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SYMMETRIZATION OF BRACE ALGEBRAS.
MARILYN DAILY AND TOM LADA

ABSTRACT. We show that the symmetrization of a brace algebra structure yields
the structure of a symmetric brace algebra. We also show that the symmetrization
of the natural brace structure on €, Hom (V®*,V) coincides with the natural
symmetric brace structure on @, Hom (V®'°, V)@, the direct sum of spaces of
antisymmetric maps VO - V.

1. INTRODUCTION

Brace algebras were first studied in the context of multilinear operations on the
Hochschild complex of an associative algebra [3, 2, 1]. Symmetric brace algebras,
in which the brace operations possess the property of graded symmetry, were subse-
quently introduced in [5]. Just as one may construct L., algebra structures by anti
(skew) symmetrizing Ay, algebra structures [4], we show in this note that the sym-
metrization of a brace algebra structure yields a symmetric brace algebra structure.
We prove in Section 5 that one may define a symmetric brace operation {, ) on a
graded vector space with a given non symmetric brace operation { , } by

f(glv ce 7gn> = Z G(O‘)f{ga(l), s ;go(n)}-

o€Sy

The motivating example of a brace algebra is @,, Hom (V®*,V), and the funda-
mental example of a symmetric brace algebra is the subspace of anti symmetric maps,
Dy, Hom (V*, V).

In Section 6, we show that these algebras are related by

Z G(U)as(f{ga(l)v e aga(n)}) = as(f)("'s(gl): s 1as(gn)) ’
0€ES,
where f, g; € Hom (V®*, V), as(f)(v1,...,%) = Y (=1)7€(0) f(Vo(1),- - -+ Vo(k)), and
€Sk
€(0) is just the Koszul sign of the permutation.
In Sections 2 and 3, we review the definitions and fundamental examples of brace
algebras and symmetric brace algebras respectively. Section 4 contains a collection of
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technical lemmas that are needed to prove the main theorems in the final two sections.
Throughout this article, S,, will denote the symmetric group on n symbols.

2. BRACE ALGEBRAS

Definition 1. A brace structure on a graded vector space consists of a collection of
degree 0 multilinear braces z,zy,...,2n — z{Z1,...2,} which satisfy the identity,
z{ } = z, and in which z{zy,...,z, }{y1,-.., ¥r} is equal to

Ze : x{yh' oy Yins Il{yi1+h' . )yjl}a yj1+1v . 7yin!x’n{yin+1" . ’yjn }’yjn+1>’ . )yT} .
In the above formula, the sum is over all sequences 0<4, <51 <... <0, <Jjn <7, and €
is the Koszul sign of the permutation which maps (z,...,Zn,¥1,---,¥) tO

(ylv e 1yi1’x17yi1+17 ceey yjlayj1+ls s 5yi,,aznayi,,+ls e ,yj,.a'!/j,.+1, e ayr) .

The motivating example for a brace algebra structure is the space ) Hom (V&*, V)

with the natural brace operation of degree —n given by the composition
f{gl,- .. ,gn} = Z f (1®ko Re® 19k ® Qg ® 1®k..v) ,
ko++kn=N-n

where f € Hom (V® V). This operation arises from the endomorphism operad of
V considered in [1]. This operation was also utilized in the context of the Hochschild
complex of an associative algebra V' in [3] and [2]. For maps of arbitrary degree p, we
have

Example 2. Let V be a graded vector space and consider the graded vector space
B.(V') where

B(V):= @ Hom(V®:,V),
p—k+1=s

and where Hom (V@ V'), denotes the space of k-multilinear maps of degree p. Given
f € Hom (V8N V), and g; € Hom (V&% V),,, define

915,90} € Hom (VO V)pig4tq,
wherer=a;+---+a,+ N —n by
f{gl,...,gn} = Z (_1)ﬁf(1®ko ®gl®1®k1 ®...®1®k7._1 ®gn®1®k")1
ko++kn=N-n
where
b= Z[ai - 1][]61 +aj] +Z(N—i)qi+2q,~aj.

j<i i j<i

Remark 3. In Example 2, suppose that there exists a collection of maps
pue € Hom (V®,V),_, € B_y(V).

