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RENDICONTT DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 75 (2005), pp. 293-308 

HASSE GRAPHS AND PARABOLIC SUBALGEBRAS 

OF EXCEPTIONAL LIE ALGEBRA /4 

PETR SOMBERG 

ABSTRACT. We study, from the point of view of abstract representation theory, 
graded parabolic subalgebras p of exceptional Lie algebra / j . For standard parabolic 
subalgebras of fa up to grading |4| we identify explicitly representation structure of 
all graded parts and we also construct corresponding Hasse diagrams. 

1. INTRODUCTION 

The following definitions are standard and can be found in [5, 3, 1]. 

Definition 1.1. Let K be one of the fields R,C and k £ N. A \k\-graded Lie algebra 
0 over K is a Lie algebra over K equipped with a decomposition (grading) 

(1) 0 = 0-jb © • • • © fl-i 0 0o © 0i © . . . 0* 

fulfilling [QiiQj] C 0j+j, together with the requirement that the subalgebra 0_ := 0_* © 
• • • © 0_i 0/0 is generated by 0_!. We shall use the notation 

p := 0o © • • • © 0* , P+ := 0i © • • • © 0Jb 

for the corresponding graded parabolic Lie subalgebra (resp. its nilpotent part) of 0. 

In this article we shall stick to the case K = C, i.e. all Lie groups and Lie algebras 
are considered to be defined over the field of complex numbers and all representations 
live in complex vector spaces. In the case of real Lie groups and algebras the situation 
is more difficult and for example the pattern of BGG sequence depends on a particular 
weight, which is being resolved. 

We shall restrict to the semisimple |k|-graded Lie algebras 0. In this case 0O is the 
reductive Lie subalgebra, i.e. it decomposes on the direct sum of abelian Lie subalgebra 
.Z(0O) and semisimple Lie subalgebra 0O, 0O ~ Z(g0) © 0J. In what follows we use 
the notation Z(QQ) := CFi © C£_ © • • •, where Ei,E2l... are suitably normalized 
generators of Z(g0). 
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Let us denote a Lie group with Lie algebra $ resp. p by G resp. P, and let us denote 
by V\ the irreducible representation of parabolic subalgebra p with highest weight A. 

We shall give the definition of invariant differential operators in the homogeneous 
case. 

Definition 1.2. LetN\i resp. VA2 be two irreducible P-modules with dominant weights 
Ai resp. A2. Let V\=GxP VA-, V2 = G Xp Y\2 be the associated homogeneous vector 
bundles. The differential operator 

(2) D : r(Vi) —• T(V2) 

is called invariant differential operator if it commutes with canonical action of G on 
sections of associated vector bundles. 

The definition of invariant differential operators is not so simple in the non-homo­
geneous (curved) case and can be found in [2, 3]. Because we shall study only abstract 
representation theory hidden behind differential geometrical applications, we shall sup­
press the word differential and in what follows shall write (9—) invariant operators 
only. 

A special wide class of invariant operators associated to the couples (cj, p) are so 
called standard invariant operators. Standard operators are, by definition, nontrivial 

P/B 

on pull-back of sections over G/B induced from the natural fibration G/B —•> G/P, 
where B is a Borel subgroup of G (B C P). These operators are coming in sequences 
called Bernstein-Gelfand-Gelfand (BGG) sequences. The graph structure of BGG 
sequence is exactly the (combinatorial) graph structure of Hasse diagram for the given 
parabolic subalgebra p C g, [1]. From the differential geometric point of view, the 
structure of BGG sequence has been recently discussed in [3]. 

Using pure (and standard) techniques of representation theory the present paper 
analyzes the graded structure and the Hasse diagrams of standard parabolic subalge-
bras p of the exceptional Lie algebra g = f\. For the representations of algebras in 
question we use the well known notation of crossed Dynkin diagrams, [1]. The grading 
on corresponding parabolic subalgebra is the sum of coefficients over the crossed nodes 
given by decomposition of the highest root 6 of /* into simple roots {ai ,a 2 ,a 3 ,a4}. 

