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ALGEBRAIC CHARACTERIZATION OF THE DIMENSION
OF DIFFERENTIAL SPACES '

Piotr Multarzyrski, Wieszaw Sasin

This work is a continuation of our previous investigations
of the dimension problem for the tangent space to a differen-
tial space at a point [1]. Here we present a full characteri-
zation of the tangent space dimension basing on algebraic pro-
perties of the linear ring of all smooth functions on a diffe-
rential space in the sense of Sikorski [7],[8].

1., PRELIMINARIES. Let M be any set and let C be any non-
empty set of real functions on M. By Tg we shall denote the
weakest topology on M in which all functions from C are con-
tinuous. For any subset ACM, let CA be the set of all real
functions F: on A such that, for any peA, there exist an open
neighbourhood U€'t of p and a function o/ €C such that
PIANT = oL1ANT. By scC we shall denote the family of all
real functions on M of the form w - (0(1,...,0( 3, where GE
olqseeerol €C, nel, and & = CIRY).

A family C of real functions on M is called the differen-
tial structure (shortly a d-structure) on M if C = Cy = scC [8].
The pair (M,C) is said to be a differential space (shortly a
d-space); the family C is then a linear ring [8] and its ele-
ments are called smooth functions on M, For an arbitrary set C
of real functions on M, the set (scC )M is the smallest difrer-
ential structure on M containing Co. A differential structure
C is said to be generated by-co if C = (scCo)M.

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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By a tangent vector to a d-space (M,C) at a point pe M we
shall mean any linear mapping v: C —> R which satisfies the
condition

V(oL P) = V(L) B (P> + L (PIV(RD
for ol ,Pe C. By TpM we shall denote the linear space of all
tangent vectors to (M,C) at peM, called the tangent space to
(M,C) at p€M. The C-module of all derivations of the linear
ring C will be denoted by ¥ (M). In the pointwise interpreta-
tion X (M) is the C-module of all smooth vector fields tangent
to (M,C) [7],[8]. A sequence W1,...,Wn€’£(M\) is said to be a
vector basis of the C-module X (M) if for every point pe¢M the
sequence w1(p),...,wn(p) is a basis of TPM. We say that the
differential space (M,C) is of constant differential dimension
n if every point p € M has a neighbourhood U€"ITC such that there
is a vector basis of X (U) composed of n vector fields.

2. MAIN RESULTS. let (M,C) be a differential space. For any
peM we shall denote by o, the set of all smooth functions f€ C
for which there exists an open neighbourhood U€”CC of p and
functions f,,...,f €C, we¢ 6 for some n¢ N, such that

fIU = coo(t ,...,r )IU
and oolj(f (P)yese,f (p)) =0 for 3 = 1,.0.,n.
It can easily be seen that Ol  is a linear subspace of C,.
Let C/OIp be the quotient linear space and [f]p the
equivalence class of fe€C.,
LEMMA 1.Let(M,C) be a d-space, p€M an arbitrary point. Then

(0] n
1 R C O NI I 21011 (L 0,y oLy Y]

for any olyy...pol €C, O€ €, neN.

p

2? [o('jS]p - o((p)~[_j$]p + [o(]p'fb(p) for any of, PeC.

3° 1If £,g€C and £|/U = g|U for a neighbourhood UET, of p,
then [f] - [g]

4° If kE€C is a constant function then [k] = o.
Proof. 1° It is enough to show that
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n
eo(d‘]'-"l dn) - Ee{i(ol.-l(p)'---odnfp))'die ap'
Let w € En be a function given by the formula

n
W(XgyeeerX) = B(Xgpeenrxy) = Eel’i(ou(p).-.-.oln(p))-xi

for (x1,...,xn)€an. We see that
n
m°(°(1’-‘°’°(n) - 9(0(1,'~'t0(n) - ?:19,/1(0(1(P>.~u.0(n(1’3)‘°(i

and
Q:i <°L1(P),-..,o(n(p)> =0 for i = 1,-0.,!1‘
Hence n
/
90(0(,1,---’ 0(.n) - izﬂeli(o(1(p),o.o'0(n(p))'o<i €olpo

2° follows from 1° if we take O ¢ 52, given by 9(x1,x2) - XX
for (x1,x2) ERZ. 3° and 4° are obvious.

