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CHARACTERIZATION OF ONE TYP E OF 

MULTISYMPLECTIC 3-FORMS I N ODD DIMENSIONS 

JIRI VANZURA 

ABSTRACT. There is given an intrinsic characterization of one equivalence class of 
multisymplectic 3-forms on an odd dimensional vector space. 

We consider an n-dimensional real vector space V. A fc-form u on V is called 
multisymplectic if the homomorphism 

V -» A*""1!'*, v h-> ivu = u(v, •, . . . ,•) 

is injective. Let Aj^V* C AkV* denote the subset consisting of all multisymplectic 
forms. Obviously, the general linear group GL(V) operates in the standard way on 
AkV* preserving the subset Ajj^V*. We call two multisymplectic fc-forms equivalent 
if they belong to the same orbit of GL(V) in AmaV*. Let us set now k = 3, i. e. 
let us consider multisymplectic 3-forms. It is well known that the study of these 
forms is interesting starting from dimV > 6, and that for dimV < 8 there is in each 
dimension only a finite number of equivalence classes of multisymplectic 3-forms, 
while for dim V > 9 there is in each dimension infinite number of such classes. (See 
e. g. [D].) The first interesting odd dimension is dimV = 7. In this dimension we 
find 8 equivalence classes of multisymplectic 3-forms. The most simple class among 
them can be represented by a form u defined in the following way. Let ao, a i , . . . , cte 
be a basis of V*. Then we set 

u = ao A (ai A ot2 + a 3 A OL± + a5 A a^). 
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(More information about this form can be found in [BV].) It is obvious that a form 
of this type can be defined on every odd dimensional vector space. If dim V = 2n + 1 
and a0, a i , . . . , a2 n is a basis of V*, we can set 

u = ao A (ai A a2 H h a2 n_i A a 2 n ) . 

The aim of this paper is to present an intrinsic characterization of the equivalence 
class of multisymplectic 3-forms represented by the form of the above type. 

We recall that a 2-form 9 e A2T7* is called decomposable if there exist two 1-forms 
ft, ft € ^* s u c n t n a t 0 = Pi A ft. It is well known that a 2-form 9 is decomposable 
if and only if 9 A 9 = 0. (In any vector space we denote by [x, yy...] the subspace 
generated by the vectors x, y , . . . ) 

1. Lemma. Let 9 be a decomposable 2-form, and let ft, ft,71,72 be 1-forms such 
that 9 = Pi A ft = 71 A 72. Then 

[ft,ft] = [71,72]. 

Proof. We denote K(0) = ker9 = {v G V\ iv8 = 0}. It is easy to see that 

[/3i,ft] = {" € V ; a|.K(0) = 0} = [7l)72] • • 

This lemma shows that with each decomposable 2-form S = ft A ft there is 
associated a 2-dimensional subspace 

S(0) = [A,ft] = {a 6 V;a\K(6) = 0} . 

The following lemma is obvious. 

2. Lemma. Let 9 and 9* be two nonzero decomposable 2-forms. Then 9 and 9' are 
linearly dependent if and only ifS(9) = S(9'). 

3. Lemma. Let 9,9' G A2V* be two lineaily independent 2-forms such that the 
2-dimensional subspace [9,8'] consists of decomposable forms. Then 

dim(S(9) fl S(9')) = 1. 

There exist linearly independent 1-forms a i , a2, otz such that 

9 = a i A a2, 9' = a i A a^. 

Proof. Let us write 9 = ft Aft and 9' = 71A 72. We choose an (n - 2)-dimensional 
subspace Hn_2 C V* such that [ft] + [ft] -I- £ n _ 2 = V*. Then we have 

7i = cnf t + ci2ft + 61, 

72 = c2ift + c22ft + b2, 
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where b\, b2 G Bn-2. Because A A A + 71 A 72 is decomposable, we have A A A A 
7i A 72 = 0. Consequently, we get 

0 = A A A A 71 A 72 = A A A A 61 A b2 , 

which implies 61A 62 = 0. At least one of the forms 61 and b2 must be non-zero. Let 
us assume it is the form 62, and let us write 61 = ab2. Then we have 9' = S\ A S2, 
with 

S\ = d\\f3\ + d12p2 

S2 = 0*21 A + d22 A + &2 

where d\\ = c\\ — ac2i, 0̂ 2 — C12 - ac22> 0*21 = C21, and d22 = C22- Now the first part 
of the assertion is obvious. Let us choose a generator a i G 5(0) n 5(0'). Choosing 
conveniently a2 G 5(0) and a$ G 5(0'), we get 9 = a\/\a2 and 0' = a\ A a$. • 

4. Lemma. Let .A3 C A2V* be a 3-dimensional subspace consisting of decompos­
able 2-forms. Then either 

(i) there exist linearly independent 1-forms a i ,a2 ,a3 such that 

a\ A a2, a i A a3, a2 A a3 

is a basis of A3, or 
(ii) there exist linearly independent 1-forms a i , a2, a3, a± such that 

a\ A a2, a i A a3, a i A a± 

is a basis of A3. 