2 3 4 2 

In particular, the coefficients are • — • > • — • , i.e. 9 = 2ai + 3a2 -f 4a3 + 2a4 and 
the grading of parabolic subalgebra, generated by crossed simple roots, is given by the 
sum of the coefficients (2,3,4,2) superscribed over them. 

We identify explicitly the representation spaces gi} i > 1 as g0-n-odules and construct 
their Hasse diagrams Wp using the methods [1], p.49 for all parabolic subalgebras p 
up to grading four of g. This restriction comes from our ineffectiveness to present 
the Hasse graphs in a reasonable graphic form for more (than four) graded cases. As 
will be seen, the cases of four graded parabolic subalgebras are already sufficiently 
combinatorially complicated for this exceptional Lie algebra. We would like to remark 
that, due to the exceptionality of the Lie algebra /4, it is useless to consider various 
inductive (with respect to the rank of the Lie algebra) "tricks" of the construction of 
Hasse diagrams. In other words, their construction in this article is just based on the 
tedious and cumbersome computation of corresponding orbits of relative Weyl groups 
in the weight spaces, [1]. Also the arrows, presented in the Hasse diagrams, are just 
the arrows corresponding to the reflections along simple roots in the orbit of relative 
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Weyl groups in the weight spaces. The missing arrows correspond to the reflections 
along non-simple roots. The general rules for standard series of Lie algebras and their 
parabolic subalgebras clearly indicate, where such arrows should be supplemented, 
but we did not check it explicitly. It is clear that such results correspond from the 
point of view of abstract representation theory to the existence of homomorphisms of 
generalized Verma modules. 

For a fixed parabolic subalgebra p C / 4 , the vertices of Hasse graph are the represen­
tations of p and the edges represent /4-invariant morphisms between source and target 
representation spaces. The number i G {1,2,3,4} over a particular arrow corresponds 
to the reflection along the underlying simple root OL{ _ {ai, 0:2,(23, #4}. In particular 
a given vertex is represented in Wp by a word composed of reflections, superscripted 
over the arrows, over the whole path starting in the root vertex of the Hasse graph 
and ending in a given vertex. We follow the convention of juxtaposing reflections as 
given in [1]. 

In this way we supplement the results [6] concerning finite dimensional representa­
tions of the classical series of Lie algebras and construct Hasse diagrams and repre­
sentation decomposition of graded parts of parabolic subalgebras of the exceptional 
Lie algebra f^ which, to our knowledge, have not yet been discussed. Secondly, these 
results can serve as a starting point for the study of invariant operators associated 
with couples (U,p)-

The results of this article can be summarized in the following theorem. 

Theorem 1.3. The representation structure of graded parts and associated Hasse di­
agrams for the couples (/4, p) for parabolic Lie subalgebras p C / 4 are, up to grading 4 
of fl, exhausted by following possibilities: 

1. •—> > #—x (see Figure 1.) 

, v fl±i - Sb3, fl±2 !._ V63 , 

dimfl±i=8, dimfl±2=7. 

2. x—• > • — • (see Figure 1.) 

(4) 0±i * WC3, fl±2 ~ 1C3, 

dimfl±i = 14, dim fl±2 = 1, 

where Wcz is 14-dimensional irreducible c3-module, Wcz C A3VC3. 
3. •—*=>=•—• (see Figure 2.) 

fli 2f © X ® vai, fl_i ~ o2V;2 ® Va*, 

/gx 52 2- 0 2 K 2 ® l a i , fl_2 2f ©Va*2 <8> 101 , 

fl3 ^ laa ® Vai , fl-3 -^ laa ® K 1 

dim fl±i = 12, dim fl±2 = 6, dim fl±3 = 2 . 
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4. •—•=>=*—• , (see Figure 2.) 

