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LOWER BOUNDS FOR THE EIGENVALUES
OF THE BASIC DIRAC OPERATOR

SEOUNG DAL JUNG

ABSTRACT. This talk is a survay on the eigenvalue estimates of the basic Dirac
operator on the Riemannian manifold with the transverse spin foliation, which is
based on the works of the author[9, 10, 11].

1. INTRODUCTION

In 1963, A. Lichnerowicz [18] proved that on a Riemannian spin manifold the square
of the Dirac operator D is given by
(1.1) D'=A+7,
where A is the positive spinor Laplacian and o the scalar curvature. In 1980, Th. Fried-
rich 5] gave a lower bound for the square for the eigenvalues of the Dirac operator D.
In fact, by using a suitable Riemannian spin connection, he proved the inequality

n
1.2 2> ___ " _inf
(1.2) N2 o M
on manifolds (M™,g) with positive scalar curvature o > 0. He also proved, in the
limiting case, that the manifold is an Einstein. The inequality (1.2) has been improved
in several directions by many authors [2, 3, 7, 8, 14, 15, 16].

In this talk, we estimate the lower bound of the eigenvalues for the basic Dirac
operator D, on the foliated Riemannian manifold, which are defined by J. Briining and
F. W. Kamber [4, 6]. They obtained the Lichnerowicz type formula on the transverse
spin foliation with the basic-harmonic mean curvature form x;

1

(1.3) D =V; Vi + 1

Ko,
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where K, = oV + |&|% oV the transversal scalar curvature of  and & the mean
curvature form of . By using the similar method to ordinary case, we obtain the
following theorem which is corresponding to (1.2).

Theorem 1.1 ([9]). Let (M, gu, F) be a compact Riemannian manifold with the trans-
verse spin foliation F of codimension ¢ > 1 and bundle-like metric gy such that s is
basic-harmonic. Assume K, > 0. Then the eigenvalue X of the basic Dirac operator
D, satisfies
1

2 > 1 0
(1.4) A2 > 17— 1K
where K® = infy K,.

By transversally conformal change of the metric gar, we have the following sharp
estimation, which is corresponding to the result of Hijazi [7] in ordinary manifold.

Theorem 1.2 ([11]). Let (M, gum, F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension ¢ > 3 and bundle-like metric ga such that & is
basic-harmonic. If the transversal scalar curvature satisfies a¥ > 0, then we have

. 2> f
(1.5) A 2 4(q- )(u1+m |[?) .

On the Kébhler spin foliation, if we use the basic Kéhler form § acting on the basic
spinor field, we have the following theorem (see [14] for ordinary case).

Theorem 1.3 ([10]). Let (M, gr, F) be a compact Riemannian manifold with a Kihler
spin foliation F of codimension ¢ = 2n and a bundle-like metric gy such that k is
basic-harmonic and transversally holomorphic. If K, > 0, then the eigenvalue A of D,
satisfies

>3t 2

0
4qK

(1.6) A2 >

where K® = infy K.

In the limiting case, the foliation is minimal, transversally Einsteinian with positive
constant transversal scalar curvature oV. In particular, the limiting foliation in (1.6) is
minimal, transversally Einsteinian with odd complex codimension. This implies that
when complex codimension of F is even, there exists a shaper estimate than (1.6).

2. PRELIMINARIES AND KNOWN FACTS

Let (M, gm,F) be a (p + g)-dimensional Riemannian manifold with a foliation F
of codimension ¢ and a bundle-like metric gy with respect to F. We recall the exact
sequence

0 L—-TM5Q—0

determined by the tangent bundle L and the normal bundle @ = TM/L of F. The
assumption of gp to be a bundle-like metric means that the induced metric gg on the

normal bundle Q = L+ satisfies the holonomy invariance condition Vgq = 0, where V
is the Bott connection in @ ([12]).
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For a distinguished chart & C M the leaves of F in U are given as the fibers
of a Riemannian submersion f : Y — V C N onto an open subset V of a model
Riemannian manifold N.

