
WSGP 25

Roman Lávička
A generalization of Fueter’s monogenic functions to fine domains

In: Martin Čadek (ed.): Proceedings of the 25th Winter School "Geometry and Physics". Circolo
Matematico di Palermo, Palermo, 2006. Rendiconti del Circolo Matematico di Palermo, Serie II,
Supplemento No. 79. pp. [129]--138.

Persistent URL: http://dml.cz/dmlcz/701772

Terms of use:
© Circolo Matematico di Palermo, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/701772
http://project.dml.cz
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A GENERALIZATION OF FUETER'S MONOGENIC FUNCTIONS 
TO FINE DOMAINS 

ROMAN LAVICKA 

ABSTRACT. The so-called quaternionic analysis is a theory analogous to complex 
analysis but the complex numbers are replaced by the non-commutative 4-dimensional 
field H of quaternions. A role of holomorphic functions in quaternionic analysis is 
played by monogenic functions. In this note we extend the notion of monogeneity 
to functions defined on fine domains in R4, i.e., domains in the fine topology of 
classical potential theory In fact, we generalize to some extent Fuglede's theory of 
finely holomorphic functions for dimension 4. 

1. INTRODUCTION 

At the beginning of the twentieth century E. Borel tried to extend holomorphic 
functions to more general domains (no longer open) in such a way that the unique 
continuation property was preserved, see [3]. But his domains were rather special and 
his theory never became too popular. On the other hand, it did give inspiration to the 
creation of the important theory of quasi-analytic classes (on the real line) by Denjoy, 
Carleman and Mandelbrojt. In the 1970-80's B. Fuglede and others developed more 
elegant and more general theory of finely holomorphic functions. 

Once the theory of finely holomorphic functions became firmly established it became 
natural to ask how to extend this deep theory for higher dimensions. Such an extension 
to functions of several complex variables has been made by B. Fuglede alone, see 
[11] and cf. [10]. In this note we present another way how to do it at least for 
dimension 4. Namely, in the 1930's R. Fueter developed the so-called quaternionic 
analysis. Roughly speaking, quaternionic analysis is a theory analogous to complex 
analysis but the complex numbers C are replaced by the quaternions H. It studies 
H-valued functions of one quaternionic variable and a role of holomorphic functions 
in quaternionic analysis is played by functions we shall call monogenic. In this note 
we suggest a definition of finely monogenic functions and investigate their properties. 
Let us remark that in other dimensions monogenic functions are also studied in the 
so-called Clifford analysis and the corresponding finely monogenic functions will be 
investigated in a next note. 

The paper is in final form and no version of it will be submitted elsewhere. 
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2. FINELY HOLOMORPHIC FUNCTIONS 

The theory of finely holomorphic functions has been developed by B. Fuglede, A. 
Debiard and B. Gaveau, T. J. Lyons and A. G. O'Farrell and others. It generalizes 
the theory of holomorphic functions to domains in a topology finer than the Euclidean 
topology of the complex plane C, namely, in the so-called fine topology. 

Recall that the fine topology T in Rn, n > 2, is the weakest topology making all 
subharmonic functions in R n continuous, see e.g. [2, Chapter 7]. It is strictly finer 
than the Euclidean topology in R n . For example, if IT is a dense countable subset of 
an open set G C Rn, then U := G \ K is a finely open set but it has no interior points 
in the usual sense. Let U C R n be finely open and / : U —> R m . Then we call / finely 
continuous on U if 

/ : (U, fine top.) -+ (Rm, Euclidean top.) 