ØiC_Уû2®Vûl} 0 - i^K* 2 ®K*, 

02 -- Va2 ®
 2V01, ø_2 CІÍ Va\ ®

 2 Қ* , 

(6) ø3 c- va2 ® i в l , ø_3 ~ и* ® l в l , 

04 --- lû2 ® Vai , 0-4 ^ la2 ® Va\ , 

dimø±i = б, dimø±2 = 9, dimø±3 = 3, dimø±4 = 2. 

(see Figure 3.) 

(7) 
0±1 --" H2 © Si2 , 0±2 -- -?62 © U2 i 0±3 -- Ha i G±4 --* U2 , 
dim0±i = 9, dim0±2 = 5, dim0±3 = 5, dim0±4 = l . 

Remark 1.4. The notation used in Theorem is such that V denotes the fundamental 
vector representation, S the spinor representation, © the symmetric power, A the anti­
symmetric power, * the dual representation etc. The subscript by any representation 
denotes the corresponding Lie algebra of this representation. 

Proof. Every item is explicitly discussed in one particular subsection: 

2. STANDARD (GRADED) PARABOLIC SUBALGEBRAS OF / 4 

2.L |2|-graded case. Note that dim/4 = 52. Let us first consider the |2|-graded 
1 2 3 4 

parabolic subalgebra with crossed Dynkin diagram • — • > •—x , 
0j ~ b3, 0o c- b3 © CE . 

We shall use the notation ei G f)* C 0* for the basis of dual of the Cartan subalgebra 
and OJJ (i = 1,..., 4) for simple roots of f^. The set of all roots of /4 is (see for example, 
[4]) 

A/, = {±e.}ti U {±e. ± eiYi<iu=i U {\{±eY ±e2±e3± e4)} 

and the simple ones are 
ei — e2 — e3 — e4 a\ = 62 - e3, a2 = e3 - e4, a3 = e4, a4 = . 

The set of all roots of &3 is 

Ab3 = {±ei}l2U{±ei±ej}
4

i<jiiJ=2) 

with simple ones given by 

a\ = e2 - e3 , a2 = e3 - e4, a3 = e4. 

The set of remaining roots A/4 \ Afe3 is 

{±ei} U {±ex ± ei)U U {-(±ei ± e2 ± e3 ± e 4 ) } . 

The set of weights of 0i resp. 0_i (realized in the root space of f4) 

| - ( e i ± e2 ± e3 ± e4) j resp. {_(-ei ± e2 ± e3 db e 4 ) | 
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form irreducible gj = 63-modules with highest weights \{e\ + e2 + e3 + e4) and \{-ei + 
e2 + e3 + e4) respectively, where dim £h = dim g_i = 8. 

The set of remaining weights, 

{±e i}U{±e i±eJ 4
= 2 

decomposes on two vector representations of 63 with highest weights ei -f e2 resp. 
- e i + e2, containing the weights 

{ei ± e2, ei ± e3, eL ± e4, e j resp. {-ei ± e2, - e i ± e3, - e i ± e4, -e x } . 

These irreducible gj = &3-modules correspond to g2 and g_2 respectively. 
Finally, we must identify 63-module g2 inside the second exterior power of 63-module 

Qi via relation [gi,gi] C g2 in g (and similarly for the couple g_i and g_2). This is 
easy, because the second tensor power of the spinor module Sb3 decomposes as 

Sh ® Sh ~ A°V63 © AxVb3 0 A2H3 © A3Vh, 

dim A°Vb3 = 1, dim A1 V6s = 7, dim A % = 21, dim A2H3 = 35 

and so it follows from the representation decomposition of the action of permutation 
group S2 on Sb3 ® Sb3 (by permutation of factors of the tensor product) 

Sb3 ® Sbz 2. Q2Sb3 © A2563, dim(A2563) = 28, dim(©2563) = 36 

the inclusion Vb3 C A2Sb3, i.e. g2 — Vb3 appears in A2gi ~ A2Sb3. 
Because this case corresponds to |2|-graded parabolic subalgebra and dimgi + 

dimg2 = 15, the decomposition is (from the dimensional reasons) complete. 

