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LOWER BOUNDS FOR THE EIGENVALUES 
OF THE BASIC DIRAC OPERATOR 

SEOUNG DAL JUNG 

ABSTRACT. This talk is a survay on the eigenvalue estimates of the basic Dirac 
operator on the Riemannian manifold with the transverse spin foliation, which is 
based on the works of the author[9, 10, 11]. 

1. INTRODUCTION 

In 1963, A. Lichnerowicz [18] proved that on a Riemannian spin manifold the square 
of the Dirac operator D is given by 

(u) °2 = A + i> 
where A is the positive spinor Laplacian and a the scalar curvature. In 1980, Th. Fried-
rich [5] gave a lower bound for the square for the eigenvalues of the Dirac operator D. 
In fact, by using a suitable Riemannian spin connection, he proved the inequality 

(1.2) A 2 > — ^ — info-
v 4(n - 1) M 

on manifolds (Mn,g) with positive scalar curvature a > 0. He also proved, in the 
limiting case, that the manifold is an Einstein. The inequality (1.2) has been improved 
in several directions by many authors [2, 3, 7, 8, 14, 15, 16]. 

In this talk, we estimate the lower bound of the eigenvalues for the basic Dirac 
operator D^ on the foliated Riemannian manifold, which are defined by J. Briining and 
F. W. Kamber [4, 6]. They obtained the Lichnerowicz type formula on the transverse 
spin foliation with the basic-harmonic mean curvature form K\ 

(1-3) D2 = V*rVtr + i K , , 
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where Ka = a7 + |«|2, crv the transversal scalar curvature of T and n the mean 
curvature form of T. By using the similar method to ordinary case, we obtain the 
following theorem which is corresponding to (1.2). 

Theorem 1.1 ([9]). Let (M, gM. T) be a compact Riemannian manifold with the trans­
verse spin foliation T of codimension q > 1 and bundle-like metric gM such that K is 
basic-harmonic. Assume Ka > 0. Then the eigenvalue X of the basic Dirac operator 
Db satisfies 

(1.4) A ^ i ^ T ^ -

where K% = infM Ka. 

By transversally conformal change of the metric gM, we have the following sharp 
estimation, which is corresponding to the result of Hijazi [7] in ordinary manifold. 

Theorem 1.2 ([11]). Let {M,gM,T) be a compact Riemannian manifold with a trans­
verse spin foliation T of codimension q>3 and bundle-like metric gM such that K is 
basic-harmonic. If the transversal scalar curvature satisfies <JV > 0, then we have 

(1.5) A 2 > _ L ( M l + i n f k p ) . 

On the Kahler spin foliation, if we use the basic Kahler form fi acting on the basic 
spinor field, we have the following theorem (see [14] for ordinary case). 

Theorem 1.3 ([10]). Let (M, gM, T) be a compact Riemannian manifold with a Kahler 
spin foliation T of codimension q = 2n and a bundle-like metric gM such that K is 
basic-harmonic and transversally holomorphic. IfKa > 0, then the eigenvalue X of Db 
satisfies 

(1.6) Л " 4q * " 

where K„ = infм Ka. 

In the limiting case, the foliation is minimal, transversally Einsteinian with positive 
constant transversal scalar curvature <rv. In particular, the limiting foliation in (1.6) is 
minimal, transversally Einsteinian with odd complex codimension. This implies that 
when complex codimension of T is even, there exists a shaper estimate than (1.6). 

2. PRELIMINARIES AND KNOWN FACTS 

Let (MygM,T) be a (p + q)-dimensional Riemannian manifold with a foliation T 
of codimension q and a bundle-like metric gM with respect to T. We recall the exact 
sequence 

0 - > L - > T M A Q - > 0 

determined by the tangent bundle L and the normal bundle Q = TM/L of T. The 
assumption of gM to be a bundle-like metric means that the induced metric gQ on the 

o o 

normal bundle Q = L1 satisfies the holonomy in variance condition Vgg = 0, where V 
is the Bott connection in Q ([12]). 
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For a distinguished chart U C M the leaves of T in U are given as the fibers 
of a Riemannian submersion / : U —• V C N onto an open subset V of a model 
Riemannian manifold N. 

