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LORENTZIAN MANIFOLDS WITH SPECIAL HOLONOMY AND 
PARALLEL SPINORS 

THOMAS LEISTNER 

ABSTRACT . We investigate the holonomy group of a simply connected, indecompos­
able and reducible Lorentzian spin manifold and the property that it should admit 
parallel spinors. After some algebraic consequences we show that such manifolds 
have to be Brinkmann waves and prove that they have abelian holonomy if and only 
if they are pp-manifolds. Further, we prove a theorem about the holonomy of spe­
cial Brinkmann waves and construct examples of Lorentzian manifolds with parallel 
spinors starting from Riemannian Kahler and hyper-Kahler manifolds. 
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1. INTRODUCTION 

The most effective tool to decide whether a semi-Riemannian spin manifold admits 
parallel spinors is the holonomy group of the manifold because the space of parallel 
spinors of a simply connected spin manifold is isomorphic to the trivial subrepre-
sentations of the spinor representation of the holonomy group. Therefore it is first 
necessary to classify the holonomy groups and then to test if they could have trivial 
spinor subrepresentations. 

The first step is done for simply connected, irreducible manifolds by M. Berger 
[Ber55], [Ber57] and J. Simons [Sim62]. In the Riemannian case this classification 
becomes complete because of the splitting theorem of G. de Rham [dR52] which as­
serts that a simply connected, complete Riemannian manifold can be decomposed in 
a product of irreducible ones. Here M. Y. Wang [Wan89] did the second step and 
showed that the following holonomy groups from the Berger-list are those of simply 
connected, irreducible, non-locally symmetric m dimensional Riemannian spin mani­
folds admitting parallel spinors: SU(k) for m = 2k, Sp(k) for m = 4k, G2 for m = 7 
and Spin(7) for m = 8. 

Although there is a generalization of Wangs theorem for semi-Riemannian simply 
connected, irreducible, not locally symmetric spin manifolds by H. Baum and I. Kath 
in [BK99] this does not solve the problem completely in the pseudo-Riemannian case. 
This is because the generalization of de Rhams splitting theorem by H. Wu in [Wu64] 
only asserts the decomposition of a simply connected, complete semi-Riemannian 
manifold into a product of indecomposable ones. The holonomy representation of 
these manifolds has no invariant subspace on which the metric is nondegenerate. In 
the Riemannian case irreducibility and indecomposability are the same. 

So first the possible holonomy representations of indecomposable, reducible pseudo-
Riemannian manifolds have to be found. This is a rather open question. The only 
investigations are made by A. Ikemakhen and L. Berard Bergery in the Lorentzian 
case ([Ike90], [BI93] and [Ike96]), in the case of index 2 in [Ike99], for index (r,r) in 
[BI97] and for general index in [BouOO]. 

In this paper we will deal with the Lorentzian case and — after some introduc­
tory sections — draw some conclusions from the results of [BI93] and [Ike96] for the 
existence of parallel spinors on simply connected, indecomposable Lorentzian spin 
manifolds. 

In [BI93] the possible holonomy algebras of a simply connected, indecomposable but 
reducible Lorentzian manifold of dimension m are divided into four types of subalge-
bras of (E © so(m — 2)) K Em~2. We will add the condition to the manifold to admit 
parallel spinors so that its holonomy algebra has to be a subalgebra of so(m — 2) tx Em~2 

which leaves us with only two of those four types, the so called Brinkmann waves. We 
will then show, that the question whether these admit trivial subrepresentations of 
their spin representation can be reduced to the question if this is the case for their 
projections on the 50(m — 2)-component. Also, we will show that this projection can 
not be non-trivial abelian. 

Further, we investigate the simply connected, indecomposable but reducible Lorentz­
ian spin manifolds with abelian holonomy, i.e. with holonomy isomorphic to Em~2. 
These have parallel spinors. We will prove that this class of manifolds is equal to the 
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so called pp-manifolds, which are an generalization of the plane-waves. As a result 
we obtain that pp-manifolds are the only Lorentzian manifolds which admit parallel 
spinors and have non- trivial abelian holonomy. 

Finally, we prove a sufficient condition to a Brinkmann wave for having holonomy 
equal to Riemannian holonomy xRn. We construct examples with this holonomy and 
parallel spinors starting from Riemannian Kahler and hyper-Kahler manifolds. 