2.2. |2|-graded case. The second possible |2|-graded case is parabolic subalgebra 
1 2 3 4 

associated to the crossed Dynkin diagram x — • > •—• , 

ga
0 ~ c3, go ~ c3 © CE. 

The standard set of all roots of c3 is 

AC3 = {±2e,}?=i U {±e, ± e ^ i j ^ , 

with simple roots given by 

ai = e i - e 2 , a2 = e 2 - e 3 , a3 = 2e3. 

In what follows, we shall construct an embedding 

AC3 -> A / 4 . 

Note that in the previous |2|-graded case the analog of inverse of the previous map 
(restricted to the image of embedding) was trivial (the identity), i.e. it was simply the 
restriction map. However, in this case it is not the identity map and so the next our 
aim is its explicit form. 

Let us consider the standard vector space R4 with the basis {ei,e2,e3,e4}. Let us 
first multiply (renormalize) all root vectors in AC3 c R4 by -4, i.e. we introduce linear 
normalization map (given on simple roots and extended by linearity) 

(8) {ei - e2, e2 - e3,2e3} -> {-7^1 - e2), ~/=(e2 - e3), \ / 2 e 3 | , 
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and then follow by T E O (^-transformation 

(9) {--^(ei-e2),-^=(e2-e3),\/2e3} -+ [-(ei - e2 - e3 - e4),e4,e3 - e4J 

whose explicit matrix realization is 

( T, ° 
T = 

75 » ° "75 \ 
75 0 J "75 

0 75 75 ° 
0 75 "75 ° 1 

Its inverse T - 1 Є 0(4) is oгthogonal tгansfoгmation 

V 

(10) | - (e i - e 2 - e 3 - e 4 ) , e 4 , e з - e 4 , e 2 - e з | 

"* í ~ ¥ Є l ~ Є2 '̂ ~~̂ Є2 ~Єз '̂̂ Єз' ~Uђ^~Єl -Є2 - Єз - Є4  

v~ v 

and it is of the form 

/ 75 
i 

v^ 
0 0 \ 

0 0 i 
V2 

1 
75 

0 0 1 

75 
1 

"75 
\ "75 "75 0 0 / 

• Ví" 

T~l = 

Let us make a suitable abbreviation in the notation — in what follows, we shall use 
the same notation T resp. T~l for the (right and left respectively) compositions of 
orthogonal transformations T resp. T"1 with normalization map. 

The image = ImT(AC3) under the map T of the (normalized) root system AC3 is 

--=(±ei ± e2) : -(+ei - e2 + e3 + e4), -(+ei - e2 - e3 - e4), 

1 / N 1 / 

-(-ei + e2 + e3 + e4), - (-ex + e2 - e3 - e4); 

-=(±ei ± e3) : -(+ei - e2 + e3 - e4), -(+ex - e2 - e3 + e4), 

! / x ! / 
-(-ei + e2 + e3 - e4), - (-ei + e2 - e3 + e4); 

v~ 
(±e2±e3) : ±e3 ,±e4; 

\/2(±ei) : + ex - e2, -ex + e2; 

\/2(±e2) : + e3 + e4, -e 3 - e4 ; 

\Z2(±e3) : + e3 - e4, -e 3 + e4 . 
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For the sake of completeness, we add the list of roots A/4 \ ImT(AC3): 

A /4 \ ImT(AC3) = I ± ei, ±e2, eY + e2, - e x - e2, ±ei ± e3, ±el ± e4, ±e2 ± e3, 

± e2 ± e4, -(ei + e2 ± e3 ± e4), - ( - e i - e2 ± e3 ± e4) J . 