is continuous. Denote by Tz the family of all finely open sets containing a point 
z G Rn . The fine limit of / at a point Zo G U can be understood as the usual limit 
along some fine neighourhood of z0l i.e., there is V G Tzo such that 

fine-lim f(z) = lim f(z), 
z—>zo Z—>ZQ,Z£V 

see [2, p. 207]. Moreover, we call a linear map L : R n —> R m the fine differential of / 
at a point z0 G U if 

fine-lim / ( * ) - / ( * ) - f ( * - * > ) = p . 
z->z0 \z — ZQ\ 

We write Rne-df(zo) '= L and, for / = 1,..., n, 

fine-— (20) := fine-d/(z0)(e/) 
OXi 

where a vector e/ G R n has 1 at the l-th place and 0's otherwise. 
It turns out to be fruitful to deal with finely harmonic functions, see [6]. For our 

purposes, let us recall the following characterization. A real-valued function / is finely 
harmonic on a finely open set U C R n if and only if for every z G U there is V G Tz 

such that f\vj the restriction of / to V, is a uniform limit of functions harmonic on open 
sets containing V. Let us remark that / is harmonic on a usual open set G C R n if and 
only if / is finely harmonic and locally bounded (from above or below) on G. In case of 
R 2 we need not assume local boundedness of /. Moreover, finely harmonic functions 
are finely continuous but have the first fine differential only almost everywhere (a.e.), 
in general, see e.g. [9]. By [15], a finely harmonic function / in a fine domain U can 
vanish in some fine neighbourhood of a point of U without being identically 0 on the 
whole U. 

Let U C C be finely open and / : U —> C. There is a few equivalent definitions of 
a finely holomorphic function /, see e.g. [7], [8] and [13]: 

(AM) Vz G U 3V G Tz : f\v is a uniform limit of functions holomorphic on open sets 
containing V. 

(Der) / has a finely continuous fine derivative / ' on U. Here 

f'(zo) = fine-lim / ( z ) ~ / ( * o ) , z0eU. 
z-*zo Z — Zo 
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(fzf) / and zf(z) are finely harmonic (componentwise)_ on U. 
(CRC) \/zeU3VeFz3Fe C\C) : / = F on V and dF = 0 on V. 

Here z = x0 + ix\ and 

dF •= - (— i— 
2 \dx0 dx\ 

(CRW) / is finely continuous on U and VzeU 3V efz3Fe W^2(C) : f = F 
on V and dF = 0 on V. 

(CRH) / is finely harmonic and fine-<9/ = 0 a.e. on U. 

Remark. Let us state some properties of finely holomorphic functions. 

(a) By (fzf), a function / is holomorphic on a usual open set G C C if and only if 
/ is finely holomorphic on G. 

(b) If / is finely holomorphic, so is / ' . Thus / is infinitely fine differentiable. 
(c) Finely holomorphic functions have the unique continuation property, i.e., if / is 

finely holomorphic on a fine domain U C C and all its fine derivatives /^(tfo), 
n 6 N, vanish at a point go ' U, then / is constant on U. 

3. MONOGENIC FUNCTIONS 

For an account of quaternionic analysis, we refer to [19], [5] or [4]. Denote by H 
the field of real quaternions. The field H can be viewed as the Euclidean space R4 

endowed with a non-commutative multiplication. A quaternion q can be written in 
the form q = x0 + X\i + x2j + X3A: where XQ,x\,x2,X3 are real numbers and 2, j , k are 
the imaginary units such that 

i2 = j 2 = k2 = — 1, ij = —ji = k, jk = —kj = i, ki = —ik = j . 

Moreover, denote q = x0 - X\i - x2j - x3k, \q\ = y/qq, Req = x0 and Imq = X\i + 
X2J + 003k. Obviously, q~l = q/\q\2 for q ^ 0. 

For a given open set G c H , C(G) and Cl(G) stand for the set of continuous and 
continuously differentiable functions / : G —> H, respectively. Let / G Cl(G). Define 

- d . d . d a 
d=z ~~~ + l~~~ + 3~r~ + k~r~' 

OXo OX\ ox2 OX3 
-r df ,df .df Bf df = ̂ L+i^L+^ + k^^ 

OXo OX\ OX2 OX3 
r- df df • df • df 1 

OXo OX\ OX2 OX3 

and 

d= — ~i—- —-k— 
dxo dx\ dx2 8x3 ' 

and, in an analogous way, df and fd. Let us mention that the operators d and d 
have coefficients of H \ R, namely, i, j , k. Thus in contrast to the complex case if the 
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operators d and d are applied to H-valued functions from the left and from the right, 
different results are obtained in general. Let us remark that A = dd = dd where 

d rß 

/=0 * 

is the Laplace operátor. 