2. HOLONOMY AND PARALLEL SPINORS 

2.L Principle fibre bundles, vector bundles and holonomy. First we will recall 
the notion of a holonomy group of a connection in a principle fibre bundle in general. 

Let 7r : P -» M a principle fibre bundle with structure group G, LJ : TP —> g := 
LA(G) a connection in P and p" the parallel displacement along a piecewise smooth 
curve 7 in M from P7(o) to Py(i). 

One defines the holonomy group to u in a point p £ P with n(p) = x £ M 

U«l (,,\ — fncr t h e r e i s a c u r v e 7 i n MM°) = 7(-) = *> 1 r r 
HdM . - | g £ G R9(P) = P»(P) j C G ' 

The restricted holonomy group Hol^(bj) is defined by restricting to homotopically 
trivial curves in M. This group is connected and lies in the connected component of 
the unity in G. Its Lie-algebra is denoted by I)o(p(cj) := LA (Holp(uj)). 

The holonomy groups depend in the following way on the point p £ P: for two points 
p and q in the same fibre over x £ M such that q = Rg(p) for a g £ G the holonomy 
groups are conjugated in G, i.e. Holq(w) = g~lHolp(w)g; if there is a horizontal curve 
in P from p to q then the holonomy groups are the same. The holonomy group contains 
all the geometric information of P which is the assertion of the reduction theorem. 

Theorem 2.1. The subbundle of P, called the holonomy bundle, 

P"(p) := {q £ P\there exists a horizontal curve from p to q} 

is a principle fibre bundle with structure group Holp(w) which is a reduction of P and 
u. 

The second fundamental theorem on holonomy is the Ambrose-Singer holonomy 
theorem. 

Theorem 2.2. [AS53] Let M be connected. P a priciple fibre bundle over M with 
structure group G and u a connection in P and ft its curvature. Then 

(1) f )oL» = {Sl,{X,Y)\q 6 P"{p),X,Y € Ker uq C TqP) C g. 

Let (V,p) be a representation of G. We now consider the vector bundle associated 
to P and p defined by E := (P x V) /G. G acting on V is isomorphic to a subgroup 
of Gl(Ex) acting on the fibre Ex for every fibre over x. 

u defines a covariant derivative V" in E. The reduction theorem then entails the 
following 

E := (P x V) /G - (P"(p) x V) /Hdp(u). 
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Now we can identify the parallel sections in E with invariant vectors under the holo-
nomy representation: 

(2) VHO.,M := {veV \p(Holp(u))(v) = v} ~ {e G T(F)|Vwe = 0} 

v H (y-> [P? ( 1 ) (PH) 

where 7 is a curve connecting 7r(p) and y. For the right hand side we will use the 
notation [p"(p),i>] with 7 running over curves starting at 7r(p). 

In case that M is simply connected we have on the Lie-algebra level 

(3) V^M :={v£V |MK(W))(w) = 0} =- {e € r(£)|V"e = 0} . 

2.2. Holonomy of semi-Riemannian manifolds. Let (M, h) be a semi-Riemannian 
manifold of dimension m = r + s, index r and V the Levi-Civita-connection. 

Let 0(M,h) be the bundle of orthonormal frames over M with structure group 
0(r,s). Then one has as in the previous section 0(M,h) Xo{r,s) -^m — TM. 

The Levi-Civita connection V defines a connection u in 0(M,h) with the local 
connection form 

u'= Y, h{Vs»>i)Eij 
l<i<j<n 

where s = (si,...sm) is a section in 0(M,h), that is a local orthormal frame-field 
and E{j the standard basis in o(r,s). Then it is V = V". One defines the holonomy 
groups 

(Holx(M,h),TxM) := (Holp(u;),Rm) 
(Holx(M,h),TxM) := (HolQ

p(u),R™) . 

The relation between parallel vector fields and invariant subspaces of the holonomy 
representation is given by (see for example [Bes87]) 

Theorem 2.3. Let (M,h) be a semi-Riemannian manifold. Then the following holds 

1. For 1 < k < m these propositions are equivalent: 
(i) There is a k-dimensional distribution, which is invariant under parallel dis­

placement. 
(ii) The holonomy representation leaves invariant a k-dimensional subspace. 
This distribution has to be involutive. 

2. There is a parallel vectorfield on M if and only if the holonomy representation 
has a trivial subrepresentation, that means it leaves fixed a vector. 

The properties of the representation are used to characterize the manifold. 