Foг overlapping charts [/ü П ^ , the corresponding local transition functions 7<*tз = 
fa° fß1 on N are isometries. 

Further, we denote by V the canonical connection of the normal bundle Q = TM/L 
of T. It is defined by 

Í V x s = 7r([K,Уa]) for KєГL, 
( 2 . 1 ) | V x s = тг(V#Ул) for XєГL1, 

where 5 Є ГQ, and Уs Є TL1- corresponding to s under the canonical isomorphism 
LL = Q. The connection V is metric and torsion free. It corresponds to the Rie-
mannian connection of the model space N9, [12]. The curvature fíУ of V is defined 
by 

RXү = VxVy - VүVx - VЏCXІ for X,YeTM. 
Since i(X)B? = 0 foг any X Є TL ([12, 13, 20]), we can define the (tгansversal) Ricci 
curvature p v : TQ —• TQ and the (transversal) scalar curvature <гv of .F by 

a a 

where {-Ç/a}a=i,...,a is an orthonormal basis for Q. The foliation .ř" is said to be 
(transversally) Einsteinian if the model space N is Einsteinian, that is, 

(2.2) p v = -<гv • id 
Q 

with constant transversal scalar curvature cгv. 
The mean curvature vector field of T is then defined by 

(2.3) T - . 5 > ( V £ Ą ) . 
t 

where {-5t}i=i,...,p is an orthonormal basis of L. The dual form «, the mean curvature 
form for L, is then given by 

(2.4) к(X) = gQ(TìX) for XєГQ. 

The foliation T is said to be minimal (or harmonic) ií к = 0. 
Let ГŽß(^) be the space of all basic r-formsy i.e., 

íîвí^7) = {Ф Є íîr(Лf)| ipftø = 0, 0(Xtø = 0, for X Є ГL} . 

Since the exterior derivative preserves the basic forms (that is, (X)dф = 0 and 
i(X)dф = 0 for ф Є íîßí^7)), the restriction dв = dta^Л *s w e ^ defined. Let 5в 
the adjoint opeгator of dв- Then it is well-known ([1, 9]) that 

(2.5) dв = J^ a Л Vя0, fø = - ^ г ( Я a ) V s a + i(кв), 
a a 

where кв is the basic component of tt, {üľa} is a local orthonoгmal basic frame in Q 
and { a} its øQ-dual 1-form. 
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The basic Laplacian acting on £lB(T) is defined by 

(2.6) AB = dB5B-{-6BdB. 

If T is the foliation by points of M, the basic Laplacian is the ordinary Laplacian. 

3. THE BASIC DIRAC OPERATOR 

Let (M,gM,T) be a Riemannian manifold with a transversally oriented Riemann-
ian foliation T of codimension q and a bundle-like metric gM with respect to T. Let 
SO(q) —• P —* M be the principal bundle of (oriented) transverse orthonormal fram­
ings. Then a transverse spin structure is a principal Spin(q)-bundle P together with 
two sheeted covering f : P —• F such that £(p-<7) = £(P)£oQl) for allp € F, # G Spin(a), 
where £o ' Spin(g) —• SO(q) is a covering. In this case, the foliation T is called a trans­
verse spin foliation. We then define the vector bundle 5 associated with P by 

(3.1) S(T) = PxSpin(q)Sqj 

where Sq is the irreducible spinor space associated to Q. The Hermitian metric on 
S(T) is induced from Gg, and the Riemannian connection V on P defined by (2.1) 
can be lifted to one on F, in particular, to one on S(T), which will be denoted by 
the same letter. S(T) is called the foliated spinor bundle. It is well known that the 
curvature transform Rs ([17]) is given as 

(3.2) Rs
XY$ = ^gQ(R*YEa,Eb)Ea-Eb.$ iorX.YeTM. 