The remaining task is the identification of c3-modules 0i,02 (and their duals g_i,g_2 

respectively). Using the orthogonal transformation T, let us consider the image 
ImT(JV) C A/4 of (normalized) weight spaces of the fundamental 14-dimensional 
representation W of c3 (IV appears in the third wedge power A3V of the fundamental 
vector representation V, see the Remark 2.1). We have 

ImT(VV) = {-(ei - e2 ± 2e3), - ( d - e2 ± 2e4), - ( - e i + e2 ± 2e3), 
(11) i_ _ _ 
* ' 1 1 1 1 1 

- ( - e i + e2 ± 2e4), - (e t - e2), - ( - e i + e2), - (±e 3 ± e 4 ) | . 
A closer inspection reveals that adding the vector ^(ei + e2) (which is itself the half of 
the root (ei + e2) £ A/4) to all weight spaces, we recover the realization of the weights 
of c3-module gi c_ W inside of A/4: 

(12) gi ~ W = | e i ± e3, el ± e4, e2 ± e3, e2 ± e4, ei, e2, -(ei + e2 ± e3 ± e 4 ) | 

with highest weight ex + e3. Then the module g_i __ VV* corresponds to 

9_i __ W = { - e i ± e3, - e i ± e4, - e 2 ± e3, - e 2 ± e4, 
(13) l ! . 

- e i , - e 2 , - ( - e i - e2 ± e3 ± e 4 ) | 

with highest weight —e2 + e3. The second exterior power of Q\ is one dimensional, 
A20i c_ A 6 ^ ~ C and the only nonzero products of weight spaces are 

[ex + e4, e2 -- e4] = [eL + e3, e2 - e3] = [ex - e4, e2 + e4] = [ei - e3, e2 + e3] = el + e2 

and similarly in the case of g_i. In other words, dimg2 = dimg_2 = 1 and g2 resp. 
2-2 are generated by ex + e2 resp. - e i - e2. The structure of all these c3-modules can 
be also directly verified using simple roots (8). 

Notice that this grading on parabolic subalgebra corresponds to the example of the 
so called contact structure. 

Remark 2.1. Let us recall the weight structure of fundamental representation W 
of c3. Let V = C6 be the fundamental vector representation of c3 with the weights 
±ei ,±e 2 ,±e 3 (and the highest weight ei). W is 14-dimensional c3-module and it can 
be realized as irreducible summand of 

A 3 v _ _ j V e v , 

consisting of weights 

±ex ± e2 ± e3, ±eu ±e2, ±e3, 

with highest weight ei + e2 + e3. 
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Figure 1: Hasse diagram for parabolic Lie subalgebras of 2.1, 2.2: 

i 

3 , \ 2 

3 

л 1 

4 
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2.3. 3 -graded case. This is the generalized quaternionic case with crossed Dynkin 
1 2 3 4 

diagram •— .*->-•—• , 

QS
Q __ ai © o2, g0 - (a. © a2) © CE . 

Because dimg0 = 12, we have dim$i -f dim rj2 -f dimrj3 = 20. 
The root spaces Aai resp. Aa2 are 

Aai = {ei - e2, e2 - e i} , A+ = {ei - e2} , 

Aa2 = {ei - e2, e2 - eu e_ - e3, e3 - eu e2 - e3, e3 - e2} , 

&t2 = (ei - e2, ei - e3, e2 - e3} , 

with simple roots of two simple factors oi, a2 given by 

oi : Q;I = ei - e2 , 

a2 : ai = ei — e2, a2 = e2 — e3 . 

Note that, similarly to the previous case, we should construct an embedding 

We first multiply (renormalize) the roots in Afl2 by -4-, i.e. (on simple roots) 

(14) {oi : ei - e2 | o2 : (ex - e2), (e2 - e3)} 

-> j o ! : ei - e2 | o2 : - ^ ( e i - e2), -^=(e2 - e 3 ) | , 

then we suitably embed Aai@02 into R4, 

(15) | a i : ei - e2 | a2 : --=(ei - e2), --=(e2 - e3)} 

^ { ^ ( e i + e2 + e3 - 3 e4) | -^(ei - e2), - ^ ( e 2 - e3)} 

and follow it by orthogonal transformation U E 0(4) 