Definition 2.1. A semi-Riemannian manifold (Mr's,h) is called 

1. (strictly) irreducible if the (reduced) holonomy representation has no invariant 
subspace, 

2. (strictly) indecomposable if the (reduced) holonomy representation has no invari­
ant subspace on which h is non-degenerate, 

3. reducible/decomposable if it is not irreducible/indecomposable. 
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Irreducibility entails indecomposability and decomposability reducibility. For Rie-
mannian manifolds both notions are the same. The tangent space of a semi-Riemannian 
manifold can be decomposed in a orthogonal sum of invariant subspaces which can be 
(in case of nontrivial signature of h) reducible with a degenerate, invariant subspace. 

The holonomy representation of the product of two semi-Riemannian manifolds is 
the product of the holonomy representations (see again [Bes87]) 

Hol{xuX2)(Mi x M2,hx®h2) = HolXl(Muhx) x HolX2(M2,h2) 

= (HolXl(Mx,h{) x 1 ) 0 ( 1 x HolX2(M2,h2)). 

The de-Rham decomposition theorem asserts that locally the converse is true. 

Theorem 2.4. [dR52] [Wu64] Every simply-connected, complete semi-Riemannian 
manifold is isometric to a product of simply-connected, complete manifolds, of which 
one can be flat and all others are indecomposable. 

That means locally it is sufficient to know the indecomposable manifolds. For the 
subclass of irreducible ones there is the classification of Berger and Simons. 

Theorem 2.5. [Ber55], [Sim62], [Ale68], [BG72] and [Bry87]. Let (Mr>9,h) be a 
simply-connected, irreducible, non local-symmetric semi-Riemannian manifold of di­
mension m = r + s and index r. Then the holonomy representation on Rm is one of 
the following (modulo conjugation in 0(r,s)): 

m = r + s > 2 : SO(r,s) 
m = 2p + 2q>4 : U(p,q) C SO(2p,2q) 

or SU(p,q) c SO(2p,2q) 
m = 4p + 4q > 8 : Sp(p, q) c SO(4p,4q) 

or Sp(p,q)-Sp(\) c SO(4p,4q) 
m = r + r > 4 : SO(r,C) c SO(r,r) 
m = 2p + 2p>8 Sp(p,R)-Sl(2,R) c SO(2p,2p) 
m = 4p + 4p > 16 Sp(p,C) . Sl(2,C) c SO(4p,4p) 
m=7=0+7 °l c 50(7) 
m = 7 = 4 + 3 ^ 2 ( 2 ) c 50(4,3) 
m = 14 = 7 + 7 Gř c 50(7,7) 
m = 8 = 0 + 8 Spin(7) c 50(8) 
m = 8 = 4 + 4 Spin0(4,3) c 50(4,4) 
m = 16 = 8 + 8 Spin(7)c c 50(8,8). 

In case of symmetric spaces there is a classification of Berger [Ber57], which gives 
the following corollary for Lorentzian manifolds. 

Corollary 2.1. A simply-connected, complete and irreducible Lorentzian manifold has 
the trivial holonomy group or the full SOo(\,m — 1). 

2.3. Spinor representations and the spinor bundle. We now want to define the 
spinor bundle of a m=(r+s)-dimensional semi-Riemannian manifold. (See [LM89], 
[Bau81] also [Bau94] for details.) Let C/r,a be the Clifford-algebra of (Rm,(.,.) r > 5) 
where (., . ) r | 3 is the standard scalarproduct of index r on Rm. We define the following 
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groups in a,a((X ,K) r ,a=:||X | | r ,5): . 

Spin(r,5) := [Xx •.. . • X2k \ ||K,||r,s = ±1, fc > 0} 

Spin0(r,5) = {Xl.....X2k-Yl.....Y2l\\\Xi\\„ = l,\m\r* = -l, M > 0} 

K=lx. .XwY. .Yi ll^ll^ = l , INk . = - l , fc,/>0 \ 
\ x 2 l 2 Xi Gspan(ex,... ,e r), Yj € span(e r + i , . . . ,em) J 

where (e i , . . . ,em) is a basis with (et-,ej) = S^Kt, K\ = ... = Kr = —1 and « r+i = 
. . . = /cm = 1. 

Spin0(r, 5) is the identity component and K its maximal compact subgroup. 
Now let A : Spin(r,s) -> SO(r,s) be the twofold covering of SO(r, s)[SOo(r, s)] by 

Spin(r, .s)[Spin0(r, s)]. A* is a Lie-algebra isomorphism between 

spin(r, s) := LA(Spin(r, s)) C C/r,a and so(r, s ) . 