Definition. Let G C H be open, / : G -> H a n d / e Cl(G). Then / is called 
monogenic if / satisfies the so-called Fueter equation df = 0 on G. 

Remark. Let us mention some properties of monogenic functions. 
(a) Monogenic functions do not form an algebra! Moreover, the zeros of a mono­

genic function are not necessarily isolated, and its range is not necessarily open. 
(Consider f(q) = x\— x0i. Obviously, df = 0 and B(jf) = 2k.) 

(b) Monogenic functions have the unique continuation property, i.e., if / is a mono­
genic function on a domain E / c H and all partial derivatives of / of any order 
at a point q0 e U are zero, then / is constant on U. It follows easily from [19, 
Theorem 10]. 

(c) A function / is monogenic if and only if both / and qf(q) are harmonic. Indeed, 
each monogenic function / is infinitely differentiable, see [19], and it is easy to 
see that A{qf(q)) = 2df(q) + qkf(q). 

Now we introduce further spaces of H-valued functions. If M C H is (Lebesgue) 
measurable, then the Lebesgue space L2(M) is the set of measurable functions whose 
the second power is integrable on M. Let us mention that an inner product on L2(M) 
can be expressed as 

</,g>A/:=X; / figi = Re( [ fg) 
l=0 JM KJM ' 

where / = (/0, /i, /2, /3) and g = (so.0i,52,S3). Let G C H be open. Denote by V(G) 
the set of infinitely differentiable functions with compact support contained in G. 
The Sobolev space W^2(G) is defined as the set of functions / £ L2(G) whose first 
distributional derivatives 

(a.-*),,—('•£.><.' vev{ch ,=0'1'2'3 

belong to L2(G) as well. An inner product on VV1,2(G) is defined as (/,g)i,2;G -= 
(f>9)G + {f,gh where 

In what follows we shall often omit subscript G. Finally, denote by WQ'2(G) the closure 
of V(G) in Wl'2(H). Of course, W^'2(G) is a closed subspace of W1'2(G). Moreover, 
it is easily seen that, for each / € WU2(G) and g G Wo'2^). (d/>s) = ~(f,dg) and 
(f,9h = {df,dg)G = (df,dg)G. 

Now we generalize the so-called Weyl lemma for monogenic functions. 
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Theorem 1. Let G C H be open and f : G —• H be locally integrable. Then df = 0 
on G in the sense of distributions, i.e., (/, cfy) = 0 for each tp G V(G), if and only 
if f has a monogenic representative on G, i.e., there is a monogenic function h on G 
such that f = h a.e. on G. 

Proof. The implication <= is trivial. We need to prove the converse. We apply the 
following characterization of harmonicity: A / = 0 on G in the sense of distributions, 
i.e., (/, A<p) = 0 for each tp G V(G), if and only if there is a harmonic function honG 
such that f = h a.e. on G, see [17, 2.61 Corollary, p. 95]. We assume that (f,dtp) = 0 
for each ip G V(G). Then, of course, 

(f,A<p) = (f,d(B<p)) = o 

for each ip G V(G). Hence there is a harmonic function h on G such that f = h 
a.e. on G. Moreover, for each (p G V(G), it is easy to compute that A(qip(q)) = 
qAip(q) -f 2dip(q) and thus 

(1) (qf(q), Atp) = (f,qA<p(q)) = (f, A(q<p(q))) - 2(f,d<p)=0. 

Hence there is a harmonic function g on G such that qf(q) = g(q) a.e. on G. Since 
qh(q) = g(q) everywhere on G the function h is monogenic on G. D 

Corollary 1. Let G C H be open and f G L2(G). Then the following statements are 
equivalent to each other: 

a) df = 0 on G (in the sense of distributions); 
b) / has a monogenic representative on G; 

c) (f,dtp) = 0 for each ip G W^2(G). 

