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MODULAR SPACES OF LOW-DIMENSIONAL DRINFELD 
DOUBLES 

LIBOR 3NOBL 

ABSTRACT . We construct the modular space of the semiabelian 4-dimensional Drin-
feld double and present also the results for six-dimensional semisimple Drinfeld dou­
bles. Implications for Poisson-Lie T-duality and especially Poisson-Lie T-plurality 
are mentioned. 

1 . INTRODUCTION 

The interest in dualities of field theories, especially the string theory, in the middle 
90s has led to investigation of duality of a-models and in this context to the discovery 
of a generalization of abelian [1, 2] and non-abelian T-duality [3], the so-called Poisson-
Lie T-duality [4, 5]. A crucial role in these considerations plays the notion of Manin 
triple and Drinfeld double. 

Since then, several non-trivial examples of Poisson-Lie T-dual models, i.e. not 
contained in the class of non-abelian T-dual models, were constructed and considered 
both on the classical and quantum level, e.g. the pair of models on one of the Manin 
triples of the Drinfeld double SO(3,1), see [6, 7], 

Moreover also the knowledge of the modular spaces of Drinfeld doubles, i.e. the com­
plete sets of their decompositions into different Manin triples, is of interest. Such mod­
ular spaces can be interpreted as spaces of a-models mutually connected by Poisson-Lie 
T-duality Consequently if one is able to solve one of the a-models, the solutions of all 
other models in the modular space follow. Up to recently only rather trivial examples 
of modular spaces were kncwn. The author had presented a construction of modular 
spaces of semisimple 6-dimensionaI Drinfeld doubles in [12]. In the present paper we 
give a rather simpler example on 4-dimensional Drinfeld double and then briefly recall 
those 6-dimensional cases. 

2. MANIN TRIPLES, DRINFELD DOUBLES AND THEIR MODULAR SPACES 

The Drinfeld double D is defined as a connected Lie group such that its Lie 
algebra V equipped by a symmetric ad-invariant nondegenerate bilinear form (.,.) can 
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be decomposed into a pair of subalgebras Q, Q maximal isotropic with respect to (.,.) 
and V as a vector space is the direct sum of Q and Q. This ordered triple of algebras 
(V,Q,Q) is called the Manin triple. 

One can see that dimensions of the subalgebras are equal and that bases (X%), (X1) 
in the subalgebras can be chosen so that 

(1) (Xi,Xj) = 0, (Xi,Xl) = (P,Xi)=5i, (Xi,P) = 0; 

in the following we always assume that the bases of V are of this form. Due to the 
ad-invariance of (.,.) the algebraic structure of V is determined by the structure of 
maximal isotropic subalgebras; in the basis (Xi), (X%) the Lie product is given by 

(2) [Xi,Xj] = fij
kXk, [Xi,fr} = fiikX

k, [Xi,fr] = fki
jXk + fik

iXk. 

It is clear that to any Manin triple (V,Q,Q) one can construct the dual one by 
interchanging Q <-» Q, i.e. interchanging f^ «-» /tffc and such Manin triples give rise 
to the same Drinfeld double. On the other hand, it might be possible to decompose a 
given Drinfeld double into more than two Manin triples. 

The set of all possible decompositions of the Lie algebra V of the Drinfeld double 
D into different Manin triples, i.e. all possible decompositions of V into two maximal 
isotropic subalgebras is called the modular space M(V) of the Drinfeld double. In 
general one can find the modular space if one knows the group of automorphisms of 
the Lie algebra Aut(X>) and a complete list of non-isomorphic1 Manin triples (V, Q{, Q%) 
generating the Drinfeld double D. The part of modular space M(V) corresponding 
to Manin triples isomorphic to (V,Qi,Qt) can then be written 

(3) jW(p ) i = AutP)nO(n,n,R) 
Hi 

where 0(n,n,R) consists of linear transformations leaving (.,.) invariant2 and % is 
the subgroup of transformations leaving the isotropic subalgebras Qx, Qx invariant. By 
coset space we mean for concreteness the right coset space [a] = Ha. The whole 
modular space M(V) is the union of M(V)X, 