a,b 

On the foliated spinor bundle S(T)> we have 

(3.3) X i - 7 - - ^ $ = -^V ( 7 r W ) -* ' 
a 

(3-4) 2- ?--- 7»'^-U*=i< r V* 
a<b 

for X e TM, [9, 11]. Taking 7r to denote the projection 

7r: C°°(TM ® 5(^)) -4 0°°(<2* ® 5(^)) = C°°(Q ® 5(^)) 

we define the transversal Dirac operator D[r ([4, 6]) by 

If {Fa}a=i,-.,<7 is taken to be a local orthonormal basic frame in Q, then 

D'tI = J2Ea-VEa. 
a 

In [4, 6] it was shown that the formal adjoint D[* is given by D[* = D[T — K- and that 
therefore 

(3.5) Ar = D[T - i/v-
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is a symmetric, transversally elliptic differential operator, with symbol aotr satisfying 
r s t r faO = f f o r f e Ql and aDtr(x,0 = 0 for £ G Z£. We define the subspce rB5(J r) 
of ftasic or holonomy invariant sections of S(T) by 

(3.6) TBS(T) = {$ G rS'(^) | V*$ = 0 for X G TL} . 

From (3.5), we see that D t r leaves TBS(T) invariant if and only if the foliation T 
is isoparametric, i.e., K G fi,B(T). Let Db = Dtr\rBs(F) : YBS(T) —• FBS(T). This 
operator Db is called the basic Dirac operator on (smooth) basic sections TBS(T). We 
now define V*rVtr : TS(T) -> rS'(.F) as 

(3.7) V*rVtr$ = - £ V | a ^ $ + V«<I>, 
a 

where V2/^ = VyVw - ^vvw for any V,W e TM. 

Proposition 3.1 ([9]). Let (M,gM,T, S(T)) be a compact Riemannian manifold with 
the transverse spin foliation T and a bundle-like metric gM with respect to T. Then 

((v;rVtr*,*» = ((vtr*,vte*» 

for all $, # G YE, where (($, \P)) = / M ( $ , *) is tf*e inner product on S(T). 

Proposition 3.2 ([9]). Let (M,gM,F,S(T)) be the same as in Proposition 3.1. As­
sume that K is basic-harmonic. Then the basic Dirac operator Db satisfies 

(3.8) D2 = V t;V tr + iK<-, 

where Ka — aVj\- |rc|2. 

4. AN ESTIMATION OF THE EIGENVALUES ON RlEMANNIAN SPIN FOLIATION 

Let (M,gM,T,S(T)) be a compact Riemannian manifold with the transverse spin 
foliation T of codimension q, a bundle-like metric gM with respect to T and a foliated 

spinor bundle S(T). Now, we introduce a new connection V on S(T) as 

(4.1) Vx * = Vjr$ +/?r(X) • $ for KGTM, 

where / is a real valued basic function on M. Trivially, this connection V is a metric 
connection on Q. By similar calculation to proposition 3.1, we have 

(4-2) «V;Vl r* ,*» = «Vtr$,Vtr*)> 

for all $, * € VS{T). Let Db$ = A$. From (3.8), (4.1) and (4.2) we have 

(4-3) I I V t r ^ / a ^ A 2 - ^ ) ! * - ! 2 , 
JM Q 4 

where Ka = crv -f \n\2. From (4.3), we have the following theorem. 

Theorem 4.1 ([9]). Let (MygM,^F) be a compact Riemannian manifold with a trans­
verse spin foliation T of codimension q > 1 and bundle-like metric gM such that K is 
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basic-harmonic. Assume Ka > 0. Then the eigenvalue X of the basic Dirac operator 
DD satisfies 

(4.4) **\jhWK-
where Ka = a7 + |K;|2. 

Remark. If T is a point foliation, then the transversal (basic) Dirac operator is just 
a Dirac operator on an ordinary manifold. Therefore Theorem 4.1 is a generalization 
of the result on an ordinary manifold (cf.[5]). 

Theorem 4.2 ([9]). Let (M,gM>T) be a compact Riemannian manifold with a trans­
verse spin foliation T of codimension q > 1 and a bundle-like metric gM such that K 
is basic-harmonic. Assume Ka > 0. If there exists an eigenspinor field \I>i of the basic 
Dirac operator Db for the eigenvalue X2 = 4( l^K^, then T is a minimal, transversally 
Einsteinian with constant transversal scalar curvature. 

Remark. Theorem 4.2 implies that if the foliation T is not minimal, then A2 > 
- A - i \ J . So when T is not minimal, there exists a sharper estimate than (4.4). 