(16) {"^(ei + e2 + e3 - 3e4), --=(ei - e2), - ^ ( e 2 - e3)} 

-> [e2 - e 3 , e 4 , - ( e i - e2 - e3 - e_)\ 

in such a way that the inverse U~l G 0(4) generates orthogonal transformation 

(17) | e 2 - e3,e4, -(ei - e2 - e3 - e 4 ) | 

^ { v ^ ^ e i + e 2 + 6 3 " 3 e 4 ^ ~7&x" e '̂ 7 I ^ 2 " 6 3 ^ } 
and has the matrix form 

/ v^+y^ - v ^ + y ^ _ y _ y_ \ 

V2+VE - y ^ + y ^ _ _ 2 _ _ 2 
1 _ 

V 
-2^/2+^/6 2^/2+^/6 _2 Q 

"_6 _ _ 5 _ f 
6 6 3 o / 



302 PETR SOMBERG 

The set of simple roots of go is 

ai : ai = e2 - e3 , 

!/ a2 : o;3 = e4, a4 = -(ei - e2 - e3 + e4) 

and the graded parts &, z 7- 0 contain the following subset of roots of A/4: 

{ ± ei}3
=1 U {±ei ± e2} U {±eL ± e3} U {±et ± e4} U {±e2 ± e4)} 

U {±e3 ± e4)} U {±(e2 + e3)} U {-(ei - e2 + e3 ± e4)} 

(18) u {_(ei + e2 - e3 + e4)} U {-(ei + e2 + e3 ± e4)} 

U { 2 ( ~ C l "" e2 + e3 dh e 4)} U i^'61 + e2 - e3 + e4)} 

u { - ( - e i - e 2 - e 3 ± e 4 ) } . 

The first graded part gi ~ 02V02 ® Vai includes the following root spaces: 

{ei - e2, ei - e3}{-(ei - e2 + e3 + e4), -(ei + e2 - e3 + e4)}{e3 + e4, e2 - e4} 

( ' {2^1 ""'e2 + e3 - e4j, 2^1 + e2 - e3 - e4)}{e3,e2} 

{e3 - e 4 , e 2 + e4} 

where any of the six couples in parenthesis denotes Vai-part and the triangle of couples 
describes 02Vfl2-part of the tensor product. The graded part g_i c_ 02Va*2®Va*, consists 
of 

{-ei + e2, - e i + e 3 }{- ( -e i + e2 - e3 - e4), 2 ( _ e i - e2 + e3 - e4)} 

^ ' {-e3 - e4, - e 2 + e 4 }{- ( -e i + e2 - e3 + e4), - ( - e i - e2 + e3 + e4)} 

{-e3, - e 2 }{-e 3 + e4, - e 2 - e4} 

The second part of the grading, g2 c_ 0 2 K 2 ® l a i contains the following weights: 

{ei + e4}{ -(eL + e2 + e3 + e4)}{e2 + e3} 

(21) {ej {^(ei + e2 + e 3 -e 4 )} 

{e -e4} 

and its dual a_2 2. 02Va* <g> lai 

{-d - e4}{-(-ei - e2 - e3 - e4)}{-e2 - e3} 

(22) {-ei} {^(-ei-e2-e3 + e4)} 

{-ei + e4} 



HASSE GRAPHS AND PARABOLIC SUBALGEBRAS OF EXCEPTIONAL LIE ALGEBRA/4 303 

The parts CJ3 ~ l a 2 ® Vai, g_3 ~ 1G2 ® Va* carry the root spaces 

{ . .g3:ei+e2,ei + e3, 

0-3 : - e i - e2, - e t - e3. 

The highest weights of the corresponding irreducible representations are 

2±i : ( e i - e 2 ) , ( - e 3 + e4), 
(24) S±2: ( e i + e 4 ) , ( - e 2 - e 3 ) , 

5±3 : ( e i + e 2 ) , ( - e i - e 3 ) . 

It is now straightforward but tedious to verify all the relations [QUQJ] C fy+j, iyj = 
1,...,4. 