Proof. Obvious. D 

Lemma 1. IfGcHis bounded and open, f G W^2(G) and tp G VV0
1,2(G). then 

(qf(ql<p) = (f,w(q)) + 2(f,d<p). 

Proof. Let / G W^2(G) and ip G V(G). In (1), we have proved that 

(qf(q),A<p) = (fiA^q))) -2(f,8<p). 

It is easy to see that (/,<p) = - ( / , A<p). Finally, by the density of V(G) in WQ}2(G), 

we get 

(qf(q),<p) = (f,w(Q)) + WM 
even for (p G W0

1,2(G), as required. D 

4. FINELY MONOGENIC FUNCTIONS 

We introduce finely monogenic functions as follows. 

Definition. Let U C H be finely open and / : U —> H. We call / finely monogenic if 
/ and qf(q) are both finely harmonic on U. 

Remark. By Definition and known facts about finely harmonic functions, / is mono­
genic on a usual open set G C H if and only if / is finely monogenic and locally 
bounded on G. Moreover, fine monogeneity is a finely local property, i.e., / is finely 
monogenic on a finely open set U C H if and only if for each q G U there is V G Tq 
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such that / is finely monogenic on V. In fact, by definition, fine harmonicity is a finely 
local property. 

The main results of this note are Theorems 2 and 4 below. Before stating these 
theorems, we introduce the Sobolev spaces VV1,2(U) and JV0

1,2(U) for a given finely 
open set U c H, see [14] and [17]. First, define 

IV0
1,2(U) := p | {IV0

1,2(G); G C H open, U C G} . 

Let us notice that the space W0
1,2(U) is closed in VV1,2(H). Moreover, it is known that 

if / G Wla(U), then / = 0 and g- = 0 a.e. on H \ U for / = 0,1,2,3. Hence 

(/,g}i,2;LI := (f,9)u + (f,g)u 

is an inner product on W^2(U) where 

In what follows we shall often omit subscript U. Denote by We^t(U) the set of functions 
/ G L2(U) for which there is an open set G C H and F G W^2(G) such that U C G 
and F = / on U. Moreover, define VV1,2(U) as the completion of We

l£(U) with respect 
to (•, -)i,2;L/. For / G Wh2(U) and / = 0,1,2,3, set 

df v dfm . ,2/m 

-r- := h m ^ T i n L (u) 
OX\ m-*oo OX\ 

provided {/m} C W^t(U) and fm —> / in KV1,2(U). It is easy to see that each | £ is 
defined correctly and, futhermore, 

for each (p G VV0
1,2(U). Clearly, if U is open, the above defined spaces VV0

1,2(U) and 
Wly2(U) coincide with the usual Sobolev spaces. 

A role of negligible sets in potential theory is played by polar sets. We call M C Rn 

polar if for each z G Rn there is V G Tz such that M fl (V \ {z}) = 0. In particular, 
polar sets are finely closed and Lebesgue null. Let us recall that a countable union of 
polar sets is polar as well, see [2, Corollary 5.1.4]. We shall say that a function / is 
finely monogenic quasi everywhere (q.e.) on a finely open set U C H if there is a polar 
set M C U such that / is finely monogenic on U \ M. 

Remark. A function / is finely monogenic q.e. on U if and only if / is finely monogenic 
q.e. finely locally on U. Indeed, it is true even for finely harmonic functions. Namely, 
let / be finely harmonic q.e. finely locally on U, i.e., for each q G U there is Vq G Tq 

and a polar set Mq cVq such that / is finely harmonic on Vq \ Mq. Now let us recall 
that the fine topology is quasi-Lindelof, which means that the union of any family 
of finely open sets differs by at most a polar set from the union of some countable 
subfamily, see [2, Theorem 7.3.11]. Hence there is a countable set IV c U such that, 
setting V := \J {Vq\ q G IV}, M0 := U \ V is polar. Moreover, 

M := M0 U U {M,; q € N} 
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is polar and / is finely harmonic on U \ M. 