(4) M(V) = \jM(V)t. 
i 

3. POISSON-L1E T-DUAL a-MODELS AND DRINFELD DOUBLES 

Starting from a Drinfeld double one can construct the Poisson-Lie T-dual a-mod­
els on it. The construction of the models is described in the papers [4, 5]. The models 
have target spaces3 in the Lie groups G and G corresponding to the Lie algebras Q, 
resp. Q of a chosen Manin triple, and are defined on (1 + l)-dimensional Minkowski 
spacetime M with light-cone coordinates z, z by the actions 

(5) S = JdzdzE^g^g-'d^g-'d+gy, S = Jdzdz&mr'd-gUr'd^j, 

1 Manin triples (D, G, G) and (V, G',G') axe isomorphic if and only if exists a (., .)-preserving auto­
morphism <j> of V s. t. <t>(G) = G\ <t>(G) = (5'. 

2Evidently the group of inner automorphisms In(D) e Aut(D) f| 0 (n ,n ,R) . 
3Also a generalization to manifolds on which G, resp. G act freely is possible. 
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where the coordinates of elements of G, G are written in the bases (X<), (X7), e.g. 

g-ld±g = (g-1d±g)% 

and the (non-symmetric) metrics E is 

(6) E(g) = (a(g) + E(e)b(g))-1E(e)d(g), 

E(e) is a constant matrix and a(g),b(g),d(g) are submatrices of the adjoint represen­
tation of the group G on V in the basis (Xi,Xj) 

w "W-C-iU))-
The matrix E(g) is constructed analogously with 

(8) Ad(~9f=(«f ~M)t E(e) = E(e)-K 

The duality can be most straightforwardly understood from the fact that both equa­
tions of motion of the above given lagrangian systems can be reduced from an equation 
of motion on the whole Drinfeld double, / : M -> D 

(9) ((d±l)r\£±) = 0, 

where subspaces £ + = span (Xi+Eij(e)X*), £~ = span (Xi — Eji(e)X*) are orthogonal 
with respect to (.,.) and span the whole Lie algebra V. One writes I = g.h, g e G, 
h € G (such decomposition of group elements exists at least at the vicinity of the 
unit element, see [10]) and eliminates h from (9), respectively I = g.h, h € G, g E G 
and eliminates h from (9). The resulting equations of motion for g, resp. g are the 
equations of motion of the corresponding lagrangian systems (see [4]). 

Since the equations of motion are deduced4 from equation (9) defined originally on 
D without any reference to G, G, the transitions between Manin triples of the same 
Drinfeld double D lead to other pairs of cr-models whose equations of motion are also 
derived from the same equation on D and in this sense all these models are equiva­
lent. This generalization of the original T-duality was recently named Poisson-Lie 
T-plurality and some of its properties on quantum level were investigated using path 
integral methods in [11]. 

The pairs of a-models whose Manin triples are connected by a transformation from 
the group H introduced in (3) describe the same pair of models in different coordinates 
since the maximal isotropic subalgebras are the same, only their bases have changed. 

In the following we consider only the algebraic structure, the Drinfeld doubles as Lie 
groups can be obtained in principle by means of exponential map. All results can be 
transferred immediately to connected and simply connected Lie groups, the modular 
spaces of non-simply connected versions of Drinfeld doubles might be more or less 
different. 

4 In certain cases only locally. 
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4. SEMIABELIAN DRINFELD DOUBLE AND ITS AUTOMORPHISMS 

The semiabelian Drinfeld double in dimension 4 is the only Drinfeld double in this 
dimension possessing decompositions into two different pairs of isotropic subalgebras. 
It can be decomposed (see [8]) into either semiabelian Manin triple or type B non-
abelian Manin triple (and their duals Q «-» Q): 

• Semiabelian Manin triple (only nonzero brackets are displayed): 

(10) [f\f2] = f2, [T2, f
1] = T2, [T2, f

2] = - T i . 

• Type B nonabelian Manin triple: 

[X1,X2] = X2, [X\X2] = Xl, 

(11) [XuX
l]=X2, [Xl,X

2) = -Xl-X
2, [X2,X

2]=X\ 

where (X^X*) denote the dual basis in the type B nonabelian Manin triple and 
(Ti,fi) is the basis in the semiabelian Manin triple. 