If we let p = pg + p2 + ..., then an A, algebra structure on V may be described by
the brace relation u{u} = 0 [5].
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3. SYMMETRIC BRACE ALGEBRAS

n
Definition 4. An n-unshuffle of N elements is a partition Y a; = N and a permuta-
i=1

tion v € Sy such that

7(1)<---<7(a1),7(1+a1)<.-.<7(a2+a1),...,7(1+7ia,-) <. < y(N).

If we wish to emphasize the partition, we call such a permutation an (a;|as|...|as)
unshuffle.

Definition 5. A symmetric brace algebra is a graded vector space together with a
collection of degree zero multilinear braces f(g,...,g,) which are graded symmetric
in g,...,gn In a symmetric brace algebra, it is also required that f{ ) = f, and that
f(gla cee agn)<$1» v ,1’r) be equa‘l to

Yo e F @y Taan)s

v is (n+1)

shuff
unshuffle . ’9’1<x7(1+21:1‘a;)’ P ,:L‘,y(z;;l ai)>’ :1,‘,7(1+z;x=1 ai)’ cee ,.’L‘7(r)),
where € is the Koszul sign of the permutation which maps (gi,...,9n,Z1,-..,%s) to

(glv Tr(1)s -« y Ty(a1)y 925 - - :1‘7(1+Z;'=—11 ai)i see ’xW(Z?:l ai)’gm I‘Y("*‘Z?:l ai)’ e )x‘y('r‘)) .

Just as with brace algebras, the fundamental example of a symmetric brace algebra
is provided by the space of antisymmetric maps of degree p, € Hom (V®, V). To
be precise, we have

Example 6. Let V be a graded vector space and B,(V) be the graded vector space
given by
B,(V)= € Hom(Ve:, V),
p—hk+1=s
Given f € Hom (V®N, V) and g; € Hom (V®%, V)25, 1 < i < n, define the symmetric
brace

Fgus s 8n) (@1 ) = (1) D XN (01® - © 9 ® 12N ) (@4q1), -, B(r)

v is an

(a1laz]...|an+1)
unshuffle
where
n
0= Z(N —1)gi + Zqiaj + Za,-aj + Z(n —i)a;,
i j<i j<i i

and x(7) := sgn (7)e(y) is the antisymmetric Koszul sign of the permutation .
Remark 7. Suppose that in Example 6 we have maps
Iy € Hom (V& V)2, € B_;(V).

Ifwelet l =1;+1l+..., then an Ly, algebra structure on V is given by the symmetric
brace relation [(l) = 0.
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4. SOME LEMMAS

Although the expressions in this paper involve many sums, permutations, and anti-
symmetrizations, we will be able to simplify things considerably with the help of the
following lemmas. Lemma 8 provides a decomposition of as(f) which will be useful
later.

Lemma 8. as(f) = fo®pn oV, 00, V f € Hom (V™ V), where

em(yly Y 21y zm) = Z X(W)(yl’ cer Yny Zr(l)s - - Zﬂ(nl))a

TESm
V(W12 Ynr 210 2m) = I X(O) Yo t)s - -+ Yolm)s 215 - - Zm)s
o€Sn
®nm(ylv---1ynazla--'yzm): Z ('—1)7’(zlv'”vzkoay])zl+koa‘"aynazl+ko
kot +kn=m

+...+kn_1,...,2m)a

n
and n = Zl{yi [21 +0 4+ z(ko+k1+---+k.-_1)] + (n —9)ki}.
1=

Proof. Since ¥,, does all permutations of the first n inputs, ©,, provides all permuta-
tions of the last m inputs, and ®,,,,, distributes the last n variables between the first m
in every possible way, the composition is clearly a sum of all permutations of the origi-
nal n+m variables. A moment’s reflection also reveals that the sign of each summand
in the composition is the Koszul sign together with the sign of the permutation. [

Lemma 9 states that if we sum over all (signed) (ay] ... |a,) unshuffles, and then sum
over all (signed) permutations of the a; variables in each piece, then this is equivalent
to just summing over all signed permutations of the original a; + - - - + a, variables.

