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RESTRICTIONS OF 3-FORMS IN DIMENSION 7 

TO SUBSPACES OF CODIMENSION 1 

JIRI VANZURA 

ABSTRACT. On a 6-dimensional real vector space there are six types of 3-forms. We 
take all types of 3-forms on a 7-dimensional space and determine types of restrictions 
to all subspaces of codimension 1. 

Let V be a finite dimensional vector space. A fc-form u G AkV* is called multi-
symplectic or regular if the homomorphism 

V-+Ak-lV*y v^ivu = u(vy...) 

is a monomorphism. If a fc-form u is not regular, we shall call it singular. We denote 
by A*V* C AkV* (AkV* C AkV*) the subset consisting of all regular (singular) 
forms. The general linear group GL(V) operates in a natural way on AfcV*, and it 
is easy to see that this action preserves AkV* (AkV*). Consequently, AkV* (AkV*) 
decomposes into orbits of this action. In this paper we take k = 3, i.e. we consider 
3-forms. It is known, that the number of orbits of 3-forms is finite if and only if 
d imf < 8 . 

Let us treat first a 6-dimensional real vector space W. We choose its basis 
/ i , . . . , /6, and we denote /?i, . . . , fie the corresponding dual basis. There are three 
orbits consisting of singular forms represented by the forms 

(51) <71 = 0, 
(52) <72 = /?iA/?2A/33 , 
(53) a3 = /3lA((32Ap3 + p4Aps). 
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There are also three orbits consisting of regular forms. They are represented by the 
forms 

(Rl) Pi = /?iA/?2A/?3 + /?4A/?5A/36, 
(R2) p2 = /?iA/32A/?3 + / ? iA /34A/? 5 +/3 2 A / ?4A/? 6 - l3 3 A^ 5 A^ 6 , 
(R3) P3=/?iA/?4A/3 5 + ^ 2 A /?4A/? 6 +/3 3 A/? 5 A /? 6 . 

Now, let us pass to a 7-dimensional real vector space V. We choose a basis 
e i , . . . , e7 of V, and we denote by a i , . . . , aj the corresponding dual basis. Here the 
subset A^V* decomposes into eight orbits. They are represented by the following 
forms. 

(1) o;i = a i A a 2 A a7 + a i A a3 A a4 + a 2 A a 5 A a 6 , 

(2) a;2 = a i A a 2 A a 5 + a i A a 2 A a7 + a i A a4 A a7 

— a 2 A a3 A a7 + a3 A a4 A a6 + a3 A a4 A a7 , 

(3) u3 = a i A (a 2 A a 7 - a 3 A a 6 + a4 A a 5 ) , 

(4) u>4 = ai A (a2 A a7 - a3 A a6 + a4 A a5) + a 2 A a4 A a 6 , 

(5) CJ5 = ai A a2 A a3 — ai A a4 A a5 + ai A a6 A a7 

+ a 2 A a4 A a6 + a2 A a5 A a7 + a3 A a4 A a7 — 03 A a 5 A a6 , 

(6) CJ6 = ai A a 2 A a7 — ai A a3 A a6 + ai A a4 A a 5 

+ a 2 A a3 A a5 + a 2 A a4 A a6, 

(7) a;7 = a i A a 2 A a 5 + a i A a3 A a 6 + a i A a4 A a7 

+ a 2 A a3 A a7 — a 2 A a4 A a 6 + a3 A a4 A a 5 , 

(8) UJ$ = a i A a 2 A a3 + a i A a4 A a 5 — a i A a 6 A a7 

+ a 2 A a4 A a 6 + a 2 A a 5 A a? + + a 3 /\a^/\aj 

- a 3 A a 5 A a 6 . 

The subset Aj|V* decomposes into six orbits. They are represented by the following 
forms 

(9) u/9 = 0, 

(10) cjio = a i A a 2 A a 3 , 

(11) u>n = a i A (a 2 A a3 + a4 A a 5 ) , 
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(12) u\2 = a\ A a2 A a.3 + 0:4 A a5 A a6 > 

(13) W13 = a i A a2 A «3 + a i A a4 A as -h a2 A a4 A a6 - a3 A a 5 A »6 , 

(14) w14 = a i A «4 A as -f* a2 A 04 A a6 + a3 A a5 A a6. 