For overlapping charts U, N Up, the corresponding local transition functions a3 =
fao f5' on N are isometries.

Further, we denote by V the canonical connection of the normal bundle @ = TM/L

of F. It is defined by
Vxs=n([X,Y,]) for X e€lL,
1) { xs=7([X,Y)])

Vxs=n(V¥Y,) for X elL*,

where s € I'Q, and Y, € I'L* corresponding to s under the canonical isomorphism
L+ = Q. The connection V is metric and torsion free. It corresponds to the Rie-
mannian connection of the model space N9, [12]. The curvature RV of V is defined
by

R%y =VxVy —VyVx-Vixy) for X,YeTM.
Since (X )RY = 0 for any X € 'L ([12, 13, 20]), we can define the (transversal) Ricci
curvature pV : 'Q — I'Q and the (transversal) scalar curvature oV of F by

p¥(s) = ZRYE,,EM oV = ZQQ(PV(Ea)aEa)’

where {E,}a=1,..,¢ is an orthonormal basis for Q. The foliation F is said to be
(transversally) Finsteinian if the model space N is Einsteinian, that is,

(2.2) 7 = -;-a" i

with constant transversal scalar curvature oV.

The mean curvature vector field of F is then defined by
(2.3) r=> n(VRE),
where {E;}i=1,.. p is an orthonormal basis of L. The dual form &, the mean curvature
form for L, is then given by
(2.4) k(X) =go(r,X) for X eTlQ.

The foliation F is said to be minimal (or harmonic) if kK = 0.
Let Q%(F) be the space of all basic r-forms, i.e.,

Dp(F)={pe (M) i(X)p=0, 6(X)p=0, for X e TL}.

Since the exterior derivative preserves the basic forms (that is, §(X)d¢ = 0 and
i(X)d¢ = 0 for ¢ € QF(F)), the restriction dp = dlay(#) is well defined. Let dp
the adjoint operator of dg. Then it is well-known ([1, 9]) that

(2.5) dg=Y 0uAVE, 0p=-Y i(E)VE, +i(ks),

a

where kp is the basic component of k, {E,} is a local orthonormal basic frame in Q
and {0,} its go-dual 1-form.
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The basic Laplacian acting on Qp(F) is defined by
(2.6) Ap = dgdp + dpdp.
If F is the foliation by points of M, the basic Laplacian is the ordinary Laplacian.

3. THE BASIC DIRAC OPERATOR

Let (M, gum,F) be a Riemannian manifold with a transversally oriented Riemann-
ian foliation F of codimension ¢ and a bundle-like metric gps with respect to F. Let
S0(q) » P — M be the principal bundle of (oriented) transverse orthonormal fram-
ings. Then a transverse spin structure is a principal Spin(g)-bundle P together with

two sheeted covering & : P — P such that £(p-g) = £(p)&(g) for allp € P, g € Spin(q),
where & : Spin(g) — SO(g) is a covering. In this case, the foliation F is called a trans-

verse spin foliation. We then define the vector bundle S associated with P by
(3.1) S(F) = P Xspin(q) S

where S, is the irreducible spinor space associated to (). The Hermitian metric on
S(F) is induced from gq, and the Riemannian connection V on P defined by (2.1)
can be lifted to one on P, in particular, to one on S(F), which will be denoted by
the same letter. S(F) is called the foliated spinor bundle. It is well known that the
curvature transform RS ([17]) is given as

(3.2) Ryy® = iZgQ(R)V(yEa, E)E, - E,-® for X, Y €TM.
a,b

On the foliated spinor bundle S(F), we have

RS @— _L,¥ :
(33) Z E, - Ryp,®=—5p" (x(X))- @,
(3.4) > Bu By REp®= %a%

a<b
for X € TM, [9, 11]. Taking 7 to denote the projection
#: C®(T*M ® $(F)) — C°(Q* ® S(F)) = C*(Q ® S(¥))

we define the transversal Dirac operator Di, ([4, 6]) by

Di=-0foV.