Lemma 9. If N =a;+ - +ay, then Y. x(7) (Tnr), - - -, Ta(wy) i equal to

TESN
Yoox D0 XM D X() (Bya)s - Tatma(an))s Tara(iy+an),
v 18 T ESul Tay €ESay
(a1|...|a.x)
unshuffle

0 Ty (@) + T a")) .

Proof. Clearly, the right hand side is the sum of distinct permutations of the x terms
with the correct sign. Furthermore, since there are #'(a"), unshuffles v and (a;)!
permutations m;, there are N! summands in the right hand side, which agrees with the

number of summands on the left hand side. O

Lemma 10. Suppose ko + a1 + ki + -+ an+k, =71, 0 € S, and 7 € S,. Let
A =a;+...0a,, denote Xi = Tr(14a1+-+ai1)r -+ > Tr(ay+-+ai), ond also denote Xy =
Tr(1+4)s - - » Tr(ko+A)s Xo(1)s Tn(1+ko+A)s - - 3 Xo(n)s Tr(l+ko+-+hn_r+A)s - -+ » Tn(r)- LheEN WE
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can define ™ € S, by

'w(z‘+A— > acr(j)) if 2 kit X asp) <t
j<m j<m j<m
< 2 kit ¥ asy
)= _ =
7r(z— Ski+ Y aj) if kit Y ae) <
j<m j<a(m) j<m j<m
< 2 kit X as).
\ j<m © j<m

Furthermore, given this notation,
Xo =Ti),- - Tary ond  €(T) =¢(m)(-1)* and x(7) = x(m)(-1)*2,

where

n
o= Y | Xewl Xepl+ D 1 Xow! [Brasay + o Tnthortbini )]
i<j & a(i)>0(j) =1
and
m=art D Gee) T Y aski-
i<j & a(i)>o(j) J<i

Proof. Careful examination of the definition of 7 reveals that the first formula moves
“free” strings of the form Zr(14+ko+-+ki_1)» - - - » T(ko+-+k;) iNto place (for 0 < m < n),
and the second formula relocates the strings X, (for 1 < m < n). Thus X, =
ZTi(1)y« -y Ti(r).

Furthermore, when Zz(1y, - - . , Zr(r) are permuted to yield 21y, ..., Z#(r), the Koszul
sign is (—1)*, where the first sum in o; comes from o permuting the X; strings,

and the second sum comes from moving the “free” strings into place. Finally, the
additional sums in o, count the transpositions, yielding the correct antisymmetric

Koszul sign. ]
Lemma 11. Suppose that o € S, permutes {v;...vn} and {w;...wp}. Then

1) Ywwi+ Y {wewven) +ewuer} + D veeWa) =0 (mod 2);

i>j i<j & a(i)>0(j) i>]
(2) > {vow + o} = Y- Dot 36— Dvey (mod 2).
i<j & a(i)>a(j) i i

Proof. To prove the first assertion, we note that

Z {vo)Woi) + WoliyVot) } +Zva(i)wa(j) = Z Vo (i) W j)

i<j & o(i)>o(j) i>] i<j&o(t)>0(j)
+ Z Vol Wai) + D Vol Wo(s) »
i>j&a(i)<o(j) i>j

which is congruent (mod 2) to

Z Vo (i)Wo (j) T Z Vo (i)Wo(j) = Z ”a(i)wa(j)=zviwj-

i<j&o(i)>o(j) i>j&a(i)>o(j) o(i)>a(j) i>]
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To prove the second statement, suppose that all w; are odd. Then