The transformation of the dual basis between these Manin triples can be fixed as 

X^-f' + f2, X2 = TX+T2, 

(12) Xl=T2, X2 = fl. 

In order to construct all possible automorphisms of V preserving the bilinear form 
(.,.) one starts by finding the derived subalgebras 

Vi+1 = [Vi,Vi], V0 = V. 

It is easy to see that 

Di = span [TuT2,f
2], V2 = span [2\]. 

One easily proves that for any automorphism $ : V —•> V holds 

$(Vi) = Vi 

by induction using <b([Vi,Vi]) = [$(£>.;),$(Z\)] and $(VQ) = $(V) = V. 
This invariance leads to restriction on the possible form of automorphisms $: 

$(T1) = a1T l , Q ^ O , 

$(T2) = /?1T1 + /?2T2 + ^2f
2, 

(13) $(f2) = 7 1T 1+7 2 r 2 + 72f2. 

On Pi we have the following nontrivial condition 

[$(T2),$(f2)] = -$ (T 1 ) , i.e. p27
2 - /?272 = - a 1 

together with conditions following from invariance of the bilinear form 

($(T2),<KT2)) = 2 / ^ = 0, 

($( r 2 ) ,$ ( f 2 ) )=2 7
2 72 = 0 

($ (T 2 ) ,$ (T 2 ) )=^7 2 +/3 2
7 2 = 1. 
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Altogether we see that either 

^ = 1, ^ = 7^ = 0, 72 = ^ , ^ 9 - 0 

or 

^ = - 1 , /?2 = 72 = 0, 7
2 = i , A ^ O . 

To complete the construction of all possible (., ./-preserving automorphisms, we assume 
the general expression 

9{fl) = e1^ + e2T2 + lxf
l + e2f

2 

and impose 

($(f1),$(T i))=,J1
1 ($(f1),$(T^)) = 0. 

After solving these equations and checking that the correct commutation relations fol­
low we find the most general form of (., .)-preserving automorphisms - any 
(.,.)-preserving automorphism is either of the form 

Vj»».7')(-l)=-"l 
$ ( /,.^>7. )(T2) = /3

1T1 + ^2T2 

Qwjr^if1) = - y ^ T , - J0% + fl- ^f2 

(14) ^,^l)(f
2)=1

1T1 + ^f2 

or 

VA,7»)(ri) = - 2 -
VA,7') ( r - )=^ r - + AT a 

VA.7»)(f') = V/*1^ + TT2 ~fl+ ^W* 
Pi 

(15) ^ A . y ) ( r 2 ) = 71T1 + i T 2 

The transformations (15) can be obtained from (14) by composition with special trans­
formation <I>p: 

$P(Tl) = -T1, $P(T2) = f2, $P(fl) = -f1, $P(f2) = T2. 

In the basis (Xj,X*) defined by (12) these transformations read 

*(* W ) ( * 0 = jpW1 + -)*i + T /̂?1 + 1)X2 

+1^-P-1)Xi+£x2 

V.fl»,T.)(*-) = ( / + l)*2 + ((? -Pl- l)^1 
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$(0l>l}^1)(x>) = p1x2 + (p2-pl)x1 

$w,w(x2) = -^xl-1
lpx2 

(16) +J
l(p-p2)Xl + (l-pX2 

respectively 

*W A . T M ^ O = - ^ * i + 7X(1 - li1)^ + (1 - / J 1 ) ^ - 7 1 )* 1 

-(1+7%)X2 

V A , T > ) W = &*1 + G*1 - J ) * 2 - (l̂ 1 - i)*1 + fox2 

V A , , ' ) ^ 1 ) = A ^ I + 0 % - z?1^1+hx2 

Pi 

(17) + ( 7
1 A - 1 ) X 2 

The structure of the constructed group of (., .)-preserving automorphisms 
Aut(.t.)(P) = Aut(P) 00(2 ,2 ) is the following: 

• Aut(.v)(X>) is composed of 4 connected components (/?2 > 0, /?2 < 0 resp. /£_ > 0, 
/j_ < 0) and the whole group can be written as a 4-element subgroup {e, <I>p, _•_ = 
$(O,-I ,O)>*P$-} acting on the connected component of unity (Aut(.i.)(P))e 

Aut(.,.)(P) = {e, *P > *_, $ P $_} > (Aut(.,.)(P))c 

• The connected component of unity (Aut(.>.)(D))e can be expressed as a semidirect 
product5 

(Aut(.j.)(P))c = Fl>F2 

of the subgroup6 

ft = {$ € (Aut^WU-y1 = 0,{? > 0} _ Af(l) 
with the normal subgroup 

F2 = {* € (AutM(V)).\pl = 0,/?2 = 1} _ ( R , + ) . 