If {E,}4=1,. 4 is taken to be a local orthonormal basic frame in @, then
D= E. Vg,.

In [4, 6] it was shown that the formal adjoint D;,* is given by D;,* = D;, — k- and that
therefore

1
(35) Di=Dfy—zr
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is a symmetric, transversally elliptic differential operator, with symbol ¢p,, satisfying
oD, (z,&) = & for € € Q% and op,, (z,€) = 0 for £ € L}. We define the subspce 'pS(F)
of basic or holonomy invariant sections of S(F) by

(3.6) TpS(F) = {® € T'S(F)| Vx® =0for X €TL}.

From (3.5), we see that Dy, leaves I'gS(F) invariant if and only if the foliation F
is isoparametric, i.e., k € Q§(F). Let Dy = Dylrysir) : T'eS(F) — I'pS(F). This
operator Dj is called the basic Dirac operator on (smooth) basic sections I'gS(F). We
now define V;,Vy, : I'S(F) — I'S(F) as

(3.7) 2 Vel =—> Vi 50+ V.0,

where Vi, = VvVw — Vy,w for any VW € TM.

Proposition 3.1 ([9]). Let (M, gu, F, S(F)) be a compact Riemannian manifold with
the transverse spin foliation F and a bundle-like metric gy with respect to F. Then

«v:rvtrq)v \I’) = «Vtr(pa Vtrq/»
Jor all ®,V € TE, where (®,9)) = [,,(®, ¥) is the inner product on S(F).

Proposition 3.2 ([9]). Let (M, gup, F, S(F)) be the same as in Proposition 3.1. As-
sume that k is basic-harmonic. Then the basic Dirac operator Dy satisfies

1
(38) DZ = VZ,V“ + ZKO,

where K, = a¥ + |s|%

4. AN ESTIMATION OF THE EIGENVALUES ON RIEMANNIAN SPIN FOLIATION

Let (M ,gm, FyS(F )) be a compact Riemannian manifold with the transverse spin
foliation F of codimension g, a bundle-like metric gy, with respect to F and a foliated

f
spinor bundle S(F). Now, we introduce a new connection V on S(F) as
f
(4.1) Vx &=Vx®+ fr(X)- & for X €TM,

f
where f is a real valued basic function on M. Trivially, this connection V is a metric
connection on . By similar calculation to proposition 3.1, we have

i T
(42) «Vtrvtr o, \IJ» = «Vtr ®, Vi \I’»
for all , ¥ € I'S(F). Let D,® = A®. From (3.8), (4.1) and (4.2) we have
f -1 1
(4.3 19a ol = [ (2N - 2K,
M q 4

where K, = oV + |s|% From (4.3), we have the following theorem.

Theorem 4.1 ([9]). Let (M, gu, F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension ¢ > 1 and bundle-like metric gy such that k is
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basic-harmonic. Assume K, > 0. Then the eigenvalue A of the basic Dirac operator
Dy, satisfies

1 ¢ .
(44) A° 2> 11514le,,

where K, = a¥ + |k[2.

Remark. If F is a point foliation, then the transversal (basic) Dirac operator is just
a Dirac operator on an ordinary manifold. Therefore Theorem 4.1 is a generalization
of the result on an ordinary manifold (cf.[5)).

Theorem 4.2 ([9]). Let (M, gum,F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension ¢ > 1 and a bundle-like metric gy such that
is basic-harmonic. Assume K, > 0. If there exists an eigenspinor field ¥, of the basic
Dirac operator Dy for the eigenvalue A2 = d_—l;Kf,’, then F is a minimal, transversally
FEinsteinian with constant transversal scalar curvature.

Remark. Theorem 4.2 implies that if the foliation F is not minimal, then X2 >

ﬁ_T)Kf,’. So when F is not minimal, there exists a sharper estimate than (4.4).