5 . AN ESTIMATION OF THE EIGENVALUES BY THE CONFORMAL CHANGE 

Now, we consider, for any real basic function u on M, the transversally conformal 
metric CJQ = e2ugQ. Let̂  Pso(T) be the principal bundle of pg-orthogonal frames. 
Locally, the section s of Pso(T) corresponding a section s = (_Ei, • • • , Eq) of Pso(T) is 
s = (Eiy • • • , Eq), where Ea = e~uEa (a = 1, • • • , q). This isometry will be denoted by 
Iu. Thanks to the isomorphism Iu one can define a transverse spin structure Pspin(^r) 
on T in such a way that the diagram 

Pspinp7) - ^ ^spin(^) 

Pso(F) ~±-> Pso(f) 

commutes. Let S(T) be the foliated spinor bundle associated with P8pin(T). For any 
section ^ of S(T), we write ^ = Iuty. If ( , )9Q and ( , )gQ denote respectively the 
natural Hermitian metrics on S(T) and S(T), then for any <£, # G TS(T) 

(5-1) <$,*),<, = <<!, * ) * , , 

and the Clifford multiplication in S(T) is given by 

(5.2) X-$ = X~1> iorXeTQ. 

Let V be the metric and torsion free connection corresponding to §Q. Then we have 
for X,YeITM, 

(5.3) Vx7r(F) = Vx7r(y) + X(u)n(Y) + Y(u)n(X) - gQ(ic(X)MY)) gradv(u), 

where gradv(ix) = ^2aEa(u)Ea is a transversal gradient of u and X(u) is the Lie 
derivative of the function u in the direction of A'. The formula (5.3) follows from that 
V is the metric and torsion free connection with respect to gQ. The connection V and 
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V acting repectively on the sections of S(F) and S'(^r), are related, for any vector 
field X and any spinor field ^ by 

(5.4) Vx* = Vx* - -ir(X) • gradv(<z) • * - -<lg(gradv(u), *(*))* • 

/ 
Now, we introduce a new connection V on 5(.^r) as 

/ 
(5.5) Vjf * = Vjr* +/TT(X) " * for KGTM, 

/ 
where / is a real-valued basic function on M. Trivially, this connection V is a metric 
connection. 

Lemma 5.1. On the foliated spinor bundle S(F), we have 

«v* trv tr <M» S ? = <(vtr *, v t r *»*, 

for all % $ e TS(F), where (V* *, Vtr § ) „ = £0(V£ o *, V£o $)*,. 

On the other hand, from (3.7) and (5.5) we have 

/ / 
(5.6) V*trVtr * = Vt*rVtr# - 2/Ar* + qf* - e'ugvadv(f) • * . 

Let Db$ = A$($ ^ 0). If we put / = ^e"u, then we have 

(5-7) / 1 Vtr *|», = i ^ l | e - ( A 2 - - ^ e * f l * ) | f g, , 

where A"J = /i-1}y. + |«|2, H is a basic Yamabe operator of T, which is defined by 

(5.8) n = 4 i z I A B + <7V. 
(7 — l 

From (5.7), we have the following theorem ([11]). 

Theorem 5.2. Let (M,gM>F) be a compact Riemannian manifold with a transverse 
spin foliation T of codimension q>3 and bundle-like metric gM such that K E ^B(^) 
and 5K = 0. If the transversal scalar curvature is non-negative, then we have 

(5.9) A 2 > _ i _ ( / , 1 + i n f W 2 ) ) 

where n\ is the smallest eigenvalue of the basic Yamabe operator. 