Let us recall that with a 3-form r on a 6-dimensional space W we can associate 
an endomorphism Q(T) in the following way. We choose a nonzero 6-form 9 on W, 
and for w 6 W we define Q(T)W by the formula 

(IWT) A r = LQ(J)W6 . 

We have 

Q(<JI) = 0, Q(<72) = 0, Q(<r3)
2 = 0, dimimQ(<73) = 1. 

Replacing 9 by a0 if necessary, we get moreover 

Q(Pl)
2 = I, dimim(Q(pi) + / ) = dimim(Q(pi) - / ) = 3, 

Q(p2)
2 = - J , Q(p3)

2 = 0,dimimQ(p3) = 3 . 

More information about the endomorphism Q you can find in [BV1]. 
Further, let a; be a 3-form on a 7-dimensional space V. We choose again a 7-form 

9 on V. Then we can define a symmetric bilinear form q on V by the formula 

(LVU) A (iv'u) A u = g(u, t /)0. 

It is obvious that the definition of the symmetric bilinear form q depends on the 
choice of the 7-form 9. In other words the form q is determined up to a nonzero 
scalar multiple. More information about 3-forms on a 7-dimensional space you can 
find in [BV2]. 

Finally, for any 3-form £ on a vector space Z we define 

A2(C) = {*ez;( t,C)A2 = 0}, A3(C) = {26z;( tzC)A3 = 0} . 

In the sequel we take the 3-forms u>i,..., uu on the 7-dimensional space V, and 
consider their restrictions on all 6-dimensional subspaces W C V. I present the re­
sults without proofs. The proofs have computational character. For every restriction 
Ui\W I have computed the corresponding endomorphism Q(ui\W)> which (with the 
exceptions of the types (SI) and (S2)) enables to recognize type of the restriction 
Ui\W. 



3 2 8 JI&I VAN2URA 

T Y P E 1 

For this form we have 

A2(u;1) = V3aUV3
b, where V3* = [e3,e4,e7], V3

b = [e5,e6,e7], Vi = V°nV3
6 

A3(CJI) = V6° U V6
6, where V6° = [eue3)e4,e5,e6,e7], V6

6 = [e2, e3 ,e4 ,e5 ,e6 ,e7] . 

1. Proposition. 

(51) There is no W such that ui \W is of type (SI). 
(52) ux\W is of type (S2) if and only ifW = V6

a orW = V6
b. 

(53) ui\W is of type (S3) if and only ifW D V3
a orWD V$ and W ?- V6

a, V*. 
(Rl) ui\W is of type (Rl) if and only ifW 2 Vx. 
(R2) There is no W such that wx\W is of type (R2). 
(R3) ui\W is of type (R3) if and only ifW DV^W} V3°, and W ji V%. 

TYPE 2 

Let us write v = Ciei H \- c7e7 and v' = ciei H h d7e7. For this form we 
have 

A2(u;2) = {v e V\ ci = c2 = C3 = c4 = 0, c5c6 + c6c7 + c7c5 = 0} , 

A3(u/2) = { u 6 V ; cic4 - c2c3 = 0} . 

Obviously, A2(w2) determines a subspace V3 C V, V3 = [e5,e6,e7]. Moreover, on V 
we have a a symmetric bilinear form q (determined up to a nonzero multiple) defined 
by the formula 

q(v, v') = cic4 - c 2 4 - C3C2 + C4c[ . 

We can immediately see that kerg = V3. Consequently, q determines a regular 
symmetric bilinear form on V/V.3, and this one in turn determines a quadric Q in 
the projective space -P(V/V3) associated with the vector space V/V3. If W C V 
is a subspace of codimension 1 such that TV D V3, then W determines a subspace 
of codimension 1 in V/V3, and this one in turn determines a hyperplane W in the 
projective space P(V/V3). Finally, on V3 we have a regular symmetric bilinear form 
q3 (determined up to a nonzero multiple) defined by the formula 

q3(v) v1) = c5c
f
6 + csdj + c6c

f
5 + cec7 + c7c'b + c7c

f
6. 

