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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Families of pairwise orthogonal measures 

S. Graf and G. MSgerl 

In this paper we consider the following problem, which is in a 

sense inverse to the problem whether a given map admits a proba­

bility section, namely: 

Given a Markov kernel (v x) x ̂  x from (X, <B(X)) to (Y, <B(Y)); does 

there exist a measurable map u: Y •* X such that v ( u " (x)) = l for 

all x € X. 

In this situation x t* v is called a probability section for u. 

Notation: For a Polish space P let <B(P) be the Borel field of P, 

M(P) the vector lattice of real-valued signed measures on P, M+(P) 

the cone of positive elements of M(P), and M+(P) the set of proba­

bility measures in M (P). These spaces will always carry the narrow 

topology (Schwartz £5],p.370, Def.l). 

Our setting will be as follows. 

X and Y are Polish spaces, v.: X •» M+(Y), x •*• v is a Markov kernel. 

i.e. a <B(X)-<B(M+(Y))-measurable map. For such a kernel x *• v (B) 

is Bcrel measurable for all B € ffi(Y). 
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Definition; 

<Vx« is c a l l « d 

(i) orthogonal if for all a,b € X with a*b we have v JL v.ti.e* 

there is a set S v € <&(Y) with a,b 
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(ii) uniformly orthogonal if for all a € X there is a set 

S= € ffi(Y) with v (S )=l=v.(Y*S ) for all b € X*{a}-a a a o a 

(iii) completely orthogonal if for all A € <b(X) there is a set 

SA € ffi(Y) with 

va(SA)-l-vb(Y*sA) 

for all a € A, b € A. 

(iv) implemented if v. is a probability section for some 

(B(Y)-(B(X)-measurable map u: Y -*> X. 

Remarks; 

a) Obviously each of these properties implies the preceding ones. 

b) Property (ii) was introduced by D.Maharam [3] and can easily be 

seen to be strictly stronger than (i). Consider for instance the 

family (v
x)x£f0 i]

 o n t n e unit interval where 

v x 

Dirac measure 6 , x t 0 

Lebesgue measure X, x = 0. 

Using the continuum hypothesis Maharam [3] gave an example of 
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a uncountable family (v .?).?£! o f pairwise orthogonal measures 

on the unit square such that none of its uncountable subfamilies 

is uniformly orthogonal. 

c) It seems to be unknown whether (ii) implies (iii). 

d) For an uncountable space X Burgess and Mauldin [l] showed that 

for an orthogonal kernel (v ) - there exists a Cantor subset 

C of X and an analytic subset D of Y such that ( V

X) X£ C

 i s a 

probability section for some Borel measurable map u: D -* C. 

In our situation properties (iii) and (iv) are equivalent as the 

following proposition shows. 

Proposition 1: 

Every completely orthogonal kernel is implemented. 

Proof: The systemH= {B € (B(Y)JV x € X: v (A)= 0} is obviously a 

tf-ideal in (B(Y). Let ©(Yj/^be the corresponding quotient algebra 

and let *: (B(X) •* ©(Y)/^ be the map which sends A € (B(X) to the 

equivalence class [S.3 of S. in ©(Y)/^ . It is easy to see that * 

is a well-defined o-homomorphism. By a theorem of Sikorski ([63, 

p.139, 32.5) there exists a (B(Y)-ffi(X)-measurable map u : Y -*• X 

such that *(A)= [u-1(A)3 for all A € (B(X). A straightforward cal­

culation shows that u has the required properties. 

Our next aim is to give a condition on the kernel which is easier 
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to handle than (iii) but still implies (iii). 

Definition; 

vi) For y € M (X) let J\i dy(x) be the measure on <&(Y) defined 
T •* X 

by B -* /vx(B> du(x>. 

(ii) A kernel (v ) *„ is said to preserve orthogonality if 

Jvx dy J_ Jv dyf holds for all y,yr € M+(X) with y J_ y
1. 