Proof. Let us choose a basis 0,0', 0" in A3. We shall consider 1-dimensional sub-
spaces 

5(0) n 5(0') C 5(0), 5(0) n S(0") C 5(0). 
Either they have trivial intersection, or they coincide. Let us start with the first 
case. We choose generators 

A G 5(0) n 5(0'), A e 5(0) n S(0"), p3eS(9')nS(0"), 
and we have 

0 = cA A A , 0' = c'p\ A A > 0" = c"p2Afo • 
If cdc" < 0 we change the basis of A3 for the basis —0,9', 0". Now it is easy to see 
that with conveniently chosen a i ,a 2 ,a 3 , setting a i = a\/3\,a2 = a2p2,a3 = a3A> 
we get 

0 = a i A a2 , 0' = a\Aa3, 0" = a2 A 03 . 

It remains to consider the case when 

5(0) n S(0') = 5(0) n S(0"). 
We take a generator a i <E S(0)nS(0') = S(0)nS(0"). Then we can choose a2 G 5(0) 
(resp. a3 G S(9'), resp. a4 G 5(0")) in such a way that 

0 = a i A a 2 , 9' = a\ A a 3 , 9" = a\ A a±. D 

Let us consider now subspaces A C A2V* consisting of decomposable 2-forms. 
We shall be interested in such subspaces of maximal possible dimensions. 
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5. Proposition. Let A3 C A2V* be a 3-dimensional subspace having a basis of the 
form 

0 = a i A a2 , 0' = a i A 03, 0" = a2 A a3 . 

Then A3 is a maximal subspace consisting of decomposable elements. 

Proof. Let us assume that there exist a subspace A C A2V*, dim .A > 4 consisting 
of decomposable elements, and such that .A3 C A. Then we can choose an element 
A e A - A3. It is obvious that 

5(0) n 5(A), 5(0') n 5(A), 5(0") n 5(A) 

are 1-dimensional subspaces, and consequently 

5(A) c 5(0)+ 5(0 ' )+ 5(0"), 

which is a contradiction. • 

6. Proposition. Let A C A2V* be a subpace consisting of decomposable elements, 
dim A = k > 4. Then there exist linearly independent 1-forms a 0 , . . . , a^ such that 

a0 A a i , . . . , a 0 A a*. 

is a basis of A. If dim V = n, then a maximal subspace with the above property has 
dimension n — 1. 

Proof. Let us choose a 3-dimensional subspace A.3 c A. Because A3 is not maximal, 
we can find linearly independent 1-forms a0, a i , a2, a3 such that 

0i = a0 A a i , 02 = a0 A a 2 , 03 = a0 A a 3 

is a basis of A3. Moreover, we choose 64 € A- A3. The subspaces 5(0i) n 5(04) and 
5(02) n5(04) are 1-dimensional. They must coincide because otherwise [0i,02,04] 
would be a maximal subspace, which is a contradiction. In this way we can easily 
see that 

5(0i) n 5(04) = 5(02) n 5(04) = 5(03) n 5(04) = [a0]. 

Obviously, we can find a± G 5(04) such that 04 = a0 A 04. Proceeding in this way, we 
find easily the desired result. Moreover, we can see that the subspace A is contained 
in the subspace An_i C A2V* with the basis 

a0 A a i , . . . , a 0 A a n _ i , 

where a 0 , a i , . . . , a n_i is a basis of V. It is clear that this subspace is a maximal 
subspace consisting of decomposable 2-forms. Moreover, this subspace is uniquely 
determined. Namely, for any two linearly independent 2-forms 0,0' G A we have 
5(0) n 5(0') = [a0]. Denoting B0 = [a0], we get 

A ^ ^ c A V * . • 
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Before proceeding further, let us recall now that with every 3-form u on V we 
associate a subset A2 (a;) defined by 

A2(u) = {v G V; (LVW) A (LVU) = 0} . 

In other words, A2 (a;) is the subset of all v G V such that LVU is a decomposable 
2-form. 