Let us remark that for each 2-dimensional subspace Z C V3 the restriction g3|.Z is a 
regular bilinear form. 

2. Proposition. 

(51) There is no W such that w2\W is of type (SI). 
(52) There is no W such that v2\W is of type (S2). 
(53) u2\W is of type (S3) if and only ifW ^ V3 and the hyperplane W is tangent 

to the quadric Q. 
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(Rl) UJ2\W is of type (Rl) if and only ifW J> V3 and the restriction q3\(W D V3) 
is indefinite. 

(R2) u2\W is of type (R2) if and only ifW J> V3 and the restriction q3\(W H V3) 
is definite. 

(R3) u2\W is of type (R3) if and only ifW D V3 and the hyperplane W is not 
tangent to the quadric Q. 

T Y P E 3 

For this form we have 

A2(u;3) = A3(u3) = V6 = [e2,e3,e4,e5,e6,e7]. 

3. Proposition-
p i ) u3\W is of type (SI) if and only ifW = V6. 
(52) There is no W such that u3\W is of type (S2). 
(53) u3\W is of type (S3) if and only ifW ^ V6. 
(Rl) There is no W such that u3\W is of type (Rl). 
(R2) There is no W such that u3\W is of type (R2). 
(R3) There is no W such that w3\W is of type (R2). 

T Y P E 4 

For this form we have 

A2(u;4) = V3 = [e3 ,e5 ,e7], A3(u;4) = V6 = [e2,e3,e4,e5,e6,e7]. 

4. Proposition. 
(51) There isnoW such that UJ4\W is of type (SI). 
(52) UJ4\W is of type (S2) if and only ifW = V6. 
(53) u4\W is of type (S3) if and only ifW D V3 and W ^ V6. 
(Rl) There is no W such that u4\W is of type (Rl). 
(R2) There is no W such that u4\W is of type (R2). 
(R3) u4\W is of type (R3) if and only ifW J> V3. 

T Y P E 5 

Let us write again v = ciei H h c7e7 and v' = c'-ei H h c7e7. For this form 
we have 

A2(u,5) = {0}, A3(u,5) = {v 6 V;-c\ -c\ - c \ + c\ + c\ + cl + $ = 0} . 

This time again, on V we have a a symmetric bilinear form q (determined up to a 
nonzero multiple) defined by the formula 

q(v, v') = -c ic i - c2di - C3C3 + C4C4 + C5C5 + c6c'6 + c7c'7. 

This form has obviously signature {3,4}. (We use this notation in order to underline 
that the bilinear form is determined up to a nonzero multiple. Depending on our 
choice it can have signature (4,3) or (3,4).) 
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5. Proposition. 

(51) There is no W such that u$\W is of type (Si). 
(52) There is no W such that u5\W is of type (S2). 
(53) There is no W such that u5\W is of type (S3). 
(Rl) u^\W is of type (Rl) if and only if the restriction q\W is a regular form of 

signature {3,3}. 
(R2) UJS\W is of type (R2) if and only if the restriction q\W is a regular form of 

signature {2,4}. 
(R3) LJS\W is of type (R3) if and only if the restriction q\W is a singular form. 

TYPE 6 

For this form we have 

A2(w6) = Vi = [e7], A3(u;6) = V5 = [e3, e4, e6, e6, e7]. 

6. Proposition. 

(51) There is no W such that u6\W is of type (SI). 
(52) There is no W such that u6\W is of type (S2). 
(53) u6\W is of type (S3) if and only ifW D V5. 
(Rl) There is no W such that uG\W is of type (Rl). 
(R2) u6\W is of type (R2) if and only ifW $ Vx. 
(R3) u6\W is of type (R3) if and only ifW D Vi and W t V5. 

TYPE 7 

For this form we have 

A2(u;7) = {0} , A3(u;7) = V3 = [e5, e6, e7]. 

7. Proposition. 

(51) There is no W such that w7\W is of type (SI). 
(52) There is no W such that w7\W is of type (S2). 
(53) There is no W such that u7\W is of type (S3). 
(Rl) There is no W such that u7\W is of type (Rl). 
(R2) u7\W is of type (R2) if and only ifW J V3. 
(R3) u7\W is of type (R3) if and only ifW D V3. 