Let ve TpM be any vector tangent to (M,C) at p €M, Note .
that vla_p = 0. Hence v induces a linear functional 1ve(c/ ozp)
defined by
(M lv([f]p) := v(f) for any fe€C,

%
PROPOSITION 1. The mapping I: T M —(c/ ap) defined by
(2) I(v) := 1, for any V€ TpM

2

is an isomorphism of linear spaces.

Proof. The linearity of the mapping I is clear. Obviously
if 1v = 0 for some vE€ T M, then v = O, Hence I is a monomor-
phism, Now we shall show that I is an epimorphism. For any
le(C/a) , let vyt C —> R be the mapping defined by
(3 vi(f) := 1([f]p) for f€C.

It follows from condition 2° of Lemma 1 that Vi is a tangent
vector to (M,C) at p such that I(vy) = 1.

COROLLARY 1, Let (M,C) be a d-space and p € M. Then for any
nelN, dim TpM = n if and only if dim C/ ozp = n, In particular
dim T M = 0 iff C = OL_, ‘ '
COROLLARY 2, Let (M,C) be a d-space and p€ M., If f €C satisfies
v(f) =0 for each veTpM, ‘then f ¢ GLP.

Proof. If v(f) = O for any vET M, then for an arbitrary
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*
linear functional 1€ (C/ Olp) , l([f]p> = Vl(f) = 0, Hence we
get [f]p = 0 or equivalently f € .

DEFINITION 1. A set FC C is said to be a local basis (1l-basis
for short) of the differential structure C on M at pé M if any
function f € C can be uniquely expressed in the form

f = ’A1'f1 Feeot 9\n~fn + g,

where f,,...,f %, 27, ..., AR R {03, g ¢ .

PROPOSITION 2. Let (M,C) be a d-space with the differential
structure C generated by a set Co' Then, for any p€M, there
exists an l-basis F of C at p such that FC Cye

Proof. Consider the quotient space C/ ozp. It can easily be
seen that the set {[f_')p: fe00§ generates the linear space
c/ oy Let B := g[rs]p: £,€Cys seS?, where S is a set of
indices, be a basis of C/ . Then the set JF := Efs: s€sSy
is clearly an l-basis of the differential structure C at p.
LEMMA 2. Let (M,C) be a d-space with C generated by Co. Then,
for any p€ M, in the definition of @ _ we can take fi to belong
to C ( see the beginning of this section).

The proof of this lemma is obvious,
LEMMA 3. The set Otp is a differential structure on M such
that T“p' ’ZC.

Proof. Let f1’“”fn € Olp. We shall show that
Woe(fy,...,f D€ ozp. Indeed, from condition 1° of Lemma 1
it follows that

n /
[wo(f1,...,fn)]p - 12_1 W (24(B)eees Tp(@) - [2,] ) = 0,
or equivalently °(f1,...,fn) € 0Ly

In order to show that Tg, = T, observe that
A §2 - 1))’ tecicayce.

It is trivial that Ty = Tge Since A COIPC C implies
TyC Ta, C Ty we see that Ty = T,
LEMMA 4. Let (M,C) be a d-dpace and let F be an l-basis of the
d-structure C at peM. For any function u: F —— R there
exists exactly one tangent vector u: C —> R at p such that
ulF = ug.



ALGEBRAIC CHARACTERIZATION OF THE DIMENSION OF DIFFERENTIAL SPACES 197

Proof. Let u: C ——> R be a mapping given by the formula
n
(5) u(t) = Zj alu (£) for fec,
=1

where f1,...,fne‘5-" ’ 9\1,..., A€ R are elements such that

n
f - ;9\1- f; + g, where g ¢ Ol It can easily be noticed that
=1

u is a linear mapping and u | ozp = 0, hence uc¢ TpM, and ulF = u,.
The uniqueness of u is clear.