We shall consider now a (2n 4- l)-dimensional real vector space V. Let us choose 
a basis eo, . . . , e2n of V, and let a o , . . . , a2 n be the dual basis. We shall consider a 
multisymplectic 3-form 

u = a0 A (ai A a2 H h a2 n_i A a 2 n ) . 

We find easily that A2(CJ) = V^-i, where 

Fn_i = {v G V; a0(v) = 0} = [eu - . . , e 2 n] . 

Moreover, we can see that the injective homomorphism defined by v i-> LVUJ maps 
Vn_i isomorphically onto B0/\V*, where we denote again Bo = [ao]. 

Our final task is to consider a multisymplectic 3-form u on V, dimV > 5, such 
that A2(CJ) = V2n is a 2n-dimensional subspace of V. The mapping 

V2n -> A2V*, v H-> LVU = a/(t/, •, •) 

is injective, and its image A2n is a 2n-dimensional subspace of A2V* consisting of 
decomposable 2-forms. According to Proposition 6 there exists a form a0 such that 
ao A A2n = 0. This means that for every v € V2n we have 

a0 A (LVU) = 0 

-Lv(a0 Au) + a0(v)w = 0. 

Applying LV to the last equality, we get 

a0(v)Lvuj = 0, 

which omplies that aolV^ = 0. 
We complete now ao to a basis a0, /? i , . . . , p2n of V*. Let us write 

u = a0 A 0 + C, 

where 9 G A2[/?i,..., p2n] and C G A3[/?i,..., /52n]. For any v G V2n we have 

0 = a0 A (ivu) = a0 A ( - a 0 A (LV9) + LVQ = a0 A LVC, , 

which shows that LV( = 0 for every v G y2n , and consequently C = 0. We have thus 
proved that 

w = a o A 0 , where 9 G A2[/?i,.. . , /? 2 n ] . 
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We take now the dual basis eo, e i , . . . , e2n to the basis a0) /? i , . . . , /?2n. For v e V2n, 
t ; / 0 w e have ao A LVUJ = 0, and therefore there exists a nonzero form 7V such that 
IVUJ = a0 A 7V. Now we can compute 

iv0 = Meofco A 0) = tvteoo;.= -ieoh^ = -teo(a0 A 7V) = - 7 , , , 
which shows that LV0 ^ 0. This implies that the 2-form 0|V2n is regular. Therefore 
we can find forms a i , . . . , a2n such that 

[a i , . . . , a2n] = [/3i,..., A„ ] , and 

0 = ai A a2 H h a2n_i A a2n . 

Finally, we get 
UJ = ao A (ai A a2 H h a2 n_i A a 2 n ) . 

We have thus proved the following proposition. 

7. Proposition. Let UJ be a multisymplectic 3-form on a (2n + 1)-dimensional 
vector space V, n > 2. Then there exists a basis ao, a i , . . . , a2 n ofV* such that 

UJ = a0 A (ai A a2 H h a2n_i A a2n) 

if and only if A2(UJ) is a 2n-dimensional subspace ofV. If this is the case, we have 
A2(uj) = {v£V;a0(v) = 0}. 

Let us consider now a 3-form UJ on V, dimV = 2n + 1, such that A2(u) is 
a subspace V2n(u) of dimension 2n. Using the explicite form of UJ described in 
Proposition 7, we find easily that the mapping V -> A2V2n(u;), v »-> (iv^)\V2n(^) 
has kernel V2n(_'), and consequently we obtain an injective homomorphism 

K(u):V/V2n(u)->A2V2*n(uj). 

It is obvious that the image of K(U) is a 1-dimensional subspace each nonzero element 
of which is a symplectic form on V2n(u;). These data characterize completely the form 
UJ. Namely, we have the following proposition. 

8. Proposition. Let us assume that the following data are given: 

(i) 2n-dimensional subspace ofV2n C V, 
(ii) 1-dimensional subspace Ai C A2V2n each nonzero element of which is a 

symplectic form, 
(iii) an isomorphism K : V/V2n —> A\. 

Then there is a unique 3-form UJ € A3V* such that V2n(u;) = V2n, im«(a;) = A\, and 
K(U) = K. 

Proof. Let us take a nonzero 1-form ao on V such that ao|V2n = 0, and a nonzero 
symplectic form a E A\. Next, let us choose a 2-form a on V such that a\V2n = a. 
It is easy to see that the 3-form ao A a does not depend on the choice of a. Now, it 
suffices to take u = ca0/\a with conveniently choosen c 7-- 0. The unicity is obvious. 

a 
The last proposition makes easier the construction of 3-forms UJ of the type under 

consideration on odd dimensional vector bundles. 
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