Yo {vntvnt= Dl {VerWon) + Werven) }

i<j & o(i)>o(j) i<j & o(i)>o(j)
=Y {vw; + vowo }
i>7

(by the first assertion). Since all w-terms are odd, this is congruent to

Yo Y (witvew) = Z(J' — 1)y + Z(J' = 1)vs(s) - O

j=1 i=j+1 J J

5. SYMMETRIZATION OF BRACE ALGEBRAS

Given a (non-symmetric) brace structure { , } on a graded vector space, we can
define a symmetric brace structure ( , ) via

F(grs-190) = D €(0)f {9001y -+ 9otm } -

€S

Clearly, this satisfies the first symmetric brace axiom, since f() = f{ } = f. We show
in Theorem 15 that it satisfies the second symmetric brace axiom given in Definition 5,
so this does in fact induce a symmetric brace structure. First, however, we need the
following two lemmas, which are analogous to Lemmas 8 and 9.

Lemma 12. Y €(p) f{zoa)s---rTpm)} = fa 00 (1, - -y Tngm), where
Pesn+m

Om(Y1y -1 Yny 215+ - - Zm) = Z; €(m) (Y1, - -y Yn» Zn(1), - - - Zn(m)) ONd
TESM

fn(yl,- oy Yny 21y ,Zm)

:Z 6(0) Z (_1)7If{z1, o9 %koy Yo(1)s Rl4kos - - -y Yo (n)y Zl4kot-thkn_1s+ zm} )
€S ko++-+kn=m

n
with a Koszul sign given by n =3 Yo [z1 + 4+ Z(k0+k1+~-+ki—l)]'

i=1

Lemma 13. If N = a; + - +ay, then Y €(7) (Txq),- -, Tx(w)) is equal to
TESN

YoMy e(m). Y elm) (%(n(l))’ s Ttm (@) Tr(ma(1)+ar)s

v is T1€Sa,y Tan €ESan
(a1]...Jan)
unshuffle

Tt m'y(w,.(a..)+zz‘=’1‘ ai)) :

Remark 14. Although a brace structure allows operators g which accept an arbitrary
number of inputs, it will be convenient in the proof of the following theorem to let g°
denote the restriction of g which accepts only exactly a inputs.



SYMMETRIZATION OF BRACE ALGEBRAS 81

Theorem 15. Given a (non-symmetric) brace structure { , } on a graded vector space,
define (, ) via

f(glv coe 7gn> = Z e(o)f{gd(l)v' o 7g0(7l)} .

gESH
Then f{g1,...,gn){T1,...,Zy) is equal to

22 € Flaa s Taa) e 90l (i 0
v is (n+1)
unshuffle

T, 0 Ty (1 ) o B

where € is the Koszul sign of the permutation which maps (g1, ..., gn,T1,...,Zr) t0

(gl) Ly(1)s -+ +r Ly(ar)r 925« - - 7$7(1+Z;’:—11 a,~)7 ce 7x7(Z;'=lai)7gn)x7(1+Z;'=la'.)y cee ’$7(7)> .
Proof. First, we will look at the right hand side.
If we temporarily denote

hk: = gk<x7(1+ax+'-~+ak_1)» sy $7(a1+-~+ak)>

= Z €(mk) gk {xW(”k(1)+ul+'“+ak—1)’ e ’$7(Wk(ak)+d1+“'+ak—1)} 3
TkESuy

n
and denote A = Y a;, then the right hand side is equal to
i=1

Z ("1)” 5(7) f<h11 vy hny Ty(14A)s -« x’Y(an+1+A)> )

a1+ Fanp1=r &
v is (a1]...}an41) unshuffle

where v = Z GilZy(1) + -+ Ty(ay+-+a,_y)] IS @ Koszul sign. After applying Lemma 12,
this is equal to