LEMMA 5.A11 1-bases of a differential structure C at peM
are of the same cardinality. If Co generates C then, for any
1-basis F of C at peM, Card T < Card C,

Proof. Let F , and ‘3: be two l—basis of C at p. Then the
sets [931] := %[f] : fe‘} ;1§ and [‘3:2] = 5[1‘] : fe‘}'zg
are bases of the linear space C/ o, and Card? = Card [c;i]
for i = 1,2. Obviously, Card [F ]p = Card [S’-‘ ] . Hence
Card ?' - Card? The second assertion follows from the first
and Proposition 2.

PROPOSITION 3. Let (M,C) be a d-space and let F C C be an
1-basis of C at p € M. Then the mapping &: TM—>R defined
by

(6) é(u) t= u|F for uéTpM

is an isomorphism of linear spaces. :

Proof. This follows immediately from Lemma 4.

COROLLARY 3, Let (M,C) be a d-space and let F be an l-basis
of C at p €M, Then .

(ad CardF < oo == Card F = dim T M

(1) Card F = o = 208T4F _ qyp o'y,
PROPOSITION 4. A d-space (M,C) is of constant differential
dimension n if and only if, for any p€ M, there exist a neigh-
bourhood U € T, of p and a subset if‘l,...,fnZCC which forms
an.l-basis of C at any point of U,

Proof. "==" Assume that (M,C) is of constant dimension n.
Then for any point p there exist an open neighbourhood VGTC
of p and a vector basis 3W1,...,W 3CXE (V) of the Crmodule
X (M) [71,[8]. It can easily be seen [8] that there exist an
open subset UCV containing p and functions f1,...,f € C such
that
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(7 Wi@)(fy) = 8yy for geU, 1,j = 1,...,n, |
We shall show that the set §f1,...,fnz is an 1l-basis at any
q € U, Since §W1(q),...,wn(q)z is a basis of the linear space
T M I({W1(q),...,Wh(q)§) is a basis of the linear space
(G/a Y , where I is the isomorphism given by (2). From (1)
and (7) we obtain I(Wi(q)) - [fi]; for q€U, 1 = 1,...,n.
Hence i[f1]q,...,[fn]q§ is a basis of the linear space C/ 0
for q¢ U. Let f€ C. Then, for q€ U, the element [f] has a
unique decomposition [qu - %1'[f1]q teaot ')n'[fn , Where
al, ..., aRe BR~§0} or equivalently f = 21-f1 T £, + 8
where g € Ol . Thus the set §f1,...,fnz is an 1-basis of the
d-structure C at any point of U,

"e—=" Let p€M and let U € "L‘C be a neighbourhood of p such
that the set §f1,...,fn§cc is an 1l-basis of C at all q €U,
Let Wi, for i = 1,...,n, be a vector field on U satisfying the
condition Wi(q)(fj3 = éij for q€U, j = 1,...,n, The unique=-
ness of the fields W1,...,Wn follows from Lemma 4., We shall
show that the vector fields W1,...,Wh are smooth. Each function
f €C has a unique decomposition in the form

£a 2t sir AL g,

where )1,..., A%c R\{03 and g €<Rp. One can easily see that
Wi(flU) - xi, for i = 1,...,n. This demonstrates the smooth-
ness of the vector fields W1,...,Wh. It can easily be seen that
3W1(q),...,wn(q)} is a basis of the linear space TqM, for q€ U.
Thus the d-space (M,C) is of constant differential dimension n.
EXAMPLE. Let C be the d-structure on R generated by the set
of real functions CO t= gfn: nesN}, where fn(x) ‘= x1/(2n'1).
Then Qi = C and dim TR = 1 for xe B {0}, dim T M = 0 for x=0.
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