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THE DECOMPOSITION OF TENSOR SPACES WITH ALMOST 
COMPLEX STRUCTURE 

LENKA LAKOMA, MAREK JUKL* 

ABSTRACT. Decomposition of tensor spaces with almost complex structures is a 
standard task in representation theory and thus in differential geometry. Our aim 
is to deduce explicit formulae by an elementary and straightforward approach. This 
decomposition is computed for tensors of the type (1,3) with symmetries of certain 
curvature tensors, providing an illustration of the general method on this well known 
example. 

1. INTRODUCTION 

Let E be a real n-dimensional vector space and E? the tensor space of tensors of 
the type (p,<l). A fixed basis of E determines a unique basis of E%. The components 
of any tensor A with respect to this basis will be denoted AV£"'V. Now let Fj be 
an arbitrary tensor of the type (1,1) such that F£ = 0. A tensor A £ E? is called 
F-traceless if the following conditions hold 

Vk — 1 . . . 7)' Vr — 1 . . . n- pa A-ik-ifiik+V" _ n A~-ik-iaik+i'~ _ n 

The following theorem was proved in [5] and it shows F-decomposition for e-structures. 
e-structures are structures where the condition F^F* = ecJj, e = ±1 is fulfilled. 

Theorem 1. Let A be a tensor of the type (p, q). Ifn>2(p + q) then there exists a 
unique decomposition of A in the form 

min{p,q} i i m„-

W Aj\h-jq
 = Bj\hX + 2^ L Qi°xW")°xB 
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where 

*lp\lp\'"lPt { T I } - {TS}-
/~\ T I */>1 T-l *i Q 3<y\3tT2'"3<rt" 

P ''- p *« 
r Íox

 r 3c2 

<zk {0} {!}.-
~F>; F) = S^ ғ) = Fj 

= 

Pl ,P2, ' " 5 P t ^ { l , 2 , - - - , p } (/>i < 0 j < - - - < A) , 

0i, 0*2, * • • , o~t E {1,2, • • • ,q} (a,- are mutually different) 

ri,r2---- ,r t E {0,1} 

* = {ri,т2,-" , r j , o = < 

P l , P 2 , " * ,P-

< 7 l , 0 " 2 , " * , < 7 ť 

ri,r2,-- • -r* 

2 . DECOMPOSITION OF TENSORS OF THE TYPE ( 1 , 3 ) . 

In this section we will compute F- decompositon of tensors of the type (1,3) for 
e-structures with e = — 1. This structure is called almost complex structure. It was 
proved in [4] that we get 48 algebraic equations in 48 unknowns in generally and 
this system is not easy solvable. Therefore in [4] the contents of the theorem 1 was 
extended. 

We compute the decomposition of tensors of the type (1,3) which have following 
properties. 

(2) 
(a) 4 , + A?kj = 0; (b) 4 * + 4 « + Ah

kij = 0; 

(c)Aajk = 0; (d).4*- = .4*t. 

We will use next notation. 

(3) A;;,... = F?A::a..., A?••• = FaA::°-

It follows from this notation A'"= = -A": . If we denote 

(4) 

we can also deduce following properties 

4-. = Åa 

AІJ — AJІ . (5) 

For example the Riemannian tensors of Kahlerian space, K-space, CR-space have these 
properties ([6], [7]). We have the next theorem. 

Theorem 2. Let A be a tensor of the type (1,3) with properties (2), (5). Let F be 
almost complex structure. If n > 4 then there exists unique F-decomposition of the 
tensor A in the form 

(6) 4 , = B?jk + 6?Csk + 6$ D* + SlEij + FfGjk + FfH* + íf/y, 



Djk - n + 2 Л J * > 

Ejk ~~ n + 2 Л J f c > 

Gjk 2_A -• 

Hjk - __A -• 
~" n+2 ;7'A;> 

1* - ---A -• 
" " n+2 ;?'*;> 
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where tensors Bhjk,Cjk>Djk,Ejk,Gjk,HjkiIjk have following form 

Cjk = 0 ; 

(7) 

4 * = Am + -& (*:M* - * M « + 2 i ? % + F i A n - ~M«j) 

and the tensor B is F-traceless. 

The aim of the following text is to prove the main Theorem 2. We will suppose, 
that the tensor A can be expressed in a form (6) where Bh

jk is F-traceless tensor and 
Cjk, Dij, Eij, Gjk, Hik, Iij are certain tensors. We will suppose that the tensor Bh

jk has 
algebraic properties analogous to algebraic properties of the tensor Ah

jk, i.e. 

(8) Bh

jk + Bh

kj = 0; Bh

jk + Bh

ki + Bh

kij = 0; Bh

Tk = Bh

k. 

Let us alternate the expression (6) in j , k. Using 

4* + ̂  = °; 4 * + I4; = 0 
we can write 

6h (Cik + Ckj) + F,h (Gjk + Gkj) + S) (Dik + Eik) + 6h (Dtj + E{j) 

(9) 
+ Ff (^ + Iik) + Ft (Htj + 7y) = 0 

Suppose that Cjk + Ckj 7-= 0. Then there exists a tensor e-7 such that 

ejek(Cjk + Ckj) = ±l. 

