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CHARACTERIZATION OF ONE TYPE OF
MULTISYMPLECTIC 3-FORMS IN ODD DIMENSIONS

JIRI VANZURA

ABSTRACT. There is given an intrinsic characterization of one equivalence class of
multisymplectic 3-forms on an odd dimensional vector space.

We consider an n-dimensional real vector space V. A k-form w on V is called
multisymplectic if the homomorphism

Vo AWV e w=w(,...,")

is injective. Let Ak, V* C A¥V* denote the subset consisting of all multisymplectic
forms. Obviously, the general linear group GL(V') operates in the standard way on
A*V* preserving the subset A, ,V*. We call two multisymplectic k-forms equivalent
if they belong to the same orbit of GL(V) in A, ,V*. Let us set now k = 3, i. e.
let us consider multisymplectic 3-forms. It is well known that the study of these
forms is interesting starting from dim V' > 6, and that for dim V' < 8 there is in each
dimension only a finite number of equivalence classes of multisymplectic 3-forms,
while for dim V' > 9 there is in each dimension infinite number of such classes. (See
e. g. [D].) The first interesting odd dimension is dimV = 7. In this dimension we
find 8 equivalence classes of multisymplectic 3-forms. The most simple class among
them can be represented by a form w defined in the following way. Let ag, a1,...,a¢
be a basis of V*. Then we set

w=agA (a1 Aaz+azAag+as Aag).
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(More information about this form can be found in [BV].) It is obvious that a form
of this type can be defined on every odd dimensional vector space. If dimV =2n+1
and g, @y,...,Qs, is a basis of V*, we can set

w=ag/\(all\az+---+azn_1/\a2n).

The aim of this paper is to present an intrinsic characterization of the equivalence
class of multisymplectic 3-forms represented by the form of the above type.

We recall that a 2-form § € A2V* is called decomposable if there exist two 1-forms
B1, B2 € V* such that 8 = B; A B;. It is well known that a 2-form 6 is decomposable
if and only if # A @ = 0. (In any vector space we denote by [z,y,...] the subspace
generated by the vectors z,y,...)

1. Lemma. Let 6 be a decomposable 2-form, and let (31, B2,71,72 be 1-forms such
that 0 = B1 A B2 = v1 Ay2. Then

[ﬂ17ﬂ2] = [71)72] .

Proof. We denote K(6) =kerf = {v € V;,0 = 0}. It is easy to see that
(81, Be] = {@ € V*;o|K(0) = 0} = [11,72] - a

This lemma shows that with each decomposable 2-form 6 = B; A B there is
associated a 2-dimensional subspace

S(0) = [B1, 8] = {a € V*;a|K(6) = 0}.

The following lemma is obvious.

2. Lemma. Let 0 and ' be two nonzero decomposable 2-forms. Then 0 and ¢’ are
linearly dependent if and only if S(8) = S(¢').

3. Lemma. Let 6,0’ € A2V* be two linearly independent 2-forms such that the
2-dimensional subspace [0, 6'] consists of decomposable forms. Then

dim(S(8)n S(8')) = 1.
There exist linearly independent 1-forms o, a2, a3 such that

0=a1Aas, 0 =a;Aaz.

Proof. Let us write § = §; A2 and 6’ = y; Ay2. We choose an (n — 2)-dimensional
subspace By,—a C V* such that [31] + [82] + Bn—2 = V*. Then we have

71 = c11f1 + c1202 + b1,
Y2 = c2181 + 2202 + b2,
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where by, b2 € B,_3. Because 51 A B2 + 71 A 72 is decomposable, we have 81 A B2 A
1 A vz = 0. Consequently, we get
0=PAB2AT1Ava=P1 AP Aby Abg,

which implies b; Abz = 0. At least one of the forms b; and by must be non-zero. Let
us assume it is the form bs, and let us write b; = abz. Then we have 6’ = §; A 43,
with

01 = d11 By + d12f2

02 = da151 + da2f2 + b2
where d1; = ¢11 —aca1, d12 = €12 — acaz, d21 = €21, and daz = c22. Now the first part

of the assertion is obvious. Let us choose a generator a; € S(f) N S(#'). Choosing
conveniently az € S(f) and a3 € S(0'), we get @ = a; A o and 0' = a1 A a3. O

4. Lemma. Let A3 C A?V* be a 3-dimensional subspace consisting of decompos-
able 2-forms. Then either
(i) there exist linearly independent 1-forms a;,qs, a3 such that
ay Aag,ay Aaz,az Aag
is a basis of Az, or
(ii) there exist linearly independent 1-forms a1, a2, @3, a4 such that
a) Aag,a) Aaz,a; Aag
is a basis of As.