2.4. |4|-graded case. The analysis of representations proceeds in both |4|-graded 
cases similarly as in the previous ones and so we shall content ourselves with brief 
comments of all results. The first |4|-graded case is also generalized quaternionic 

1 2 3 4 

structure with crossed Dynkin diagram • • > x—• , 

Qo -̂  a2 © a i , go - (a2 © ai) © CE . 

The structure of g0 -S the same as in the previous |3|-graded case, but the set of simple 
roots 

ai : a4 = -(ei - e2 - e3 - e4), 

a2 : ai = e2 — e3, a2 = e3 — e4, 

is such that the graded parts &, i 7-= 0, will contain the following subset of roots of 

{ ± ei}4
i=i U {±e t ± e2} U {±e t ± e3} U {±ei ± e4} U {±(e2 + e3)} 

U {±(e2 + e4)} U {±(e3 + e4)} U {-(d - e2 - e3 + e4)} 

U {-(ex - e2 + e3 ± e 4 ) | U {-(ei + e2 - e3 ± e4) J 

(25) r l 1̂ r l 1 
U {-(ei + e2 + e3 ± e4) j U {-(-ei + e2 + e3 - e4) j 

U {-(-ei + e2 - e3 ± e4) | U {^{-ei - e2 + e3 ± e4) | 

U { - ( - e i - e 2 - e 3 ± e 4 ) j . 

The first graded part Qi ~ Va2 ® Vai of the grading contains the following weights: 

{^(ei - e2 - e3 + e4), e4j {-(ei - e2 + e3 - e4), e3) 
(26) J 12 J 

{ 2 ( e i + e 2 ~ e 3 - e 4 ) , e 2 | 
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where any of the three couples in parenthesis denote K.-part and the triangle of couples 
describes V^-representation. Quite analogous structure emerges for a;_i _t_ 17* <g> 17a*: 

{ o(~ e i + e2 + e3 - e4), - e 4 ) {-(-eL + e2 - e3 + e4), -e 3 } 
(27) 2 l 2 

\2^ei - e 2 + e3 + e 4 ) , - e 2 ) 

The second part g2 c_ Va2 ® 0 2 K i of the grading contains the following weights: 

{ei - e2, -(ei - e2 + e3 + e4), e3 + e 4 ) 

(28) {ei - e3, -(ei + e2 - e3 + e4), e2 + e 4 ) 

{ei - e4, -(ei + e2 + e3 - e4),e2 + e 3 ) 

and its dual 0_2 c_ 17* ® ©2Va* is realized by 

{ - ei + e2, - ( - e i + e2 - e3 - e4), - e 3 - e 4 ) 

(29) { - ei + e3, - ( - e i - e2 + e3 - e4), - e 2 - e 4 ) 

{ - e i + e 4 , - ( - e i - e2 - e3 + e 4 ) ,-e 2 - e 3 ) . 

The parts g3 ~ Va2 <8> l a i , 0-3 — V*2 ® l a i are carried by the roots 

03 : ei + e2, ex + e3, ex + e4 

0-3 : -e i - e2, - e L - e3, -ei - e4 

and finally g4 ~ 102 <g> Ki,0-4 -- U2 ® V0* is 

04 : ei,-(ei + e2 + e3 + e4) 
(31) 2

 x 

0_4 : -ei , - o( ei + e2 + e3 + e 4 ). 

The highest weights of corresponding irreducible representations are: 

1/ X 1 
0±i : 2( ei + e 2 - e 3 - e 4 J , 7 

,32s 0-2 : ( e i - e 2 ) , ( - e 3 - e 4 ) , 

0±3 : (ei + e2), (-e x - e 4), 

1/ 
0±4 : ei, - ^ i + e2 + e3 + e 4 ). 

!/ ч Ъ 
0±i : g (ei + e2 - e з - e4), 2 ( _ e i + e2 + e3 - e 4 ), 
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Figure 2: Hasse diagram of parabolic Lie subalgebra 2.3, 2.4: 
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2.5. |4|-graded case. This case corresponds to the crossed Dynkin diagram 
1 2 3 4 

gg __ 63, g0 __ b2 © CBi © CE_ • 

The set of all roots of gg — b2 is 

Aft2 = {±e 3 ,±e 4 ,±e 3±e 4} 

with simple roots given by 

<*2 = e3 — e4, a3 = e4. 