T Y P E 8 

For this form we have 
A 2 M = A 3 M = {O}. 

8. Proposition. The restriction w8\W is always of type (R2). 
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T Y P E 9 

9. Proposition. The restriction wg\W is always of type (SI). 

T Y P E 10 

For this form we have kera;io = V4 = [e4)e$)eQi e7]. 

10. Proposition. 

(51) u10\W is of type (SI) if and only ifW D V4. 
(52) w10\W is of type (S2) if and only ifW J> V4. 
(53) There is no W such that u10\W is of type (S3). 
(Rl) There is no W such that u10\W is of type (Rl). 
(R2) There is no W such that u10\W is of type (R2). 
(R3) There is no W such that u10\W is of type (R3). 

T Y P E 11 

For this form we have 

ker u/ii = V2 = [ee, e7] and A2(wn) = V6 = [e2, e3, e4, e5, e6, e7]. 

11. Proposition. 

(51) wn\W is of type (SI) if and onlyifW = V6. 
(52) w n | V is of type (S2) if and only if W D V2 and W £ V6. 
(53) u>n\W is of type (S3) if and oniyif IV 75 V2. 
(Rl) There is no W such that tjn\W is of type (Rl). 
(R2) There is no W such that wn |V is of type (R2). 
(R3) There is no W such that un\W is of type (R3). 

T Y P E 12 

For this form we have 

kera;i2 = Vi = [e7] and A2(wi2) = V4° U V4
6, 

where V4
a = [ei,e2,e3, e7] and V4 = [e4,es,e6,e7]. 

12. Proposition. 

(51) There is no W such that u12\W is of type (SI). 
(52) u12\W is of type (S2) if and only ifW D V4

a or WD V4
6. 

(53) u12\W is of type (S3) if and only ifW DVUW$ V4°, and W 2 V4
6. 

(Rl) u12\W is of type (Rl) if and only if W J* Vx. 
(R2) There is no W such that u12\W is of type (R2). 
(R3) There is no W such that u12\W is of type (R3). 
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TYPE 13 

For this form we have 

Jeered = A2(u;i3) = V1 = [e7]. 

13. Proposition. 

(51) There is no W such that u13\W is of type (SI). 
(52) There is no W such that u13\W is of type (S2). 
(53) u13\ W is of type (S3) if and only ifW D Vi. 
(Rl) There is no W such that u13\W is of type (Rl). 
(R2) u13\W is of type (R2) if and only ifW ~j> Vx. 
(R3) There is no W such that u13\W is of type (R3). 

T Y P E 14 

For this form we have 

keru14 = Vi = [e7] and A2(u;i4) =V4 = [ei, e2, e3, e7]. 

14. Proposition. 

(51) There is no W such that u14\W is of type (SI). 
(52) u14\W is of type (S2) if and only ifW D V4. 
(53) u14\W is of type (S3) if and only ifW J> V4 and WDVX. 

(Rl) There is no W such that u14\W is of type (Rl). 
(R2) There is no W such that u14\W is of type (R2). 
(R3) u14\W is of type (R3) if and only ifW J> Vi. 

REFERENCES 

[BVl] Bureš, J., Vanžuгa, J., Unified treаtment of multisymplectic 3-forms in dimension 6, available 
in aгXiv:math.DG/0405101, to appeaг. 

[BV2] Bureš, J., Vanžuгa, J., Multisymplectic forms of degree three in dimension seven, Pгoc. 22nd 
Winter School "Geometгy and Physics", Srní, Januaгy, 12-19, 2002, Suppl. Rend. Ciгc. Mat. 
Paleгmo, Ser. II 71 (2003), 73-91. 

MATHEMATICAL INSTITUTE, ACADEMY OF SCIENCES OF THE CZECH REPUBLIC 

Ž I Ž K O V A 2 2 , 6 1 6 6 2 B R N O , C Z E C H R E P U B L I C 

E-mail: vanzuraGdrs. ipm. cz 


		webmaster@dml.cz
	2012-09-18T14:31:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