Remarks: 

a) The kernel (v ) ̂ x preserves orthogonality if and only if 

y •+ Jv dy(x) defines a lattice isomorphism from M(X) into M(Y). 

b) If (V
X)X£X is implemented, it preserves orthogonality. 

c) A kernel which preserves orthogonality is obviously orthogonal. 

d) A kernel (v > -x that preserves orthogonality also has the 

following properties: 

1) v. is an injective map, hence a Borel isomorphism from X onto 

{vxJx€X] which is a Borel subset of M* (Y) (Schwartz, [5], p.107. 

Lemma 14 and fcllowing remark). 

2) Given two disjoint sets A,B € (B(X) let#= {v |x € A] and 

x-x ^ B^' Then, for any two probability measures m on Ifc 

and n on -b, we have r(n) X r(m), where r(m)(E) = J T(E) dm(i ) 
4 
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and r(n) is defined in the same way. 

This means that any two measures from the respective measure 

convex hulls of .> and £ are orthogonal. 

From the last remark we can conclude that a kernel that preserves 

orthogonality is completely orthogonal provided the following is 

true : 

If a , i/ik C M (Y) are measure convex Borel sets which are mutually 

orthogonal (i.e. y1 € Jt1 and y2 € vL implies Vl i- y2) then there 

exists a set S € (B(Y) with y1( S )=l = y2( Ŷ  S) for all y1 € K^% y2 € J^m 

This, however, is not true in general as a counterexample by 

D. Preiss £-0 shows. But if the kernel meets additional requirements 

it is enough to have separation only for mutually orthogonal compact 

convex sets. The next proposition states that those sets can be 

separated. 

Proposition 2; 

Let X. and 3C2 be compact convex subsets of M (Y) such that y. _L y2 

for any two measures y.. € X, and v2 € 3C2. Then there is a Borel set 

S C Y such that u1( S)=l = y2( Y*S) holds for all y..̂  € 3C1 and y2 € 3C2. 

« 
Before we shall proceed a few comments are in order: 

The question whether a result of this type is true was asked by 

H. von Weizsacker on the 8th Winter School. Subsequently v. Weizsacl 

£8] and ourselves succeeded in proving it independently. Later 

we learned that the result was already obtained by A.Goullet de 

Fugy £2] in 1971. 

Goullet de Rugy's and v. Weizsacker's proofs both use the usual 

separation theorem for compact convex subsets of a locally convex 
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Hausdorff space. Our proof also uses the Hahn-Banach theorem hut 

in a- rather different argument which we are going to outline later. 

Before ve do that, we want to point out that Prop. 2 implies that certain 

kernels which preserve orthogonality are completely orthogonal. This was 

first observed by v. Veizsacker ([B] 9 Satz 1); here we will give a dif­

ferent proof of this fact. 

Theorem: 

Suppose that the kernel (v ) ̂ x preserves orthogonality and tb-» + 

t = {v |x C X] is o-compact. Then (v ) ,Y is completely orthogonal 

Proof; ror tffc,'?) i t we write'A JLL So if there exists " C tt( Y ) such 

that <-(S) = l=P(Y<-S) ror all a ( A and B C *?>. We firr.t show that 

(*) X JL t x X for every compact set 3C C t . Because t v 3C is 

an open subset of a tf-compact metrizable space( Schwartz [5j, p.38.), 

Thm. 7) it is the union of a sequence, (3C ) ,-. say, of compact sets. 

It is obvious that 3C JL X^ for all n implies 3C JL U 3Cn = t * X. 

Hence, to prove (*), it is onough to show 3C I X 1 for any two disjoint 

compact subsets of C. 

So let X, X1 c & be disjoint and compact. 

Observe that the closed convex hulls co 3C and co 3C of X and X' 

are compact and convex and, by the Krein-Milman theorem, are con­

tained in {r(m)|m C M* (3C)] and {r(n)|n C M* (3tf] respectively. 