Proof. Let us choose a basis 4,6',6” in A;3. We shall consider 1-dimensional sub-

spaces
S@O)NSE) c SE), SEO)NSE")c S).

Either they have trivial intersection, or they coincide. Let us start with the first
case. We choose generators

BLeSONSE), Be€S(OINSEO"), BseSWO)NSEO"),
and we have
0=cPrANBz, 0 =cBiABs, 0"=c"BaAPs.
If ecc¢” < 0 we change the basis of A3 for the basis —0,8,0". Now it is easy to see
that with conveniently chosen a;,as, a3, setting a; = a16:, @z = a0, a3 = a3fs,
we get
f=arAaz, 0 =a1Aaz, 0" =asAas.
It remains to consider the case when
S@O)NS@E)=S@O)NSH").

We take a generator a; € S(0)NS(6') = S(B)NS(6”). Then we can choose ay € S(6)
(resp. az € S(6'), resp. ay € S(6")) in such a way that

f=ai1Aay, 0 =a;Aaz, 0"=oa;Aay. O

Let us consider now subspaces A C A?2V* consisting of decomposable 2-forms.
We shall be interested in such subspaces of maximal possible dimensions.
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5. Proposition. Let A3 C A2V* be a 3-dimensional subspace having a basis of the
form
0=a;ANay, 4 =y Aag, 9”=a2/\a3.

Then Az is a maximal subspace consisting of decomposable elements.

Proof. Let us assume that there exist a subspace A C A?V*, dim A > 4 consisting
of decomposable elements, and such that A3 C A. Then we can choose an element
A € A— A;. It is obvious that

SO NS, S@E)NSWN), S@E")NSW)
are 1-dimensional subspaces, and consequently

S(A) C S(68)+ S(6') + S(8"),

which is a contradiction. O

6. Proposition. Let A C A2V* be a subpace consisting of decomposable elements,

dim A = k > 4. Then there exist linearly independent 1-forms ay, ...,y such that
agAay,...,ag Ao

is a basis of A. If dimV = n, then a maximal subspace with the above property has
dimension n — 1.

Proof. Let us choose a 3-dimensional subspace Az C A. Because A3 is not maximal,
we can find linearly independent 1-forms ag, a;, a2, a3 such that

0h=0gANa1, Oa=0gAaz, O3=apAa3

is a basis of A3. Moreover, we choose 4 € A — A3. The subspaces S(6;) N S(f) and
S(62) N S(64) are 1-dimensional. They must coincide because otherwise [0;, 62,64
would be a maximal subspace, which is a contradiction. In this way we can easily

see that
5(61) N S(64) = S(62) N S(84) = S(63) N S(64) = o] -

Obviously, we can find oy € S(84) such that §; = apAay. Proceeding in this way, we
find easily the desired result. Moreover, we can see that the subspace A is contained
in the subspace An_1 C A2V* with the basis

apgAayy...,ap Aap—1,

where ag,1,...,0n_1 is a basis of V. It is clear that this subspace is a maximal
subspace consisting of decomposable 2-forms. Moreover, this subspace is uniquely
determined. Namely, for any two linearly independent 2-forms 6,6’ € A we have
S(6) N S(0') = [o). Denoting By = [axg), we get

An_1 =By AV™. O
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Before proceeding further, let us recall now that with every 3-form w on V' we
associate a subset A%(w) defined by
A% (w) = {v € V; (t,w) A (tyw) = 0} .

In other words, A%(w) is the subset of all v € V such that ¢,w is a decomposable
2-form.