The set of remaining roots A/4 \ Ab3 is 

{±ei, ±e2} U {±ei ± e2, ±ex ± e3, ±ei ± e4, ±e2 ± e3, ±e2 ± e4} 

u { - ( ± e i ± e 2 ± e 3 ± e 4 ) } . 

The structure of the graded parts looks as follows. The part of degree one gi is 
reducible and decomposes on two irreducible components gi ~ Vb2 © Sb2, 

(33) gi ~ Vb2 © Sb2 ~ {e2 ± e3, e2 ± e4, e2} U {-(ei - e2 ± e3 ± e 4 ) | , 

and similarly for its dual g_i, 

(34) g_i ~ Vb2 © Sb2 ~ {-e2 ± e3, - e 2 ± e4, -e 2 } U {-(-ex + e2 ± e3 ± e 4 ) | . 

The degree two parts g±2, [g±i,g±i] C g±2, consist of 

g2 ~ 162 © Sb2 ~ {ei - e2} U {-(ei + e2 ± e3 ± e4)} , 
(35) l 2 ' 

g-2 ~ U2 © Sb2 ~ {-ei + e2} U {^{-ei - e2 ± e3 ± e 4 ) | . 

Note that the trivial representation lb2 comes from the decomposition of A2Sb2) while 
the spinor representation Sb2 is an irreducible summand of the tensor product of basic 
vector and spinor representations, Vb2 ®Sb2. 

The representation spaces appearing in g±3 are isomorphic to the fundamental vector 
representation, g±3 ~ Vb2, 

/O.N 03 - ^ - - ^ e i + e 3 ' e i + e4' e i » e i " e 4 > e i " e 3 } > 
(36) __ r . 

g_3 ~ Vb2 ~ {-ei + e3, - e x + e4, - e i , - e i - e4, - e x - e3} . 
Note that the vector representation g±3 appears as irreducible summand of both tensor 
products of the spinor representations Sb2 ~ g±2 with Sb2 C g±i and the trivial 
representation lb2 C g±2 with the vector representation Vb2 C g±i. 

The parts g±4 (i.e. homogeneity grading four) are trivial 1-dimensional representa­
tion spaces, 

( 3 7 , g 4 - l 6 2 ~ { e i + e 2}, 
g_4 - lb2 - {-ei - e2} . 

The trivial representations g±4 appear as irreducible summands of both second wedge 
product of the spinor representation Sb2 c_ g±2 and wedge product of the vector rep­
resentation Vb2 C g±i with Vb2 ~ g±3. 
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Figure 3: Hasse diagram of parabolic Lie subalgebra 2.5: 



308 PETR SOMBERG 

We add the list of corresponding highest weights of all 62-modules: 

0±i : Xv = ± e 2 + e 3 , Xs = ~ ( ± e i T e2 + e3 + e 4 ), 

(38) 0±2 : Ai = ±ci + e 2 , A5 = -(±ei ± e2 + e3 + e 4 ), 

Я-ьз : Av = ± d + e 3, 

0±4 ' Ai = ±ei ± e2 -

Remark 2.2. This case can be in some sense considered as a generalization of the 
contact structure - instead of having |2|-graded Lie algebra with dimg±2 = 1, we 
arrived at the structure of |4|-graded Lie algebra on o_ with dimg±4 = 1. 

3. COMMENTS 

It is perhaps worth to emphasize that Hasse diagrams are the same for the parabolic 
subalgebras given either by crossing the second simple root or the third simple root. 
The lower dimensional examples of generalized quaternionic structures for classical 
Lie algebra series bn and c„, whose Dynkin diagrams differ by the orientation between 
the last two simple roots, indicate and conjecturally suggest that this could hold true 
generally. This problem is just under current investigation. 
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