Remark. By [17, 2.152 Theorem, p. 149], each / G ty1,2(U) has a representative 
/ (i.e., / = / a.e. on U) which is finely continuous q.e. on U. The / is uniquely 
determined up to a polar set. 

Theorem 2. Let U c H be finely open and f G VV1,2(U). Then the following state­
ments are equivalent to each other: 

a) Bf = 0 on U; 
b) / is finely monogenic q.e. on U, 
c) (/,dip) = 0 for each <p G VV0'

2(U). 

Before proving the theorem let us recall the following key result essentially due to 
B. Fuglede, see [9] and [14]. 

Theorem 3. If f G JV1,2(U), then f is finely harmonic q.e. on U if and only if 
(/, <p) = 0 for each tp G W^2(U). 

Proof. By Fuglede's theorem [9, 11. Theoreme], the statement of Theorem 3 is true 
if there is an open bounded set G C H and F G VV0'

2(G) such that U C G and F = f 
on U. Now let / G VV1,2(U). Then it is known that for each q G U there is a bounded 
set Vq G Tq and F G WQ'2(U) such that F = f on Vq, see [14, 1.12 Theorem and 2.5 
Lemma]. Setting V := {Vq\ q G U}, by Fuglede's theorem, / is finely harmonic q.e. 
finely locally on U if and only if, for any V G V, (/,</?) = 0 for each tp G VV0

1,2(V). 
It is sufficient to prove that the latter condition implies that (/, ip) = 0 even for each 
<p G VV0

1,2(U). But it follows directly from the fact that for each (p G W0
1,2(U) there is 

a sequence {(#} C VV0'
2(U) such that (pi —• ip in VV0

1,2(C/) and each ipi is a finite sum 
of functions from [J {W0

1,2(V); V G V}, see [14, 2.4 Lemma]. • 

Remark. The set W^2(U) is dense in L2(U). Indeed, let / G L2(U) and (/,</?) = 0 
for each <p G Wrj'2(U). Then, by [17, 1.5 Theorem], there is (p G W0'

2(U) with tp > 0 
on U. For each V G I>(H), 

Thus (pf = 0 a.e. on U and hence / = 0 a.e. on U. 

Proof of Theorem 2. Cf. [8, 2. Lemme] for the complex case. 
Let / G WX<2(U). Since (<9/» = - ( / ,Sp ) for each p G KV0'

2(U), by the previous 
Remark, a) <=*> c). We need to prove a) 4-> b). Without loss of generality, we can asume 
that U is bounded. Using Lemma 1 it is easy to show that 

(g/(?), <p) = (/,*¥>(*)) + 2 ( L ^ ) , v e W0
1,2(f!) • 

So Bf = 0 on U if and only if (f,(p) = (Bf,Bip) = 0 and (qf(q),<p) = 0 for each 
¥> G W0

1,2(U). Now we can apply Theorem 3 to conclude the proof. • 

Remark. By Corollary 1 and Theorem 2, given an open set G C H and / G VV1,2(G), 
the function / is monogenic on G if and only if / is finely monogenic on G. Indeed, if 
/ G WX>2(G) is finely monogenic on G, then there is a monogenic function h on G such 
that / = h a.e. on G. Thus f = h everywhere on G because / and h are both finely 
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continuous on G and no non-empty finely open set is Lebesgue null. The converse is 
obvious. 

Denote by W^£ (U) the set of functions / on U such that for each q G U there is 
V € Tq with f\v G W%{V). For / G W^{U) and I = 0,1,2,3, set g - := - ^ - on 

V if V C U is finely open and f\y G WgitOO- It is easily seen that each | £ is an a.e. 
defined function on U. Moreover, it is known that 

Wl<\U) = {/ G W^C(U); f G L2(U), J £ G L2(U), I =- 0,1,2,3} , 

see [14]. 

Remark. By [17, 2.152 Theorem, p. 149], each / G Wlf0C(U) has approximate 
differential ap-d/ a.e. on U and, for almost every q G U, 

W-df(q)(h) = V | £ ( g ) A,, A = (A0, A1} A2, A3) € R4 . 