Remark. Since //i > inf r/v, the inequality (5.9) is a sharper estimate than (4.4). 
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6. AN ESTIMATION OF THE EIGENVALUES ON KAHLER SPIN FOLIATION 

Let T be a Kahler foliation. Namely, by a Kdhler foliation .^([19]) we mean a fo­
liation satisfying the following conditions; (i) T is Riemannian, with a bundle-like 
metric gM on M inducing the holonomy invariant metric gQ on Q = LL

y (ii) there is 
a holonomy invariant almost complex structure J : Q —> Q, where dimQ = #(= 2n) 
(real dimension), with respect to which gQ is Hermitian, i.e., 

(6.1) gQ(JX,JY) = gQ(X,Y) 

for X,Y € TQ, and (iii) if V is almost complex, i.e., VJ = 0. Note that 

(6.2) £l(X,Y) = gQ(X,JY) 

defines a basic 2-form fi, which is closed as a consequence of VgQ = 0 and VJ = 0. 
Then we can express the basic 2-form fi by 

n 

(6.3) n = 53fl2*-1Afl2*, 
k=i 

where {9a} is a #Q-dual 1-form on M. For a Kahler foliation, we have the following 
identities ([19]): 

(6.4) RXYJ — JR-XY > R-JXJY — RxY » RxY% + ^YZ^ + -^ZX^ = 0 > 

where X,y and Z are elements of TQ. 
Let J7 be a Kahler spin foliation on a compact oriented Riemannian manifold M. 

From (6.3), we know that 

(6.5) n=-±YEa.JEa = ±YlJE*'E*> 
a a 

where {Ea} is a local orthonormal basic frame in Q. 
Note that the foliated spinor bundle S(T) of a Kahler spin foliation T splits into 

the orthogonal direct sum 

(6.6) s(T) = So e S! e • • • e sn, 

where the fiber (Sr)x of the subbundle Sr is just defined as the eigenspace corresponding 
to the eigenvalue i(n - 2r)(r = 0, • • • ,n) of fix : SX(.F) -> SX(.F). If p r : S(T) -> 5 r 

is the projection, then we have 
n 

(6.7) n = ^ i L i r p r , fir = n-2r. 
r=0 

The decomposition (6.6) is compatible with V, i.e., if ^ is a section of Sri then V * ^ 
is also a section of Sr for any vector field X. 

Let Ar be the operator which is locally defined by 

(6.8) Ctr* = ^ J . B a - V ^ $ - i j « - * for $eVS(T). 
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Using Green's theorem on the foliated Riemannian manifold ([21]), we know for any 
^^GTS(T) 

(6.9) / ( A r * , * > = / ( $ , A r * > , 
JM JM 

i.e., IXr ̂  self-adjoint transversally elliptic operator. 

Proposition 6.1 ([10]). Let (M, gMi T) be a Riemannian manifold with a Kahler spin 
foliation T and a bundle-like metric gM with K G ^(T). Suppose the mean curvature 
of T is a transversally holomorphic. Then we have 

D2
tT = D2

r) ArAr + A r A r - 0 . 

On the foliated spinor bundle S(T), we introduce a new connection of the form 

(6.10) Vx<i)=Vx<t> + MX)-<f) + igJ7r(X)'i2(f) for XeTM, 

where / , g are real valued basic functions on M and i: S(T) —» S(T) is a bundle map 
(see [10]). By similar method to section 5, if we put / = - ^ and g = '~^A , then we 
have takes the form 

(6-11) II W= /(-^A'-k^f, 
JM <7 + ^ 4 

where Ka = av + \K\2. From (6.11), we have the following theorem ([10]). 

Theorem 6.2. Let (M, gM,T) be a compact Riemannian manifold with a Kahler spin 
foliation T of codimension q = 2n and a bundle-like metric gM such that K is basic-
harmonic and transversally holomorphic. If Ka > 0. then the eigenvalue A of A 
satisfies 

(6.12) **q-Tf*$K-> 

where Ka = a7 + \n\2. 

Remark. The estimation of the eigenvalue of the transversal Dirac operator on a 
Kahler spin foliation is a shaper estimate than the one in Theorem 4.1. 

Theorem 6.3 ([10]). Let (M,gM,T) be the same as in Theorem 6.2. If there exists an 
eigenspinor field (j)(^ 0) of the basic Dirac operator A for the eigenvalue A2 = ^-Ka, 
then T is a minimal, transversally Einsteinian of odd complex codimension n with 
nonnegative constant transversal scalar curvature av. 

Question. In Theorem 6.3, the Hmiting foliation is odd complex codimension. This 
implies that if the codimension of T is even, then there exists a sharper estimate than 
(6.12) in Theorem 6.2. What is the estimate? 
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