Z (=1)"e(7) fn( Z (7rn+1)(h1,~--7hnax7(1rn+1(l)+A)a~--;-r'y(7r,,+1(a"+1)+.4))a

01t +anq1=1, Tnt1€8a, 4,
7 is unshuffle

where f,, is as defined in Lemma 12. Now, we will pull all of the z terms back out, in
order to apply Lemma 13. Note that the Koszul signs from this transformation merely
cancel out (—1)”. We then have the following long formula:

Yoen) Y elm) . Y () fa (gl a1
(ai)yy  mESy T(n41)ESap 41
X (Zym (1)1 2 Ty(ma(an))» Trlma(D+ar)s
3 Ty 4) Ty (D+4)s - Tl (ant D) +4)) -
Now, though, we can apply Lemma 13, which yields the much shorter formula,

ZZ VI g, 921 (rtry - T

a;) TESy
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Before continuing, we need to pull all of the x terms back inside. In order to make our
expressions a bit shorter, let X; denote the input to g;. In other words, define
X; = Tr(l+ar+-+ai—1)r -+ > Tr(ay+-+a;) for i€ {]. . TL} .

It will also be convenient to let |X;| denote the sum of the degrees of the variables in
X;. When we pull the z-terms inside and use the more concise notation just defined,
the formula for the right hand side becomes

Z Z fn gl(Xl) --1971(Xn)7x1r(1+A)a~~-1$1r(r)) )

(a;) TES

where 7 = )" ;| X;|. After expanding f,, the right hand side is equal to

Z Z e(m) (-1)” Z e(o) Z (=1)"f{Zn(1+4),

(a;) m€Sy €Sy ko+++kn=an41
-+ s Tr(ko+A)» ga(l)(Xa(l))a Tr(1+ko+A)»
cey ga(n)(Xu(n))a Tr(l+ko+-+kn+A)r -+ 7x7l’(r)} .
n

Here,n = Y (9o(i) + | Xo(0)|) [Zr(4a) + * ** + Trikot++kir+4)] and €(0) = (—1)*, where
-1

A= Y (90t 1Xewl) (906) + 1 Xoe)])-
i<j & o(i)>o(j)
Now, we will look at the left hand side. f(g1,...,9n){z1,...,2,) is equal to

> €(0)f{g0)s- - Yom) }{Z1s - - -, 24), Which is equal to

0€S,
Z E(U) Z 6(7‘[’) f{ga(l)a ey gU(‘n)}{xﬂ'(l)v cee yxn(r)} .
o€ESy mESy

If we apply Definition 1 and let g{" denote the restriction of g; which accepts exactly
a; inputs, then the left hand side is equal to

a(1 o n
Z (o) Z e(m) Z f{lk",gg(l()) 1k ...,gs(,(l") 1% Hzrqys - -+ s T(r)) -
OESn mESy ko+--+kn+ar+-+an=r
After applying Lemma 10, this is equal to
a(l Ao n
S 3 30 (-0 1)
0€Sn (ki,a;) TESr
X (33”(1+A), e oo s T(ko+A)s Xo(1)s Tr(1+ko+A)s
oy Xo(n)s Tr(l+kot+hntA)s - - - s Tr(r)) »

where o, is given in Lemma 10. Finally, when the z-terms are moved inside, the left
hand side is equal to

D e0)d ] Y €M) (=D f{Taea), - ) Tathora) Gor) (Xo(1))s Tn(irhot ),
0ESH (ki,ai) €Sy

.. ,ga(n)(Xa(n))ax?r(l+ko+~--+lc,,+A), e ,.’II.,,-(T)} .
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Here, b = 3_ 9o()[Tr(1+4) +** + T(kot-thi_y+a] + gga(i)lxa(j)l and ¢(0) = (-1)S,
i j<i
where ¢ = > 9o(i)9(j)-
i<j & o(i)>o(j)

Now that the terms on both sides are easy to compare, it is clear that the two sides
are equal if and only if 7+ A+ n+({+a1+ £ =0 (mod 2).

