WSAA 9

S. Graf; G. Mégerl
Families of pairwise orthogonal measures

In: Zdenék Frolik (ed.): Abstracta. 9th Winter School on Abstract Analysis.
Czechoslovak Academy of Sciences, Praha, 1981. pp. 42--55.

Persistent URL: http://dml.cz/dmlcz/701779

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic,
1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic
provides access to digitized documents strictly for personal use. Each copy of any
part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery
and stamped with digital signature within the project DML-CZ:
The Czech Digital Mathematics Library http://project.dml.cz



http://dml.cz/dmlcz/701779
http://project.dml.cz

42

NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

Families of pairwise orthogonal measures

S. Graf and G. Migerl

In this paper we consider the following problem, which is in a
sense inverse to the problem whether a given map admits a proba-
bility section, namely:

Given a Markov kernel (vx) from (X, ®(X)) to (Y, ®(Y)); does

x € X
there exist a measurable map u: Y * X such that vx(u_l(x))=1 for
all x € X.

In this situation x » Vo is called a probability section for u.

Notation: For a Polish space P let ®B(P) be the Borel field of P,
M(P) the vector lattice of real-valued signed measures on P, M, (P)
the cone of positive elements of M(P), and Hi(P) the set of proba-
bility measures in M+(P). These spaces will always carry the narrow

topology (Schwartz [5],p.370, Def.1).

Our setting will be as follows.
X and Y are Polish spaces, v.: X = Hi(Y), x - Vx is a Markov kernel.
i.e. a m(x)—&(Hi(Y))-measurable map. For such a kernel x o« vx(B)

is Bcrel measurable for all B € ®(Y).
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Definition:

(“x)xex is called
(1) orthogonal if for all a,b € X with a#b we have va.L vb.i.ea
there is a set S € 8(Y) with
a,b

va(sa’h)=1=vb(v\sa.b).

(1i) uniformly orthogonal if for all a € X there is a set

s, € ®(Y) with va(sa)=1=vb(Y§sa) for all b € x‘{a}.

(iii) completely orthogonal if for all A € ®(X) there is a set

S, € &(Y) with
va(sA)=1=vb(Y\SA)

for all a € A, b € A.

(iv) implemented if v. is a probability section for some
®(Y)-8(X)-measurable map u: Y + X.

Remarks:

a) Obviously each of these properties implies the preceding ones.

b) Property (ii) was introduced by D.Maharam [3] and can easily be
seen to be strictly stronger than (i). Consider for instance the

family (“x)xG[O,l] on the unit interval where

Dirac measure 6x s X 20
v =
* Lebesgue measure A, x = O.

Using the continuum hypothesis Maharam [3] gave an example of
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a uncountable family (vi)ieI of pairwise orthcgonal measures
on the unit square such that ncne of its unccuntable subfamilies

is uniformly orthogonal.

c) It seems to be unknown whether (ii) implies (iii).

d) For an uncountable space X Burgess and Mauldin [1] showed that
for an orthogonal kernel (vx)xex there exists a Cantor subset
C of X and an analytic subset D of Y such that (vx)x€c is a

probability section for some Borel measurable map u: D + C.

In our situation properties (iii) and (iv) are equivalent as the

following proposition shows.

Proposition 1:
Every completely orthogonal kernel is implemented.

Proof: The systeme= {B € ®(Y)]v x € x: Vx(A)= 0} is obviously a
g-ideal in ®(Y). Let ®(Y),, be the corresponding quotient algebra
and let ¢: ®(X) > ®(Y), be the map which sends A € ®(X) to the
equivalence class [SA] of S, in ®(Y), . It is easy to see that ¢
is a well-defined o-homomorphism. By a theorem of Sikorski ([6],
p-139, 32.5) there exists a @(Y)-®(X)-measurable map u: Y * X
such that ¢(A)= [U-I(A)] for all A € ®&(X). A straightforward cal-

culation shows that U has the required properties.