The decomposition of a general element of (Aut(M \(2}))e is 

V.*a,g_) = *(o.i.71)^^»,o) =- ((P\P%11), 

the action of F\ on F2 defining the semidirect product is 

(/J1,/?2)>(71) = ( /?¥) • 
5If > is an action of Fi on F2 then the semidirect product of the groups Fi,F2 is defined 

(h,h).{9u92) = {fi.guh.(h>g2)),Vfugi € Fi, / 2 , ^ eF2. 
6A /(1) = 11 J | /32 > 0 > is the group of affine transformations of the line. 
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5. MODULAR SPACE OF THE SEMIABELIAN DRINFELD DOUBLE 

The construction of the modular space of the semiabelian Drinfeld double is now 
straightforward. We firstly find the subgroups ftsemiabei, %ype B of Aut(.r)(D) leaving 
the semiabelian Manin triple, resp. the type B nonabelian Manin triple invariant. The 
modular space can then be described as a union of the corresponding factor sets. 

One can easily see that only elements of {e, $_} > Fi leave invariant the isotropic 
subalgebras of the semiabelian Manin triple (i.e. the transformation matrix is block-
diagonal) and similarly only elements of F2 leave invariant the isotropic subalgebras 
of the type B nonabelian Manin triple. Also it is clear that no element of Aut(...)(D) 
is block-antidiagonal in the bases either (Tj,Tj) or (Xj,XJ), i.e. there is no automor­
phism interchanging Q <-> Q of any of the Manin triples. 

Therefore the modular space is composed of four parts, two of them isomorphic to 

(18) M(Z>)semiabei ~
 Ajf<>)(:P) = {e, M > F2 ~ {e, 9P] > (R, +) 

/tsemiabel 

and two isomorphic to 

Al^typeB ^ ^ ' ^ = {e ,$p ,$_ ,$p$_}>F 1 
retype B 

(19) ~ {e, $ P , $_, $ P $_} > Af(l) . 

Although the resulting parts of the modular space can be equipped by a group struc­
ture, their intrinsic meaning is only of manifolds. 

It is rather suprising that (up to discrete transformation $P) any semiabelian Manin 
triple can be obtained from a given one by composition of a fixed transformation, e.g. 
(12), to the type B nonabelian Manin triple, different choice of dual basis there and 
the inverse transformation to (12). Similarly the different type B nonabelian Manin 
triples correspond (up to discrete transformations $p,$_) to different choices of dual 
bases in a fixed semiabelian Manin triple. 

6. MODULAR SPACES OF SEMISIMPLE 6-DIMENSIONAL REAL DRINFELD DOUBLES 

By a similar, albeit more complicated, approach one may find also the structure of 
6-dimensional real Drinfeld doubles. Because the complete derivation was published 
elsewhere [12], we present only a list of results here. 

6.1. Drinfeld doubles with the Lie algebra s/(2,R) © sZ(2,R). It is known (see 
[9])7 that there are two classes of non-isomorphic Drinfeld doubles with the Lie algebra 

7Concerning the notation: the expression like (6a|6_/a.i|b) denotes the Manin triple with the first 
subalgebra Q of the Bianchi class 6 and the value of parameter a, the second subalgebra Q of Bianchi 
class 6 and the value of parameter 1/a, the roman indices index the different possible pairings of 
bases in _7 and Q and b corresponds to rescaling the form (.,.). 
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1. 2-parameter (a > 1, b e R - {0}) class of Drinfeld doubles that can be decom­
posed only into Manin triples isomorphic to 