As already mentioned x ** v defines a Borel isomorphism of X onto 

t . Therefore there exist disjoint Borel sets A,A' c x such that 

3C = {v |x C A] and X
1 = {v |x C A']. By Remark d.2) preceding Prop.2 

co X and co 3C satisfy the assumptions of Trop.2 from which (*) is 

an immediate consequence. Now consider the collection {eft C t:& JL Cvfc] 
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which is easily seen to be a c-field containing the compact sets 

by (*). Since t is o-compact it therefore contains all Borel sub­

sets of t. Observing that, for every A € ffi(X), {v [x € A] is a 

Borel subset of t with complement Cvx|x € XvA] completes the proof. 

One easily deduces the following. 

Corollary. 

Let (v ) £X be a Markov kernel such that {v : x € X] is a-compact. 

Then the following statements are equivalent: 

(i) (v ) preserves orthogonality 

(ii) ( v ) - is completely orthogonal 

(iii) (v ) - is implemented. 

Remark: 

The assumptions of the corollary are satisfied if, in addition, 

X is o-compact and x *+ v is continuous. 

We will now describe the steps in the proof of Prop. 2. To do this 

we need some more notation. 

For a subset VM> of M+(Y) let p : CJ(Y)->- R+ be defined by 

PA(B)= sup £ P ( B ) | U € A ] and 

<#= {P€ M+(Y)|VB € <B(Y):v (B) * P^(B)} 

p „ is always subadditive and monotone, and for compactcH, p is 

regular in the following sense: 

p (K)= inf{p (U)JKcU, U open] 
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for all compact K c Y. 

Lemma 1: 
""""——-—--— ^ ^ 

Let <A» and J* be compact convex subsets of M (Y) such that »A;and -A 

are mutually orthogonal. Then there exists an A € ffi(Y) with 

W(A) = 0 = v(Y%A) 

for all y € A and v € X 

Proof; Let B€0(Y) be the space all bounded real-valued Borel measurable 

functions on Y. Define p,q: B€8(Y) •*• IR by 

and 
p(f) = sup ÍJ f+ dy |y бД} 

q(f) = sup {J f
+
 dv |v €<!?}, 

Then p and q are sublinear and monotone. 

If we define w: B»(Y) •* R by 

i(f) = infip(g) + q(f+-g)| 0 * g * f+}, 

w is sublinear and monotone with 

w(f) *min(p(f),q(f)) 

for all f € B«(Y). 

(1) We will show that, for all K c Y compact, w(l )=0. Assume there 

is a compact set K c Y with w(1 )f o. Then, by the Hahn-Banach 
*o 

theorem, there exists a linear functional q> on Beo(Y) dominated by 
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w such that 

» ( V ' W(1K0>-

From a result of Topsrfe ([73» Theorem 2) it follows that 

v(B)= sup{inf{«p(lv)|Kc U , U open}JK c B, K comp.} 

defines a positive Radon measure on Y. 

Then 

V(k ) * q»(lv ) > 0 
° Ko 

and for open U c Y, • • ' 

V(U) * q>(lu) * w(lv) * min(p(lu), q( ly)) 

= min(p>(U), p^U)). 

Since p^ and pjr are regular and v is a Radon measure this implies 

V(K) * min(p.*/(K), p^ (K)) 

for all compact K c Y, 

hence v € JL ^ A» . 

•—* *N* 

Since /t and»V are mutually orthogonal this leads to V -L y, contra­

dicting y i/ 0. 

Thus (1) is proved. 

(2) We now claim that w(ly)=0. 
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Let e > 0 be given. Since A is coirpact we may choose 

K c Y compact with 

q(l
y x K

) = p/(Y*K) < e 

(cf. Schwartz [53, p.381, Theorem 4). 

Now 

w(l
y
) -- W(1

K
) + w(l

y v K
) = w(l

y % K
) 

* q d y , K ) < * • 

(3) Finally we will construct the separating set A. Let 

(e ) be a sequence of positive real numbers with 
OB 

I n e < -. 
« n 

n=l 
By (2) there exists a sequence (f ) -__ in B

CD
(Y) such 

that 0 -*- f a- 1 and 
n 

0 * p(f ) + q(l-f„) * c ' n ^ n n 

Define 

A:= П U ÍУ « Y| f
n
(y) Ł | ï 

kCN n_k n n 

This is obviously a Borel set and it is not difficult to 

show that it has the desired properties. 