Our next aim is to give a condition on the kernel which is easier
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to handle than (iii) but still implies (iii).
Definiticn:
(1) TFor u € M _(X) let be du(x) be the measure on @G(Y) defined

by B » fv_(B) dulx).

(ii) A kernel (vx)xex is said to preserve orthogonality if

va du L fvx dy' holds for all u,u* € H+(x) with y L y'.

Remarks:
a) The kernel (vx)xEx preserves orthogonality if and only if

u va du(x) defines a lattice isomorphism from M(X) into M(Y).
b) If (vx)x€x is implemented, it preserves orthogonality.
c) A kernel which preserves orthogonality is obviously orthogonal.

d) A kernel (Vx)xex that preserves orthogonality also has the

~

following properties:

1) v. is an injective map, hence a Borel isomorphism from X onto
{vxleX} which is a Borel subset of M: (Y) (Schwartz, [5], p.107.

Lemma 14 and fcllowing remark).

2) Given two cdisjoint sets A,B € ®(X) let M= {v Ix € A} and
Pz v |x € B}. Then, for any two probability measures m on &
X

and n on‘ﬁ, we have r(n) L r(m), where r(m)(E) = I t(E) dm(y)
' <®
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and r(n) is defined in the same way.
This means that any two measures from the respective measure

convex hulls of -t and gare orthogonal.

. .

From the last remark we can conclude that-a kernel that preserves
orthogonality is completely orthogonal provided the following is
true ¢ i

M 1 . :
If ‘1,,42 4 H+(Y)‘are measure convex Borel sets which are mutually
orthogonal (i.e. v, GJtl and y, € Jé implies ¥ 1-u2) then there
exists a set S € ®(Y) with pl(S)=1=U2(Y\S) for all u, € fg, uy € J‘.
This, however, is not true in general as a counterexample by
D. Preiss [4] shows. But if the kernel meets additional requirements
it is enough to have separation only for mutually orthogonal compact
convex sets. The next proposition states that those sets can be

separated.

Proposition 2:
Let 3, and ), be compact convex subsets of Hi(Y) such that u; L u,

for any two measures ¥ € Ma and ¥, € Mb. Then there is a Borel set

S € Y such that "1(5)f1=v2(7‘5) holds for all ' € X, and up € ka.

Before we shall prS:eed a few comments are in ord;g:

The question whether a result of this type is true was asked by

H. von Weizsdcker on the 8th Winter School. Subsequently v. Weizsdcl
[8] and ourselves succeeded in proving it independently. Later

we learned that the result was already obtained by A.Goullet de

Fugy [2] in 1971.

Goullet de Rugy's and v. Weizsdcker's proofs both use the usual

separation theorem for compact cornvex subsets of a locally convex



Hausdorff space. Our proof also uses the Hahrn-Banach theorem hut

in a rather different argument which we are poing to outline later.

-

Before we do that, we want to point out that Prop. 2 implies that certain
kernels which px;eserve orthogonality are completely orthogonal. This was
first observed by v. Welzsicker ([8]. Satz 1); here we will give a dif-

ferent proof of this fact.

Theorem:

Suppose that the kernel ("x)xGX preserves orthogonality and tha+

€ = {vxlx € X} is o-compact. Then (vx)xEx is completely orthogonal

Proof: For k., D¢ £ we write'lt jl(g)if there exists 5 € GW(Y) such

that a(S)=1=B(¥~5) for all @ €% and B € D. We firzt show that

(*) XLe»~ X for every compact set X ¢ €£. Recause € > ) is

an open subset of a O-compact metrizable space(Schwartz [5], p.385,
Thm. 7) it is the union of. a sequence, (xn)nEN say, af compact sets.
It is obvious that ) J| 3¢, for ali n implie.; X _\ng I, e X

Hence, to prove (*), it is enough to show X I X' for any two disjoint
compact subsets of €.

So let X, ' € be disjoint and compact.