(6a|6i /a-i|b): [XUX2] = -aX2-X3, [X2,X3] = 0, 

[X3,Xi] = X2 + aX3, 

[X\X2] = -b{-X2 + Xz), [K2,K3] = 0, 

[X3,X1] = b(X2 + -X3) 

and its dual. The modular space consists of two components (corresponding to 
Manin triples with Q = 6a and Q = 6i/a resp. Q = 6i/a and Q = 6a), each 
isomorphic to the homogeneous space 

2. 1-parameter (b > 0) class of Drinfeld doubles that possess decompositions into 
four non-isomorphic Manin triples, namely 

(8|5.i|b): [XUX2] = -X3 , [X2,X3] = Xl, [X^XJ = X2, 

[X1, X2] = -bX2, [X2,X3]=0, [X3,Xl] = bX3 

and 

(60|5.iii|b): [Xx,X2] = 0, [X2,X3] = X,, [X3,Xy] = -X2, 

[Xl,X2] = 0, [X2,X3] = -bX2, [X3,Xl] = bXl 

and their duals. The whole modular space then consists of four pieces, two 
isomorphic to 

({l ,s}>(5I(2,R)/{l ,- l}) x ({l ,5}>(sL(2,R)/{l,- l}) 
M(V){aMb) ~ ( {1 .5}xR+) • 

and two to 
. . / « . 51(2, R) SL(2,R) 

6.2. Drinfeld doubles with the Lie algebra so(l,3). There are two classes of 
non-isomorphic Drinfeld doubles with the Lie algebra so(l, 3). 

1. 2-parameter (a > 1, b € R - {0}) class of Drinfeld doubles that can be decom­
posed only into Manin triples isomorphic to 

(7a |7i |b):[X i ,X2] = -aK2 + K3, [K 2 ,K 3]=0, [XZ,XX] = X2 + aX3 , 

[X\ X2} = b(--X2 + X3), [K2, X3] = 0, [K3, X1} = b(X2 + -X3), 
a a 

and its dual. The modular space M(V) is 

if a = 1 (the self-dual case Q ~Q) and consists of two such components if a > 1. 
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2. 1-parameter (b G R + ) class of Drinfeld doubles that possess decompositions into 
six non-isomorphic Manin triples, namely 

(9 |5 |b):[X 1 ,X 2 ] = K3, [X2,X3} = XU [X3lXl]=X2, 

[X\X2] = -&X2 , [X2, X3] = 0, [X3, X1] = bX3 , 

(8|5.ii |b):[X 1,X 2] = - X 3 , [X2,X3] = XU [X3,XX]=X2, 

[X\X2] = 0, [X2,X3] = bX2, [X\Xl] = -6K 1 , 

and 

(7o |5.ii |b):[K 1,X 2] = 0, [X2,X3] = Xl} [X3,X1}=X2, 

[X\X2] = 0, [K2,K3] = 6K2, [X3,*1] = -bXl, 

and their duals. The whole modular space then consists of six pieces, four (cor­
responding to Manin triples (9|5|b), (8|5.ii|b) and their duals) of them are iso­
morphic to 

M(V)mb)^M(V)m.mc^^± 

and two (corresponding to Manin triple (70|5.ii|b) and its dual) are isomorphic 
to 

M(V){To\5.iЩ 
so(l,3)+ 
U(l) x R+ 

7. CONCLUSIONS 

We have presented several simple but nontrivial examples of modular spaces of 
Drinfeld doubles. These are rather different from the known Abelian one, mainly 
Aut(T>)p|0(rf, d,R) is in these cases (almost) the group of inner automorphisms 
In(T>), whereas in the Abelian case In(T>) = {1}. In this sense they represent other 
extremal cases of modular spaces. Also we have encountered the fact that the modular 
spaces might be composed of parts of different dimensions. Consequently, after fixing 
one concrete T-plurality transformation and applying it to pairs of models on some set 
of isomorphic Manin triples one may obtain just one pair of models on another Manin 
triple written in different coordinates and vice versa. 

We should also mention again that we have assumed that the Drinfeld double is 
simply connected. Therefore all automorphisms of Lie algebra could be raised to 
automorphisms of Lie group. 

Acknowledgment: I shall thank professor Ladislav Hlavaty for discussions and 
encouragement. This research was supported by the Ministry of Education of the 
Czech Republic under the research plan MSM 210000018. 
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