Lemma 2: 
*\j 

Let jfj __M+(Y) be compact convex and v € _rv{o] . 

Then there is a measure p 6 X- such that y and v are not orthogonal. 

Proof: Let t4>*: = (u e . |p €/t] c M (Y»A). 

(1) We claim that 

P̂ ft(C x 3C)= inf{pA* (Uxg )|C*U , K <_ § , U| £ open]. 
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for compact C c Y, 3C c «/£ . 

Let C c Y and Kt. c/*& b>e' compact and e >. 0 . Then p ••*• p (C) i s 

an upper semi-continuous funct ion on Jl. Thus 

?:= [ j C eft| j ( C ) < p ^(C x X) + e ] i s open and c o n t a i n s 3C. 

Since Jit i s compact we can f ind ah open s e t 6 in Ji> wi th 

X c 6 c L c JC. NOW p - i s r e g u l a r . Hence there e x i s t s an open 

se t U? C such that p-(U) * p - (C) + e < p * (C x 3C)+ 2E . 

i f * 
Obviously 

p t f * ( U x $ ) = sup C j ( U ) | y € ^ ] 

a- sup {j (U)f J € C ] = P j ( U ) . 

Thus our claim i s proved. 

( 2 ) Define p: B-» (Y :x <,%)--»' ft . by 

p(f) = sup{J f+d(^*<£ | p e r f ) 

Then p is sublinear and monotone and extends p jt * Let 

ir: Y x tt-*- Y be the canonical^ projection and let 

F= {h© ir|h € BC0(Y)}. Moreover, let j: F -• R be the linear 

functional given by 

f(h°ir) - / h dv 

Then <p is dominated by p. Thus, by the Hahn-Banach theorem there 

exists an extension ty of <p to B°°(Y x Jt) which is still dominated 

by p. Applying Topstfe's procedure to ̂  we get a measure n on 

(b(Y xtK) with 

a) n(K) ̂  *(1K> for K compact 
and 

b) n(V) -s *(ly) for V open in Y x A . 
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From this we deduce 

c) n(A x Ji>) = v(A) for all A € ffi(Y). 

Combining a) and (1) yields, in addition, 

d) n(A x B) * P U A X B ) = Vjfth x B) 

for all A € ffi(Y), B € ffiC/U. 

Let m be the normalized image measure of n under the canonical 

projection to A. Let u=r(m). Then u € A (since -'tis compact con­

vex) and we claim that u and v are not orthogonal. Assume the 

contrary. Then there is a set A € ffi(Y) with u(A) = 0 = V(YNA). 

The definition of u together with c) yields that n is supported 

by A x {je/t: J (A) = 0) € ffi(Y x Jl). But d) implies 

n(A x { y € A : J(A) = 0}) = 0. 

Hence n=0 and therefore v=0, a contradiction. 

Proof of Prop. 2: 

Since 30. and 3C are mutually orthogonal and compact convex we can 
•w r* 

apply Lemma 2 twice to deduce that 3C., and 3C2 are mutually orthogonal, 

too. Prop. 2 then follows from Lemma 1. 

Remarks: 

a) According to oral communication by M. Talagrand, G.Mokobodzki 

proved the following result assuming continuum hypothesis (or 

Martin's axiom): 

Any two mutually orthogonal measure convex Borel subsets of 

M (Y) can be separated by a universally measurable subset of Y. 

This result implies: 

(MA or CH) A kernel that preserves orthogonality is uniformly 

orthogonal and is implemented by a ffi^Y) - ffi(X)-measurable map 
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(where &(Y) is the a-field of universally measurable sets in 

Y). 

b) It is worth mentioning that the measure convex hull of a Borel 

set of discrete measures can be separated (by an analytic set) 

from any measure convex Borel set provided the two are mutually 

orthogonal. 
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