After making the most obvious cancellations, we see that 7 +A+n+{+a; + p is
congruent to

YoalXil+ D (900|Xew| + G| Xewl) + Y 90| Xoi]
Jj<i i<j & o(i)>a(j) j<i

which is congruent to zero (mod 2) by Lemma 11. O

6. SYMMETRIZATION OF THE BRACE STRUCTURE ON @), Hom (V&, V)

In this section, we will demonstrate a nice relationship between the the brace defined
in Example 2 and the symmetric brace defined in Example 6, by showing that the
symmetrization of the non symmetric brace structure on Hom(V®*, V) is equal to the
symmetric brace of the anti-symmetrized maps. Specifically, we have

Theorem 16. g; (o) as (f{goq)s---»9om)}) = as(f)(as(g1),...,as(gn))-

Proof. First, we will manipulate the right hand side. Using the symmetric brace
structure defined in Example 6, as(f)(as (1), ...,as(gn))(21,...,2,) is equal to

=1 D x(Mas(£)(as(91) @ -+ ® a5 (g0) ® 1%V ") (T41), -, Tyn)

v is an
(a1laz|-..|an+1)
unshuffle

where 4§ is given in Example 6.
When we substitute the z terms using the Koszul convention and suppress the tensor
notation, this is equal to

(=1)° D X(N)(=1)"as (f)(h1y - by By14 55 0)s -+ 5 o) »
v
where

n
V=3 lenm o+ Tyatsan)]
=2

and

I

b = as (gk) (x7(1+a1+~-+ak_1), e ax7(a1+“-+ak))

Z X(7k) gk (x‘r("k(l)+a1+~~+ak_1)’ E ’x’Y("fk(ak)+al+"'+ak—l)) :
ﬁkESak
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If we denote A =), a; and apply Lemma 8, this is equal to

Z X 6+Vf 0d,, 0V, ( Z X(7Tn+1)(h1, voey b, Zoy(Map 4+1(1)+A)

Tan+1€Su, 41

bR x7(1r,,,_+1(a,,+1)+A)> N

Now, we will pull all of the z terms back out, in order to apply Lemma 9. Note that
the Koszul signs from this transformation merely cancel out (—1)*. We then have the
following long formula,

ZX Z x(m)... Z X(nt1)f © Pog 0 Vn(g1, - .+, Gny 1*1)
Wlesul 7l'(,,"+1)€Sn"+1

(Iv(m(l))r s Ty(m (@) Ty(ma()+a1)s -+ Ly (man(A)s Ty (mamtt (1441 - > Tr(manis(an+1)+4)) -

Now, though, we can apply Lemma 9, which yields the much shorter formula,
(—1)6 Z X(W)f ° (bna o ‘Iln(gl) <+ 9n, 1an+l)(x1r(l)a s ’zﬂ'(r)) .
TES,

Before continuing, we need to pull all of the z terms back inside. In order to make
our expressions a bit shorter, let X; denote the input to g;, and let X, denote the
free z terms (letting a,+; = N—n). In other words, define

X = Tr(l+ar+-+a.-1)r « + -y Tr(ar+-+a;) -

It will also be convenient to let |X;| denote the sum of the degrees of the variables in
X;. When we pull the z-terms inside and use the more concise notation just defined,
the formula for the right hand side becomes

ZX “folun_n \Iln(gl(Xl)"'-)gn(Xn)’Xn+l)a
mESy
where 7 = 3. ; ¢i|X;|. After expanding W, the right hand side is equal to
(-1)° > x(m)(=1)f o ¢’n,N-n( Y x(0) (9o (Ko)s - ,ga(n)(Xo(m),Xnﬂ)) :
TESY o€Sn
In the above expression, x(o) is equal to (—1)*, where

A=Y o6 + 1Xow]) (g00) + 1 X)) + 1] -

i<j<n,
a(i)>a ()