We shall consider now a (2n + 1)-dimensional real vector space V. Let us choose
a basis eg, ..., e, of V, and let ay,...,as, be the dual basis. We shall consider a
multisymplectic 3-form

cw=agA(aAag+-+ agn-1 Aaag).
We find easily that A%(w) = V,,_;, where
Vo1 ={v € V;ap(v) =0} = [e1,...,e2,].

Moreover, we can see that the injective homomorphism defined by v + t,w maps
Vp—1 isomorphically onto By A V*, where we denote again By = [ayg)].

Our final task is to consider a multisymplectic 3-form w on V, dimV > §, such
that A?(w) = Va, is a 2n-dimensional subspace of V. The mapping

Van = A2V, v 4w =w(v,-,")
is injective, and its image Az, is a 2n-dimensional subspace of A2V* consisting of

decomposable 2-forms. According to Proposition 6 there exists a form ag such that
ag A Ay, = 0. This means that for every v € V5, we have

ap A (tyw) =0
—ty(ag Aw) + ap(v)w =0.
Applying ¢, to the last equality, we get
ao(v)w =0,

which omplies that ag|Vay, = 0.
We complete now ag to a basis ag, f1,.-.,02n of V*. Let us write

w=agA0+C(,
where 6 € A%[B,. .., B2,] and ¢ € A3[B, ..., B2n]- For any v € V, we have
0=apA (va) =agA (—ao A (Lve) + Lv() = ag A 1y(,

which shows that ¢,{ = 0 for every v € V5, and consequently { = 0. We have thus
proved that
w=agAf, where 0¢€A*B,...,0n).
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We take now the dual basis ep, ey, ..., e, to the basis ag, 81, ..., f2n. For v € Vo,
v # 0 we have o9 A t,w = 0, and therefore there exists a nonzero form v, such that
Lyw = ag Avy. Now we can compute

bl = tyteg (@ A B) = Lyleqwe= —leglow = —Leo (0 A V) = Yo s

which shows that ¢,0 # 0. This implies that the 2-form 0|V;,, is regular. Therefore
we can find forms aj,...,as, such that

la1,...,a2,] = [B1y.-+,P2n], and
O=ayNaz+ -+ azpm—1Aaz,.
Finally, we get
w=apA(arAag+-++am-1Aazm).
We have thus proved the following proposition.

7. Proposition. Let w be a multisymplectic 3-form on a (2n + 1)-dimensional
vector space V, n > 2. Then there exists a basis ag, a1, ..., a2, of V* such that
w=agA(ar Aoz +- + an-1 A 2p)

if and only if A?(w) is a 2n-dimensional subspace of V. If this is the case, we have
A?(w) = {v € V;p(v) = 0}.

Let us consider now a 3-form w on V, dimV = 2n + 1, such that A?%(w) is
a subspace Vy,(w) of dimension 2n. Using the explicite form of w described in
Proposition 7, we find easily that the mapping V — A?Vy, (w), v = (tyw)|Ven(w)
has kernel Vs, (w), and consequently we obtain an injective homomorphism

k(W) : V/Van(w) = A?V3 ().

It is obvious that the image of k(w) is a 1-dimensional subspace each nonzero element
of which is a symplectic form on Vj,, (w). These data characterize completely the form
w. Namely, we have the following proposition.

8. Proposition. Let us assume that the following data are given:
(i) 2n-dimensional subspace of Vo, C V,
(ii) 1-dimensional subspace A; C A2V, each nonzero element of which is a
symplectic form,

(iii) an isomorphism & : V/Va, — A;.
Then there is a unique 3-form w € A3V* such that Van(w) = Va, imk(w) = A1, and
k(w) = k.
Proof. Let us take a nonzero 1-form ag on V such that ag|Vs, = 0, and a nonzero
symplectic form o € A;. Next, let us choose a 2-form & on V such that &|V,, = o.
It is easy to see that the 3-form a9 A & does not depend on the choice of . Now, it

suffices to take w = cag AJ with conveniently choosen ¢ # 0. The unicity is obvious.
a

The last proposition makes easier the construction of 3-forms w of the type under
consideration on odd dimensional vector bundles.
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