Then 

spin(r, s) = span{et- • ej|l < i < j < m} 

and A*(et- • tj) = FtJ for matrices 

!

-KJ for (fc,/) = (i,j) 
for (fc,/) = (j.O 

0 otherwise 

the standard basis in so(r, s). 
We will now give an isomorphism between the complexification of the Clifford al­

gebra C/(r,a) := C/r.3 ® C and endomorphism algebras of complex vector spaces which 
yields complex representations of the spin group. First we consider the C2 with a basis 
I u(e) := 4j(_e t)|e = ±1 \ and the isomorphisms of C2: 

*:-« . - , - ( • -"),,:=(; J ! ) . V . ( » j ) . 
Then we have T2 = - V 2 = -U2 = E , UT = -iV , VT = iU , UV = -iT and 
Tu(e) = —eu(e) , Uu(e) = iu(—e) , Vu(e) = eu(—e). We define the isomorphisms 
as follows 

1. In case m is even $(rjS) : Q(r,,) - > C ( 2 ? ) is defined by 

$(r,s)(e2*_i) := rafc-i£ ® • • • ® E ® U ® T ® . . . ® T 

(Jfc-i)-times 

*(r,,)(c2ifc) := T 2 f c g ® . . . ® - S ® V ® T ® . . . ® T 

(Jfe-i)-times 

with TI = ... = rr = i and r r + i = . . . = rm = 1 and fc = 1 . . . ^. 

2. In case m is odd $(r |S) : Q ( r |S) -> C ( 2 ^ ) © C ( - - ^ j i s defined by 

*(r,«)(c*) = ($(m-2 , i )(efc)^(m-2,i)(e f c)) , fc = l . . . m - l 

* M ( e m ) = ( i T ® . . . ® T , - i T ® . . . ® T ) . 
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This yields representations of the spin group and algebra in case m even by re­
striction and in case m odd by restriction and projection onto the first component. 

r m i 

The representation space Ar), = C2 is called spinor module. We write A • v := 
®{r,s)(A)(v) for A € C/r,5 and v G Ar(3. A useful basis in Ar>s is the following: 
(u(ek,... , e i ) :=u(ek)®...®u(el)\ei = ± 1 ) . 

In case m is even the representation space Ar>5 splits into two irreducible subspaces 
Af}3 :=span(u(e* , . . . ,d) \ek • . . . -£i = ±1) . 

r m i 

On C2 are given two scalar products, the standard scalar product (.,.), which is 
positive definite and invariant under the action of the maximal compact subgroup K 
of Spin0(r, 5). The second is defined as follows 

(u,v):=i - (ei • . . . • er • u, v) 

and it is indefinite and invariant under Spin0(r,5). The basis given by u(ek,. • • ,£1) 
with k := [y] is an orthonormal basis for (.,.). 

We now consider a semi-Riemannian manifold which is assumed to be spin. Let 
( Q , / ) be the A-reduction for the orthonormal frame bundle 0(M,h). Then we have 
TM = 0(M,h) XsooCrvO Rm = Q xSpin0(r,,) Rm- The vector bundle 

S := Q xSpino(ri5) Ar>a 

is called spinor bundle. The Clifford multiplication is defined as follows 

T M ® 5 = ( Q x S p i n o ( r , 5 ) R
m ) ( 8 ) ( Q x s p i n o ( r , a ) A r i a ) -> S 

X®(p = [q,x]®[qyv] H-> [q,X-v]=:X -ip. 

Since the indefinite scalar product (.,.) is invariant under Spin0(r,s) it defines a 
scalar product on S. But one can also define the positive definite scalar product 
invariantly by fixing a maximal timelike (negativ definit) subbundle £ C TM. Then 
there is a K C Spin0(r, s)-reduction of Q to a A'-principle bundle Q$ for which 

S = Q XSpin0(r,.,) Ar,s =Qt-xK Ar,5 

so that the K invariance of (.,.) suffices to define a positive definite scalarproduct 
(.,.)e on S. 

Let Cb be the lift of the Levi-Civita connection u into the spin structure Q, p!̂  its 
parallel displacement. For its holonomy group we have the important relation to those 
o f V 

\(Holq (Q,LJ)) = Holm(0(M,h),ij) - Holx(M,h) 

so that A* identifies the Lie algebras 

Ijp[,(Q,w)~r)0l / ( p )(O(M,/.)>w). 