Now, if we expand @, y_n, We get
Yo XML (), Tagkor A Go1) (Ko(n))s Ta(t+kor 4)s
mESy,0€8y,
ko+-+kn=N-n

o3 90(n)(Xo(n)) Tr(14kotthntA)s - - - Tn(r)) »
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where

n

1= {(@oe + 1 Xow) (@rsart -+ Tathorshirin) + (R =)k}

i=1

Now, we will work with the left hand side of the equation. Using the brace defined
in Example 2, Y- .o €(0)as (f{goq1), .-+ 9Gom})(z1,...,2,) is equal to

ZE(U)GS( > (1P F(1%@g,1) @12 ®- - ®1% 1 ®gy( )®1®’°"))(x1,...,x,),
0€ESn ko+..kn=N-n

where 3 is given in Example 2. Note also that the Koszul sign €(c’) must be calculated
using the degree of g; as an element of the symmetric brace algebra (so |g;| = ¢;+a;—1).
Thus €(o) = (—1)¢, where

= > (@) + 0w — D(@G) + o) — 1) -
i<j & o(i)>o(j)

If we now antisymmetrize by taking all signed permutations of the z’s, and suppress
the tensor notation, this is equal to

Z Z ﬂ+(f lko ) lkl’ o lk"“,ga(n)’ ( ZX :L‘,,(l .’E,r(r))) .
0€Sy ko+...kn=N-n mESy
After applying Lemma 10, the left hand side is equal to
Z (=1)PCFe2y () £ (1%, go(1), 1%, ., Gomys 1) (Za(14.4), s Tr(hot ), Xo(1),

mESy,0€Sn,
ko+---+ky,=N-n
Tr(14+ko+A4)s - - aXa(n)a Tr(1+ko++kn+A) - - - amw(r)) 3
where o is given in Lemma 10.
Finally, when the variables are moved inside, the left hand side is equal to

(= 1)PHEtby (1) f (Ta(rs Ay, - - - » Trihot ) Jo (1) (Xo(1))s Tn(1+ko+4)»

k €S, ,0€Sn,
0+ -+kn=N-n
ey 9o (m) (Xo(n))s Ta(lthot-+hn+A)s - - - » Tr(r)) »

where n= Z%(i) [x,r(1+,4) + ot Tr(ko+ +k,_x+A] + Z %(z)IXa(])l
Since the rlght hand side is equal to

Z X(M)(=1)TH £ (2 14ays s Triko+a) 9o 1) (Xo())), Ta(14ko+4)»
m€S,,0ES,,
ko+-++ky=N-n
(R} ga(n)(Xa(n)): Tr(14ko+-+kn+A)s + « axr(r)) )
we see that the two sides are equal if and only if

B+(+as+p+d+v+A+7=0 (mod2).
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After cancelling the most obvious terms, 8+ + a2+ p+ 0 + U+ A + 7 is congruent
to
Y (= dagm + D (N =)o) + D Go(i) (i)
i i j<i

+ Z [906)8o(i) + To (i) + Co()9o() + oti) + o) + Bo(s)]
i<j & o(i)>o(j)

+3 G| Xo| + D (N —i)ai+ Y _aqia;+ ) (n—i)a;

j<i i j<i g
+Y X+ Y [l Kol + 1 Xowlaw) -
j<i i<j & o(i)>o(j)

After applying Lemma 11, this is congruent to
Z {(n—1)a,@+(N=1)qo@)+(i—1) [ + @0 + & + Gop)] + (N=0)qi + (n—1)as} ,
which is equal to Z {(n=1)[ass +ai] + (N =1) [¢o@) + @]} =0 (mod 2). O
As a corollary, we obtain Theorem 3.1 of [4]:

Corollary 17. The anti-symmetrization | := as(u) of an Ax-algebra structure p
yields an L,-algebra structure.

Proof. Given p{u} = 0 (rccall Remarks 3 and 7) we have
0 = as(u{u}) = as(u){as(w) = (D). 0
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