5. AN ESTIMATION OF THE EIGENVALUES BY THE CONFORMAL CHANGE

Now, we consider, for any real basic function u on M, the transversally conformal
metric o = €*gg. Let Pi(F) be the principal bundle of gq-orthogonal frames.
Locally, the section § of Py,(F) corresponding a section s = (Ey, -+ , E;) of Py(F) is
§=(Ey,---,E,), where E, = e™E, (a=1,---,q). This isometry will be denoted by
I,. Thanks to the isomorphism I, one can define a transverse spin structure Pypyin(F)
on F in such a way that the diagram

Puin(F) =2 Ppin(F)

I |

Po(F) -2 Pu(F)

commutes. Let S(F) be the foliated spinor bundle associated with Payin(F). For any
section ¥ of S(F), we write ¥ = L,W. If (, )g, and (, )3, denote respectively the
natural Hermitian metrics on S(F) and S(F), then for any ®, ¥ € ['S(F)

(5.1) (®,¥)gy = (@, V)50,
and the Clifford multiplication in S(F) is given by
(5.2) X-U=X.¥ for X elQ.

Let V be the metric and torsion free connection corresponding to gg. Then we have
for X,Y € I'TM,

(5.3) Vxm(Y) = Vxr(Y) + X(w)r(Y) + Y (w)n(X) - go(r(X), 7(Y)) grady (u),
where gradg(u) = Y, Eu(u)E, is a transversal gradient of u and X(u) is the Lie

derivative of the function u in the direction of X. The formula (5.3) follows from that
V is the metric and torsion free connection with respect to go. The connection V and
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V acting repectively on the sections of S(F) and S(F), are related, for any vector
field X and any spinor field ¥ by

(54)  Vx¥=Vx0- %W(X) “gradg(u) ¥ - %gq(gradv(u),w(X))\T!.

£
Now, we introduce a new connection V on S(F) as

£ _
(5.5) Vx U =Yx0+ fr(X)7 ¥ for X € TM,

£
where f is a real-valued basic function on M. Trivially, this connection V is a metric

connection.

Lemma 5.1. On the foliated spinor bundle S(F), we have
Joro_ £ _ £
«V‘trvtr ‘I’) (I)»i? = «Vtr \I’) Vi (I)»ﬁq
I _ £ I _ 5
for all ¥, ® € T'S(F), where (Vie ¥, Ve ®)go = 2_0(VE, ¥, Vi, P)sq-
On the other hand, from (3.7) and (5.5) we have
S _ . - -
(5.6) V'V U=V Vel - 2fD, ¥ + ¢f*¥ — e grady(f) - ¥.
Let Dy® = A®(® #0). If we put f = 2—6"", then we have
(57) / |V B2, = 1 / e\ - L g T2
' T g Yg-1)" T

where KY = h™1Y;h + |k|?, Y} is a basic Yamabe operator of F, which is defined by

(5.8) Y,,=4Z:;A3+a'v.

From (5.7), we have the following theorem ([11]).

Theorem 5.2. Let (M, gup, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension ¢ > 3 and bundle-like metric gy such that k € Qp(F)
and 0k = 0. If the transversal scalar curvature is non-negative, then we have

(5.9) N2> (i + inf [[?),

q
4q-1)
where yy is the smallest eigenvalue of the basic Yamabe operator.

