WSGP 23

Josef Janyska
On the curvature of tensor product connections and covariant differentials

In: Jan Slovék and Martin Cadek (eds.): Proceedings of the 23rd Winter School "Geometry and
Physics". Circolo Matematico di Palermo, Palermo, 2004. Rendiconti del Circolo Matematico di
Palermo, Serie II, Supplemento No. 72. pp. [135]--143.

Persistent URL: http://dml.cz/dmlcz/701729

Terms of use:

© Circolo Matematico di Palermo, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/701729
http://project.dml.cz

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Suppl. 72 (2004), pp. 135-143

ON THE CURVATURE OF TENSOR PRODUCT CONNECTIONS
AND COVARIANT DIFFERENTIALS

JOSEF JANYSKA

ABSTRACT. We give coordinate formula and geometric description of the curvature
of the tensor product connection of linear connections on vector bundles with the
same base manifold. We define the covariant differential of geometric fields of certain
types with respect to a pair of a linear connection on a vector bundle and a linear
symmetric connection on the base manifold. We prove the generalized Bianchi iden-
tity for linear connections and we prove that the antisymmetrization of the second
order covariant differential is expressed via the curvature tensors of both connections.

INTRODUCTION

In the theory of linear symmetric (classical) connections on a manifold there are
many very well known identities of the curvature tensor (see for instance (1, 4]). Some
of these identities can be generalized for any linear connection on a vector bundle.

In this paper we give the coordinate formula for the curvature of the tensor product
connection K ® K' of two linear connections K or K' on vector bundles E — M or
E' - M, respectively, and we give also the geometric description of this curvature.
We prove that the curvature of K ® K' is determined by the curvatures of K and K'.

The above results are used in the case if one of linear connections is a classical
(linear and symmetric) connection on the base manifold. We introduce the covariant
differential of sections of tensor products (over the base manifold) of a vector bundle,
its dual vector bundle, the tangent and the cotangent bundles of the base manifold.
We prove that such (first order) covariant differential of the curvature tensor of a linear
connection satisfies the generalized Bianchi identity and that the antisymmetrization
of the second order covariant differential is expressed through the curvatures of linear
and classical connections.

All manifolds and maps are supposed to be smooth.
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1. LINEAR CONNECTIONS ON VECTOR BUNDLES

Let p: E — M be a vector bundle. Local linear fiber coordinate charts on E will
be denoted by (:r",.y’). The corresponding base of local sections of E or E* will be
denoted by b; or b, respectively.

Definition 1.1. We define a linear connection on E to be a linear splitting
K:E- J'E.

Proposition 1.2. Considering the contact morphism J'E — T*M ® TE over the
identity of TM , a linear connection can be regarded as a T E-valued 1-form

K:E-T"MQ®TE

projecting on the identity of TM.
The coordinate expression of a linear connection K is of the form

K=d’\®(6,\+K,-i,\yj65), with Kji,\GCw(M,R).
Definition 1.3. The covariant differential of a section ® : M — E with respect to
K is defined to be

VK<I)=j1<I>—Ko<I>:M—)E%T‘M.
Remark 1.4. From the affine structure of 7§ : J'E — E we obtain that the difference
j'® — K o ® lies in the associated vector bundle VE®T*M. From VE = E x E we
M
get the above Definition 1.3.
Let ® = ¢' b;, then we have the coordinate expression
VK(P = (6,\¢* - Kji,\(ﬁj) b; ® d*.

Definition 1.5. The curvature of a linear connection K on E turns out to be the
vertical valued 2-form

R[K|=-|K,K]:E-VE®ANT'M,
where [,] is the Froelicher-Nijenhuis bracket.
The coordinate expression is
R[K] = RIK)5 v 6, ® d* A
= —2(00K;'y + K"K, ) v 0; @ d* A d*,
i.e. the coefficients of the curvature are
R[K]ji/\u = 3uKJ'iz\ - aAKjiu + ijquiz\ - ija\Kpi#-

If we consider the identification VE = E X E and linearity of R[K], the curvature
R[K] can be considered as a tensor field (the curvature tensor field) R(K] : M —
E*@ EQA’T*M.