Recall that q0 G Rn is a density point for a (Lebesgue) measurable set V C Rn if 

r-o+ |.3(qo,r)| 

where |.A| stands for the Lebesgue measure of a measurable set / 4 c R n and B(q0) r) is 
the ball with center q0 and radius r. A linear map L on Rn is called the approximate 
differential of / at qo if there is a measurable set K c R n such that q0 is a density 
point for V and 

Km / M - / j » > - f < « - « > . „ , 
9—<7o,<7€V |f/ — qo| 

Theorem 4. Le£ U C H be finely open and / : U —> H. The following statements are 
equivalent to each other: 
(FM) / is finely monogenic on U. 
(FH) / is finely harmonic and fine-9/ = 0 a.e. onU. Here 

fine-9/ = fine--r h i fine---; h j fine--r h fc fine-r— 
ax0 axi ax2 0x3 

at each point where f is finely differentiable. 
(FW) / is finely continuous onU, f G W^0C(U) and df = 0 on U. 

Proof. Cf. [8, 3. Definition] for the complex case. 

(FH) or (FM) => (FW): Let U C H be finely open and / : U -* H be finely harmonic. 
Then / is, of course, finely continuous on U. By [9, 2. Theoreme], / G W^QC(U). 
First assume (FH). If / is finely differentiable at q G U, then / is approximately 
differentiable as well and fine-d/(q) = ap-d/(q). Indeed, it follows from definitions and 
the fact that each q G H is a density point for any V G Tq, see [20, 3.3.5. Remark]. 
By the previous remark, df = fine-9/ = 0. On the other hand, let (FM) be supposed. 
Then, by Theorem 2, df = 0 finely locally on U, i.e., for each q G U there is V G Tq 

such that df = 0 on V. Hence 9 / = 0 on U. 
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(FW) =» (FH) and (FM): Let / G VVf'j*c(U) and df = 0 on U. By Theorem 2, / is 
finely monogenic q.e. finely locally on U. Hence the / is finely monogenic q.e. on U. 
Since / is finely continuous on U the / is finely monogenic even everywhere on U. 
Indeed, it is true even for finely harmonic functions, see [6, 9.15 Theorem]. Finally, as 
we know finely harmonic functions are finely differentiable a.e. and fine-9/ = df = 0 
a.e. on U, which concludes the proof. • 

5. CONCLUDING REMARKS 

We have mentioned that each finely holomorphic function is infinitely fine differen­
tiable everywhere. As to a finely monogenic function / , we know so far only that / is 
finely differentiable a.e. because / is, by definition, finely harmonic. Moreover, we can 
ask whether a finely monogenic function on a fine domain U is uniquely determined 
by its values in some fine neighbourhood of a point of U. 

In the second section, we recall various but equivalent ways how to introduce finely 
holomorphic functions. As to the quaternionic case, we have not considered all pos­
sibilities yet. If U C H is finely open and / : U —> H, then there are other possible 
definitions: 
(FF) / G fine-C1^) and fine-d/ = 0 on U. Here fine-C^U) is the set of functions 

having fine continuous fine differential on U. 
(FC) Vg G U 3V G Tq 3F G CX(H) : / = F on V and dF = 0 on V. 

(AM) \/q e U 3V € Fq : f\y is a, uniform limit of functions monogenic on open sets 
containing V. 

Now it is quite natural to ask about relations between these conditions and which 
of them characterize finely monogenic functions. Let us end with the following 

Theorem 5. Let U C R2 be finely open and / : U —» R. Then f G fine-C^U) if and 
only ifVq G U 3V G Tq 3F G C\R2) : f = F onV. 

Proof. <= is trivial. B. Fuglede in [7] shows => for finely holomorphic functions but 
it is easy to see that his proof works for fine-C1 functions as well. • 

A basic question arises whether the previous theorem is true for Rn, n > 2. Let us 
remark that, obviously, if the theorem were true for n = 4, then the conditions (FF) 
and (FC) above would be equivalent. 
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