Observe that the closed convex hulls ¢o X and co }' of X and X'

are compact and convex and, by the Krein-Milman theorem, are con-

1 1

tained in [r(m)lm € M, N

(3)} and {r(n)]n € M, (3%} respectively.

As already mentioned x « vy defines a Borel isomorphism of X onto
€. Therefore there exist disjoint Borel sets A,A' ¢ X such that

i = [vxlx € A} and X' = {vxlx € A'}. By Remark d2) preceding Prop.2
co X and ¢o ¥' satisfy the assumptions of Frop.2 from which (*) is

an immediate consequence. Now consider the collectiecn {& C'C:WJLC‘%]
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which is easily seen to be a ¢-field containing the compact sets
by (#). Since £ is o-compact it therefore contains all Borel sub-
sets of €. Cbserving that, for every A € @&(X), [vx[x € A) is a

Borel subset of € with complement (vxlx € X\A} completes the proof.

One easily deduces the following.

Corollary.

Let (\)x)xex be a Markov kernel such that [vx: x € X} is o-compact.
Then the following statements are equivalent:

(i) (vx)xEX preserves orthogonality

(i1) (v ) ey is completely orthogonal

(iii) (vx) is implemented.

x€X
Remark:

The assumptions of the corollary are satisfied if, in addition,

X is g-compact and x * \’x is continuous.

We will now describe the steps in the proof of Prop. 2. To do this

we need some more notation.

For a subset M, of M, (Y) let P ®(Y)+> R, be defined by

pJ‘(B)= sup [V(B)lu €M} and

Ho- {ve u+(v)|va € &(Y):u (B) < p, (B)}

Pw is always subadditive and monotone, and for compact ‘H., Py is
regular in the following sense:

Py (x)= inf[pﬂ(U)ch U, U open}
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for all compact K ¢ Y.

Lemma 1:
Let M and A" be compact convex subsets of M _(Y) such that Hoana N

are mutually orthogonal. Then there exists an A € @(Y) with
u(A) = 0 = v(Y\A)

for all u € ﬂtand v € Jﬁ

Proof: Let B®(Y) be the space all bounded real-valued Borel measurable

functions on Y. Define p,q: B®(Y) * R by

p(f)
q(f)

sup {[ £, au |u €4}
sup {f £ _av |v €.

and

Then p and q are sublinear and monotone.

If we define w: B*(Y) + R by

w(f) = inf{p(g) + q(f*-g)l 0o=gs=s f+],
w is sublinear and monotone with

w(f) Smin(p(£f),q(£))

for all £ € B=(Y).

(1) We will show that, for all K ¢ Y compact, w(lK)=0. Assume there

is a compact set K, € Y with W(lx)# 0. Then, by the Hahn-Banach
°

theorem, there exists a linear functional ¢ on B*(Y) dominated by
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w such that
,(IKO) = w(lKO).

From a result of Topsde ([7], TheofeﬁA2) it follows that

- N

u(B)= sup[inf{O(lu)IKc.u , U open}]K ¢ B, K comp.}
defines a positive Radon measure on Y.

Then

u(ko) > '(lxo) >0

and for open U c Y, S e

¥(U) € 9(1,) € w(1,) < min(p(1,), q(1,))
v v (V] v
= min(p, (V), P4V)).

Since py and py are regular and ¥ is a Radon measure this implies
u(K) = min(py(K), py (K))

for all compact K ¢ Y,

hence we &N,

Cod ~
since M andd’ are mutually orthogonal this leads to w L u, contra-

dicting u # O.

Thus (1) is proved.

(2) We now claim that w(ly)=0.



(3)

Lemma 2:

Let u’{, CM+

1

Let € > 0 be given. Since N is corpact we may choose
K ¢ Y compact with
q(lY\K) : py(YK)<e¢

(cf. Schwartz [5], p.381, Theorem 4).