Theorem 1.6. We have the generalized Bianchi identity
[K,R[K]]=0.
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Proof. It follows immediately from the graded Jacobi identity for the Froelicher-
Nijenhuis bracket. O

We have, 3],

Proposition 1.7. Let K be a linear connection on E. Then, there is a unique linear
connection K* : E* — J'E* on the dual vector bundle E* — M such that the

followtng diagram commutes

E x E' Xy MxR

Kx K‘l lOXidR
JE x J'E L0, M xR
Its coordinate expression is
K*'=d"® (0h— Ki»y;0'), with K7ye€C>®(M,R),
where (z*,v;) are the induced linear fiber coordinates on E* and &' = 8/dy;.
Definition 1.8. The connection K* is said to be the dual connection of K.

Proposition 1.9. We have R[K*]: M - E ® E* ® A’T*M and
RIK*Ijpu = —R[K]' .
2. TENSOR PRODUCT LINEAR CONNECTIONS

Let p' : E' & M be another vector bundle. Local linear fiber coordinate charts on
E' will be denoted by (z*,2%). The corresponding base of local sections of E' or E'*
will be denoted by b/, or b'®, respectively.

Consider a linear connection K’ on E’ with coordinate expression

K'=d*® (A +K;*»2"8), with K;*y € C°(M,R).
Let us consider the tensor product E 1?} E' - M with the induced fiber linear
coordinate chart (z*,w*). We have, [3],

Proposition 2.1. Let K be a linear connection on E and K' be a linear connection
on E'. Then, there is a unique linear connection K@ K' : E® E' - J'(E ® E')
M M

such that the following diagram commutes
ExE 25 EQE
M M
KxK'l lK@K’
J'E x J'E' L&, J(E @ E')
M M

Its coordinate expression is
K®K'=d"® (0r + (K xw™® + K;*\w™®)8s,) .
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Definition 2.2. The connection K ® K’ is said to be the tensor product connection
of K and K'.

Remark 2.3. We remark that this concept was introduced in another way in [2],
p. 381.

The tensor product connection is linear, so we can define its tensor product connec-
tion with another linear connection and we have by iteration

Proposition 2.4. A linear connection K on E and a linear connection K' on E'
induce the linear tensor product connection K;® K'} := P K®Q'K*@Q®"K'@®°K"
on @ E ® ®IE* 1?} ®E' ® ®°E" with coordinate expression

i1...ip—1ka;...ar

K'® K" =d"® (BA + (KA wh i m o Koy w2 R

. k il...i,ul...a.- e — , k il...i,,al...a.-
- K;"» Wha...jgbs ...bs Kj " Wjy...jq-1kby...bs
1 ay i1..ipcag..ar | ! ar §1...ip01..0r-1C
+ K M awy b, e K wy U
1 ¢ i1..9p01...0r T 7 A i1...8pG1...0r j1---Jgb1...bs
- K, AWy, acha...bs K", )\wjl...j,,bl...b,_,c) az;...i,a;...a,)
where (z*,w;, "7 "47) are the induced linear fiber coordinates on & E @ ®'E* ®
A A
®'EI ® ®s E':
M

The curvature of the linear tensor product connection K ® K’ on E ?} E' turns out

to be the vertical valued 2—-form
RK®K|=-K®K ,K®K'|: E?}E’ - V(E?}E’) ®AT*M.

Theorem 2.5. The coordinate ezpression of R(K ® K'] is
R[K ® K'| = RIK ® K"y, v 8ia ® d* A d*
= (RIK]j 5w + RIK'), 5 w®) 0 ® d* A d*,
i.e. the coefficients of the curvature R[K ® K'] are
R(K ® K|35, = R[K];*\,0; + RIK'),"\u0 -

Proof. This can be proved in coordinates. 0O

Theorem 2.5 implies that the curvature R[K ® K'] is determined by the curvatures
R[K] and R[K']. Now, we would like to find the geometric description of the curvature
R[K ® K']. First we note that the curvatures of the above linear connections can be
considered as bilinear morphisms, over M,

RK|:E x E* 5 A’T*M,
RK'|: E x E" 5 \’T*M,
RIK®K'|:(EQR E')x (EQ® E')* - A’T*M .
M M M
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Then we have

Theorem 2.6. The curvature R[K ® K'] is a unique bilinear morphism such that the
following diagram commutes

ExE x E* x g+ S REHORKL omang

M M M
(®,®)l lidAgT.M

RIK®K']
—_

(E® E') x (E* ® E") A2T*M
M M

M

where (,) or (,)' are the evaluation morphisms on E or E', respectively.

