. A smoothing positive power-bounded linear operator is asymptotically 
periodic. 

Proof. First we prove that P is weakly almost periodic. Arguing in the same way 
as in [12] or [3] we deduce that for anyfe D the sequence 

(7) AJ-ZP'f 
i = 0 

is precompact in so-called w*-topology of the second dual Wof the space L1. Any 
cluster point z of this sequence determines an additive measure \iz on I by 

(8) A = - ( U 

that can be uniquely decomposed (cf. [3]) as a sum 

C9) liz = iig + \ia 

where \ig is a a — additive measure, \ig <̂  /x, and \ia is a purely additive measure. 
Moreover, the Radon-Nikodym derivative g = dfijdfi satisfies 

(10) Pg = g and |g | | = e 

where e is a constant satisfying (6). 
The sequence Png is nonincreasing, hence it converges strongly to a P — invariant 

function g0 ^ g. 
Suppose that c = \\g — #0[] > 0. The density 

h = (g - g0)lc 
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obviously satisfies 
lim|P"/i|| = 0 , 

w->co 

which contradicts (6). Therefore, g = g0 = Pg. 
The function g\\g\ is a P-invariant density. 
Repeating the arguments of [8] we get that there exists a set G e I that is a so-called 

maximal support of P-invariant densities. This means that there exists a P-invariant 
density g0 such that 

(11) G = supp g0 = {x: g0(x) > 0} 

and for any P-invariant density h the set difference 

(supp h — G) 

has measure 0. 
Note that the subspace LG = {lGh: he I}} is P-invariant and that the restriction 

PG of the operator P to LG is weakly almost periodic. According to Mean Ergodic 
Theorem there exist strong limits 

(12) Ah = lim Anh , heLG. 
n-*oo 

It is straightforward to observe (cf. [3]) that for anyfe L\ the sequence A(lGPnf) 
is nondecreasing and thus it converges strongly to the limit 

(13) Af=\imA(lGPnf). 
n->oo 

Note that (12) and (13) define a positive power bounded linear operator on L1. 
Now we are going to prove that for every fe D we have 

(14) Af=g, 

where g is the function defined above and satisfying (9) and (10). 
L e t / e D and h e L00, h ^ 0 be given. Let z be a cluster point of the sequence (7). 

The properties of w*-topology yield that there exists a subsequence {nk} such that 

z(h) = lim(A4J-). 

For any given n9 and k e N the inequalities 

(Ank 1GP% h) = (AnkP
nf9 h) <: (AnJ9 fe) + - Af 1/1 ||h|| 

nk 

clearly hold (where M is a constant satisfying (1)). Therefore, (.A(lGPw/), h) ^ 
g (z, h) for every n e N. 

This, together with (13), clearly implies that Af ^ z in W. However, \ig is the 
maximal c-additive measure that is not greater than z. Therefore, Af ^ g. 
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To prove the converse inequality consider the operator A! defined on 

L% = {lGf:feL°>} 

as the dual operator to the restriction of the operator A to the subspace LG. Let 
feD and heLG, ft ^ 0 be given. Obviously, _4'heLG, thus there exists a sub­
sequence {nk} satisfying 

z(A'h) = lim (A'h9 AnJ) = lim (lGA'h9 AnJ) = 
fc-ЮO 

= hm(h,A(lGA„J)) = (h, Af). 
* - * o o 

However, A'h ^ 0, hence 

z(A'h) = (A'h9 g) = (h9 Ag) = (h9 g) . 

Therefore, g ^ Af9 which completes the proof of (14). 
From (10) and (14) we conclude that the operator _4, defined by (12) and (13) 

satisfies 

(15) MMI/II f o r f6Li> 
(where e is a constant satisfying (6)). 

From (13) we obtain that 

Af = APrtf for fe L1 and n e N 

as well as that 

lim \AP»f - A(lGP-f)\ = lim |^(l x _ G P"/)l = 0 . 
FI-+CO n-*co 

Combining this with (15) we get that 

(16) lim IP"/ - 1GP"/[| = 0 for feL\ , 
7I-+C0 

which clearly implies that P is weakly almost periodic. 
Now we can repeatedly use to reduction method that was successfuly applied in [6], 

[9] and [4] and prove asymptotic periodicity of the operator P using the fact that 
its restriction PG is isometrically isomorphic to the unity preserving operator Pg 

defined on l}(fig) by 

(17) P(f) = g-1PG(fg). 

Therefore, it suffices to prove asymptotic periodicity of P. The that P is a smoothing 
operator can be obtained in the same simple way as the corresponding result of [8]. 
Hpwever, F need not be a Markov on L 1 ^ ) . Fortunately, it is a Markov operator 
on the space l}(fi) that contains the same elements as L}(ftg) but its metric is deter­
mined by the measure ft = fihg9 where the function h is the strong limit (in l}(fig)) 
of the sequence 
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(18) 4 , l G = l / n £ P ' ( l G ) , 
1 = 1 

where P' is the dual to the operator P, P' is a power bounded operator on U°(ng) c 
c l}(fig). Hence it can be uniquely extended to a weakly almost periodic Markov 
operator on L*, which ascertain that the sequence (18) has a strong limit h. Moreover, 
from (1) and (6) we obtain the inequalities 

(19) e^h^M. 

This immediatelly implies that P is a smoothing Markov operator on l}(jx). 
According to [4], P is an asymptotically periodic operator on l}(p). 

The repeated application of the inequality (19) yields that P is an asymptotically 
periodic operator on l}(fig). 
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