Contracting (9) by ejek, we obtain 

(10) ±6$ + a8± + eh Q{ +eh Q{= 0, 
1 2 

where Q{= 2ea (Dia + Eia) and Q{= 2ea (Hia + Iia). After contraction (10) by i we 
have 

(11) ±5% - a # + e* 4 +c* 4 = 0 • 

Let's substitute Sh from (11) in (10) then we get the following condition 

(12) ±6h (1 + a2) + eh Ua Qj + 4 ) + ^ (+* Qj + 4 ) = 0 

Since Rank||u^|| < 2 it contradicts the assumption n > 2. We have following lemma. 
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Lemma 1. The condition 

(13) Cjk + Ckj = 0 

holds for coefficients Cjk. 

We can use the previous arguments for the coefficients Gjk and we get 

Lemma 2. The condition 

(14) Gjk + Gkj = 0 

holds for coefficients Cjk. 

The equation (9) now has a form 

(15) 6$ (Dik + Eik) + Si (D{j + Ed + Ff (Hik + Iik) + F* (H{j + Ii5) = 0. 

Suppose that Dik + Eik ^ 0. Similarly to the previous cases we get the existence of a 
bivector e%nk such that 

eirjk(Dik + Eik) = \. 

When we contract (15) by exnk we obtain the equation 

(16) ^ + o^ + ij f cQ i+^4=°> 
1 2 

where Q{= e" (Daj + Eaj) and Q{= ea (Haj + Iaj). Contracting (16) we express <$5, 
then we replace it in equation (16): 

(17) i) (1 + a2) + T?" ( 4 - a Q^J + r,h (Q5 -a % ) = 0. 

The equation (17) has no solution for n > 2. 

Lemma 3. The condition 

(18) Djk + Ekj = 0. 

holds for coefficients Djk, Ejk. 

In a similar way we obtain 

Lemma 4. The condition 

(19) Hjk + Ikj = 0. 

holds for coefficients Hjk, Ijk. 

When we apply lemmas to the Theorem 2 we have 

Lemma 5. When the condition (2(a)) is fulfilled then for n > 2 the tensor A may be 
expressed in a form 

(20) 4 * = B$k + 6hCjk + 6$Dik - 6hD{j + F,hGjk + F?Hik - FhH{j , 

where 
Gjk + Ckj = 0, Gjk + Gkj = 0 . 
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Using properties A^jk + Ah
jki + Ah

kij = 0; B§k + B$ki + B^ = 0 we get the equation 

(21) Shnjk + Sfiki + SliUj + FhUjk + FfUki + FilUj = 0, 

where 

fyk = Cjifc - I^jifc + Dkj; n # = Gjfjfe - Hjjfc + Hfcj. 

But Sljk = 0; Cljk = 0 for n > 4, i.e. 

(22) Cjk = Djk - Dkj ; Gjk = Hjk - Hkj . 

Let us replace Cj* and Gjk in (20) by (22). Then we get 

Lemma 6. If conditions (2 (a), (b)) are fulfilled then forn>A the tensor A may be 
expressed in a form 

Ah
jk = Bh

jk + 5h (Djk - Dkj) + 5$Dik - 5hDtj 

(23) 
+ I7. (IIj* - II*i) + I} II«*- I7* IIy • 

The condition A1— = Aijk gives 

,5? ( 7 ^ - / ^ - % + % ) 

+ 6h(Dik + Hik)-6
h{Dij + Hil) 

(24) 

+ IT (IIj* - II*i - HJ£ + Hkj) 

+ Ff (Hik - Dik) - Fh (H{j - Di3) = 0. 

Equation (24) implies 

(25) Hik = Dik; Djk-Dkj = DTk-Drj. 

Using conditions A"jk = B£jk = 0 and conditions (25) in the equation (23) we have 
after contraction by 6 

(26) (n + l ) (o j *-o* i ) + % - o j E J = 0. 

It follows from (26) 

(27) Djk = Dkj. 

Substitute (27) to (22). We obtain 

(28) Cjk = 0; Gjk = 2Djk. 

We can rewrite the equation (23) in a form 

(29) 4 , = Bh
jk + 6h

5Dik - ftDii + 2FiDfk + FhDik - FhDrj. 

Contract (29) by 6fr then 

(30) y.y = - ( n + 2 )Ai 

and therefore 

(3D ^ = - n T 2 ^ -
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Substituting (18) to (19), (25), (28), (31) we get coefficients Cjk, Djk, Ejk, Hjki Ijk in 
the form mentioned in the Theorem 2. Now the tensor B^k has a form 

(32) B*k = 4 * + --i-- (6$ A* - SlAq + 2F?Afk + F*Aik - I^AQ) . 

All computed tensors are F-traceless and the proof is complete. 
When Aijk is the Riemannian tensor then B^jk (32) is well known tensor of the 

holomorphically-proj ective curvature. 

Allow us to express our thanks to Prof. Mikes for his advices and ideas. 
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