Now
= =
wlly) = w(1,) + wl(ly () = w(ly )
<
q(ly\K) <e.
Finally we will construct the separating set A. Let

(en)neﬂ be a sequence of positive real numbers with
L

I ne < =
n=1 n

By (2) there exists a sequence (fn) in B®(Y) such

n€N
that 0= fn <1 and

o= p(fn) + q(l-fn) < L

Define

A:= n u {y € Y| fn(y) H ).

kEN n>k

ir

This is obviously a Borel set and it is not difficult to

show that it has the desired properties.

-~
(Y) be compact convex and v € M'{o0}.

Then there is a measure u € : such that y and v are not orthogonal.

Procf:Let,

Y := {u o & |u €4 ¢ M, (4.

(1) We claim that

B #(C x 30= inf{pd‘* (ngnuu Koe q » Ui § open].
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for compact Cc Y, ¥ ¢ M

Let C c Y and ¥X ¢ ¢ be compact ande > O. Thenu » p(C) is

an upper semi-continuous function a\g M. Thus

Z:= lge M g(c) < p“.(c x X) +e} is open and contains X.
Since /) is compact we can find an open set 9 in Jf with

X c 5 [ ;- cz.b Now p; is regular. Hence there exists an open

"

set U> C such that w) ‘p; (C) +e < pa? (C x I0)+ = .
Obviously

*(ng)

P\H. sup {S(U)If&j]

sup {g(V)] ge@] = rg ).

n

Thus our élaiin is provedv.

(2) Define p: B=(Y .x ) + I‘R by
p(f) = sup{f f+d(‘~.oJ;., ) v €4+
Then p is sublinea_r and‘ monotone and extends :pdl' Let
m: Y x'J(,,» Y. be tl';e :canlonica]:f proiéction and let
F= {ho x|h € B=(Y)]). Moreever, let g9: F + R be the linear
functional given by ‘ ' ’
e(hor) = [ h av
Then ¢ is dominated by p. Thus, by the Hahn-Banach theorem there
exists an extension y of ¢ to B®(Y x M) which is still dominated

by p. Applying Topséde's procedure to y we get a measure n on

o(Y xJl) with

a) n(K) 2 "’“‘K) for K compact

and
b) n(Vv) = w(lv) for V open in Y x M.
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From this we deduce
c) n(A x M) = v(a) for all A € @&(Y).
Combining a) and (1) yields, in addition,

d) n(A x B) = p(1 +x(A x B)

Axp) T Py
for all A € ®(Y), B € aUM).
Let m be the normalized image measure of n under the canonical
projection to J{. Let u=r(m). Then u € Ji(since /b is compact con-
vex) and we claim that u and v are not orthogonal. Assume the
contrary. Then there is a set A € B(Y) with u(A) = 0 = v(Y\A).
The definition of u together with c) yields that n is supported
by A x {g€ . g (a) = 0} € ®(Y x X). But d) implies

n(A x {g€ JM:3(a) = 0}) = 0.

Hence n=0 and therefore v=0, a contradiction.

Proof of Prop. 2:

Since xa and Rb are mutually orthogonal and compact convex we can
apply Lemma 2 twice to deduce that ﬁi and §ﬁ are mutually orthogonai,

too. Prop. 2 then follows from Lemma 1.

Remarks:

a) According to cral communication by M. Talagrand, G.Mokobodzki
proved the following result assuming continuum hypothesis (or
Martin's axiom):

Any two mutually oﬁthogonal measure convex Borel subsets of

Mi(Y) can be separated by a universally measurable subset of Y.

Tris result implies:
(MA or CH) A kernel that preserves orthogonality is uniformly

orthogenal and is implemented by a ®,(Y) - &(X)-measurable map
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(where GQY) is the o-field of universally measurable sets in

Y).

It is worth mentioning that the measure convex hull of a Borel
set of discrete measures can be separated (by an analytic set)
from any measure convex Borel set provided the two are mutually

orthogonal.
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