Proof. Let us assume a bilinear morphism R : (E ® E) X (E ® E')* - A’T*M and
let us put e = (¢') € E,, e* = (¢;) € E, ¢ = (¢°) € E., and ¢'* = (e}) € E*. Then

(¢/,€"*) R[K](e,€") = €€, R[K);' ueie; d* Ad*,
(e,€") R[K'|(¢, ") = e'e; R[K'],° €€, d* A d*,
Rle®€ e ®€*) = Ry efe’eiel, d* A d*
and it is easy to see that R(e®¢€,e* @ €'*) = (¢, €'*) R[K](e, e*) + (e, e*) R[K'](¢, ')
if and only if
Rjv*su = RIK];*\u0) + RIK' ]\
Now, Theorem 2.6 follows from Theorem 2.5. O

Proposition 2.7. The curvature RIK?® K"}] := —[K?® K"}, K?®K'}] is determined
by the curvatures R[K| and R[K']. We have the coordinate expression

RK; ® K']] = (R[K}uuu Wi e RIKJ 0

_ Lk i1..ipa1.Gr k i1...8p@1...07
R[K];," Wisa...jqb1 ...bs R[K];," 4 Wi, ...Gq—1kby...bs

n a; i1..ipcaz..8r | 1 ar i1...ipG1...6r —1C
+ R[K']" Wy, ggbrby To00 R[K'|c* »u Wi ...Ggbi...bs

— R[K']o, s w;:'.ﬁi}’;'ii;’ffé. — = R[K"]s,") w;i'.'.’.}’;‘l:l.’:,’..c)
bi,.i, ® b @ by, . @b @dr AdH,

where we have put b;, ., =b;; ®...®@b;, b7 = bl @ ... @ b, by, 4 = b, ®
...®b,, bhib = ® .. @bk,

Proof. This follows from the definition of the curvature, Proposition 1.9 and the
iteration of Theorem 2.5. O
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3. CLASSICAL CONNECTIONS

Let M be an m-dimensional manifold. Local coordinate charts on M will be de-
noted by (z*), A = 1,...,m, the induced coordinate charts on TM or T*M will be
denoted by (z*,2*) or (z*,2,) and the induced local bases of sections of TM or T*M
are denoted by (y) or (d*), respectively.

A classical connection on M is defined to be a linear symmetric connection on
pMm : TM — M with coordinate expression

[ =d"® (0 +I.,44"9,), I eC°M,R), T, =TL>,.

Remark 3.1. Let us recall the 1st and the 2nd Bianchi identities of classical connec-
tions expressed in coordinates by

R[5 + R + R[T)u 00 =
R[F],,”,\,,;, + R[r]vp;w;A + R[F]pr\;ﬂ =0,

respectively, where ; denotes the covariant differential with respect to I
Let us denote by E¥ := ®"E ?} ®E* ?} TM ?} ®'T*M. Then, as a direct
consequence of Proposition 2.4, we have
Proposition 3.2. A classical connection I' on M and a linear connection K on E
induce the linear tensor product connection K} @ I'y := @’ K @ @'K* @ @' T @ @I
on EP? :
q,8

K} ®T;: Eyf - T"M ® TE};

with coordinate expression

i kig...ipA1...A i 11..8p—1kA1...A
P T _ vV 131 2:+-1pAl.e-Ar .. ip 'l.pllr
Kq ery=de® <6" + (Ki'"y ivedata s T Ky G1eeJaB1 e phs
K 11 ‘p/\l )\7 ... K k ll IpA| Ar

n "ykn Jabsteets ja v Y. Jq—1Kp1-.pts

A1 LippA2.Ar Ar L ileipAlAro1p
+T, Vyjl...qul...u. + +T, v Y1 Gapn e

_ p ., iipArAr . p u 1,/\1 1ee-Jobb1-e u.
| WO T -T )8’

-JqPH2 - lhs o' v Yjigom.. m-m i1 ipAL...