Remark. Since p; > inf oV, the inequality (5.9) is a sharper estimate than (4.4).
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6. AN ESTIMATION OF THE EIGENVALUES ON KAHLER SPIN FOLIATION

Let F be a Kahler foliation. Namely, by a Kdhler foliation F([19]) we mean a fo-
liation satisfying the following conditions; (i) F is Riemannian, with a bundle-like
metric gps on M inducing the holonomy invariant metric gg on @ = L*, (ii) there is
a holonomy invariant almost complex structure J : @ — @, where d&im@ = q(= 2n)
(real dimension), with respect to which g¢ is Hermitian, i.e.,

(6.1) 9Q(JX,JY) = go(X,Y)
for X,Y € I'Q, and (iii) if V is almost complex, i.e., VJ = 0. Note that
(6.2) QX,Y) = go(X,JY)

defines a basic 2-form Q, which is closed as a consequence of Vgg = 0 and VJ = 0.
Then we can express the basic 2-form 2 by

(6.3) Q= 0% Ap*,
k=1

where {6°} is a gg-dual 1-form on M. For a Kéhler foliation, we have the following
identities ([19]):
(6.4) R%yJ=JRYy, Rixsy =R}y, BYyZ+Ry;X +RjxY =0,

where X,Y and Z are elements of I'Q.
Let F be a Kahler spin foliation on a compact oriented Riemannian manifold M.

From (6.3), we know that

1 1
(6.5) Qz—EZ;Ea-JEa:§Z:JEuoE‘a,

where {E,} is a local orthonormal basic frame in Q.
Note that the foliated spinor bundle S(F) of a Kahler spin foliation F splits into
the orthogonal direct sum

(6.6) SF)=5%051® DS,

where the fiber (S,.), of the subbundle S, is just defined as the eigenspace corresponding
to the eigenvalue i(n — 2r)(r = 0,--- ,n) of Q; : So(F) — S(F). If p, : S(F) = S,
is the projection, then we have

(6.7) Q=> ipp,, pe=n-2r.

r=0

The decomposition (6.6) is compatible with V, i.e., if ¥ is a section of S, then VxW¥
is also a section of S, for any vector field X.
Let Dy be the operator which is locally defined by

(6.8) Du®=S"JE. V5o - %Jn- & for ®eTS(F).
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Using Green’s theorem on the foliated Riemannian manifold ([21]), we know for any
®, v el'S(F)

(6.9) /M (D, T) = / (®, D),

M
i.e., Dy is self-adjoint transversally elliptic operator.

Proposition 6.1 ([10]). Let (M, gu,F) be a Riemannian manifold with a Kéhler spin
foliation F and a bundle-like metric gy with & € QL(F). Suppose the mean curvature
of F is a transversally holomorphic. Then we have

Dt2r:Dt2r’ DtrDtr+DtrDtr=0-

On the foliated spinor bundle S(F), we introduce a new connection of the form

(6.10) {gxgb:Vx¢+f7r(X)-¢+igJ7r(X)-L2¢ for X eTM,

where f, g are real valued basic functions on M and ¢ : S(F) — S(F) is & bundle map
14

(see [10]). By similar method to section 5, if we put f = %%2 and g = %, then we

have takes the form

fa
(6.11) Wbl = [ (53 - 7Koo,

where K, = ¢V + |k|%. From (6.11), we have the following theorem ([10]).

Theorem 6.2. Let (M, gy, F) be a compact Riemannian manifold with a Kdhler spin
foliation F of codimension ¢ = 2n and a bundle-like metric gy such that k is basic-
harmonic and transversally holomorphic. If K, > 0, then the eigenvalue A of D,

satisfies

2 a4t 2,
(6.12) AT 2> wre l?/ij,,,

where K, = a¥ + |x|%.

Remark. The estimation of the eigenvalue of the transversal Dirac operator on a
Kahler spin foliation is a shaper estimate than the one in Theorem 4.1.

Theorem 6.3 ([10]). Let (M, gu, F) be the same as in Theorem 6.2. If there exists an
eigenspinor field $(# 0) of the basic Dirac operator D, for the eigenvalue \* = ‘—’;—ZEK 0
then F is a minimal, transversally Einsteinian of odd complex codimension n with
nonnegative constant transversal scalar curvature v .

Question. In Theorem 6.3, the limiting foliation is odd complex codimension. This
implies that if the codimension of F is even, then there exists a sharper estimate than
(6.12) in Theorem 6.2. What is the estimate?
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