11.. 191\1 Ar

s i s .p,) Gre the induced linear fiber coordinates on EPY.

where (z*

As a direct consequence of Proposition 2.7 we have
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Proposition 3.3. The curvature R[K? @ I'}] is determined by the curvatures R[K]
and R[['). We have the coordinate ezpression

R[K{,’@F’,’] = (R[K]kn kig..ipAt...Ar 4o +R[K]ki’ulug i1.. ;,,_,k,\l Ar

viva Yji ot tte Yir.doms..nss

X k il...l'pkl...z\r e ll lpAl Ar
—R[K]Jl viva ykjg Jqbs1.. s R{K]Jq v Yj,.. Je-1kp1...pbs
z,p/\g...,\.. A .. t,,,\, Ar—1p

+ R[], M, ny cdepreps Tt R[T),™ vin Y. Gab1eba

_ p i1 8p A1 Ar . 11 l,,\l wAr
R[P]}H viv2 yj]...jqpuz...u. R[F]Ih vive ]1 Jqlh1 . Phs=1p

biy.i, ® @8y, 1, ®dH P @dM Ad,
where we have put b;,_;, = b;;®...®b;, bit-is = HIQ. ..Qb, On.n, =00 ®...80),,
dirbs = dh @ ... @ dFe.
4. COVARIANT DIFFERENTIALS

Let us note that the tensor product connection K?®I'y can be considered as a linear
splitting .
K’ QT : EbT — J'EPY.

Definition 4.1. Let ® € C°(E"Y). We define the covariant differential of ® with
respect to a pair of connections (K,T) as a section of EP; ® T*M defined by

VKNG = j'o — (KP @) 0 ®.

Remark 4.2. The covariant differential V(¥T)® is in fact the standard covariant
differential (see Definition 1.3) VX7®lig,

Proposition 4.3. Let ® € C*(E), @ = ': ;:;\xl. A " D3y, @I @0, 2, @M He
Then we have the coordinate ezpression

v KI‘)(I) V(K I‘)¢u z,»\l Ar blx " ®bj"“j" ® a}\lm’\r ® Pt ® d’

J1.-dqkst..
— 1. IPA] _ i kiz---ipAl-.-Af e — ip i]...ip_lkA|...A,.
- (6 J1---dabr-e u. K"y J1-w-Gqbt---bha K;'*y J1eTqhht-elbs
Lk i1...0pA1 ... Ar . i1..8pA1 ..
+ KJl v ¢ka...qu...u, + + KJ 14 ¢ wJg- lkul N7
-T A1 i.l‘"i?PAZ---Ar —eT Ar :.1 :?Al Ar—1p
P VY1 dql..phs P Vi1 Jqls...bs
1) 1,,;\1.../\,- . p 1.0dpAle.Ar
+F#l V ¥ i1 Jgphz. ks + +Fl‘: V¥ Jqb1pa-1p

,, ,p b"' ~Ja ® 8,\1 A ® R dMbe @ d¥.

Proof. The proof follows immediately from Definition 4.1 and the coordinate expres-
sion (see Proposition 3.2) of the connection K? ® I'. O

— (K,T) i.l ...i?Al Ar — i.1 ...i?/\l o W
In what follows we set V. =V'"") and ¢; "7 0., = V,¢; " T
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Remark 4.4. If p = ¢ = 0 the field ® is a standard (r, s)-tensor field on M and
V& coincides with the standard covariant differential with respect to the classical
connection I'.

Corollary 4.5. We have
VRIK] = RK]j\p V@b @d* Ad* @ d
= (0. RIK]j'x = Kp'y RK]i" 5 + K7 RIK' s,
+ T RK)jpu + T2 RIK] ) P @ b; @ d* Ad* ® d”.

The generalized Bianchi identity can be expressed by covariant differentials as fol-
lows.

Theorem 4.6 (The generalized Bianchi identity). We have
R[K]ji«\u;v + R[K]jiuvw\ + R[K]jiv)\;u =0.

Proof. This can be proved easily in coordinates by using Corollary 4.5. O

Theorem 4.7. Let ® € C*(E"7). Then we have
1 T [o.0] T *
Alt V20 = ~3 RI?®K]|o® € C*(EV, @ A’T*M),

where Alt is the antisymmetrization.

Proof. This can be proved in coordinates by using Proposition 3.3 and Proposition 4.3.
]

Example 4.8. Let & € C*(E), ® = ¢'b;. Then
Alt V20 = —%R[K] 0d: M 5 EQANT'M,
i.e. in coordinates
ALt V2P = -% RK)i\, ¢ b;i@d Ad".
Examp.le 4.9. We have
AltV?RIK]: M - E*® EQ AX>’T*M @ A*’T*°M ,
expressed in coordinates by
‘ 1 i i
ALt V’RIK] = ~3 (R[K],, vy RIK)iPau — RIK] v, RIK]p su

— RI[)x“s0, R[K]j*uu — RIC)u00, RIK] 50)
b eb,Qd Adt®d Ad”.
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