The covariant derivative corresponding to w is given by 

(5) Vs
x<f = X(V) + i £ m Ki h(S7^X, Sj)Si . , r v . 

><j 

V s is metric with respect to (...) and distributive in the following way 

V 5 ( X • <p) = (VX) • ip + X • v V . 
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2.4. Parallel spinors. First let (M,h) be a semi-Riemannian spin manifold of di­
mension m. We define 

Definition 2.2. A non-trivial spinor field ip G T(5) is called parallel spinor if Vsip = 
0. 

If we set H := Holq(Q,u) = \-l(Hols{q)(0(M,h),u)) and f) := \)o\q(Q,u) = 
\~l(\)olj{q)(0(M,h),oj)) then we have from the previous section 

Vjj := Iv G Ar>5 ($(r>5))(H)(u) = v \ ~ {parallel spinors} 

(6) v K> [p*(q),v] 

or in the simply connected case 

{parallel spinors} ~ V§ := Iv G Ar,s ($(r>a))*(t))(v) = 0J . 

We now want to find properties of manifolds admitting parallel spinors. One has the 
following 

Lemma 2.1. ([Hit74] for the Riemannian case, [Bau81] for the general). The exis­
tence of a parallel spinor entails a totally isotropic Ricci endomorphism, i.e. 
h (Ric(X), Ric(Y)) = 0 for all X, Y G TM. 

If one studies the Berger-list of irreducible non-locally symmetric semi-Riemannian 
holonomy groups under the assumption that the manifold should admit parallel spinors 
one gets the following 

Theorem 2.6. [Wan89, for the Riemannian case] [BK99, for the general] Let (M,h) 
be a 1-connected, complete, irreducible semi-Riemannian spin manifold with parallel 
spinors. Then the holonomy representation on Rm is one of the following: 

m = 2p + 2q>4 SU(p,q) C SO(2p,2q) 
m = Ap + Aq > 8 Sp(p, q) C SO(4p,4q) 
m = 7 = 0 + 7 Gl c 50(7) 
m = 7 = 4 + 3 ^2(2) c 50(4,3) 
m = 14 = 7 + 7 GÇ c 50(7,7) 
m = 8 = 0 + 8 Spin(7) c 50(8) 
m = 8 = 4 + 4 Spin0(4,3) c 50(4,4) 
m =" 16 = 8 + 8 Spin(7)c c 50(8,8). 

There are no irreducible Lorentzian manifolds with parallel spinors. We will illus­
trate this later. 

For product manifolds holds the following (see for example [LeiOO]). 

Theorem 2.7. On a semi-Riemannian manifold which is given as a product 

(M,h)~(Muhi)x(M2,h2) 

of two semi-Riemannian manifolds exist parallel spinors if and only if on both (Mt-,/it) 
exist parallel spinors. 
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2.5. Decomposition of a Lorentzian manifold with parallel spinors. From now 
on let (M,h) be a Lorentzian spin manifold of dimension m. We asign a vector field 
to every spinor field. 

Definition 2.3. Let tp € T(S). The vector field 17, G T(TM) defined by h(V^,X) = 
— (X • <p,ip) for all X £ TM is called (^-associated vector field or Dirac-current. 

For the Dirac-current the following properties hold (see [LeiOO]). 

Lemma 2.2. Let (M,h) a Lorentzian spin manifold and (p € T(S). 

1. It is /i(V^,V^) < 0 and V^(x) = 0 if and only if (f(x) = 0. 
2. <p parallel entails V^ parallel. 

From the second assertion of the lemma follows that a non-flat Lorentzian manifold 
with parallel spinors cannot be irreducible as we have seen in Corollary 2.1. 

That means that we have two cases for a 1-connected Lorentzian manifold with 
parallel spinor (p: 

1.) /^(V^V^) < 0, i.e. V<p timelike. Since V^ is parallel the holonomy group acts 
trivial on R V^(x) C TXM, and so the manifold decomposes due to Theorem 2.4 as 
follows 

(M,h)~(R,-dt)x(N,g) 

with (N,g) a Riemannian manifold of dimension m — 1 which again can be decom­
posed in flat or irreducible Riemannian manifolds. Since irreducible locally symmetric 
Riemannian manifolds with parallel spinors have to be flat (as a conclusion of the 
Ricci-flatness, see [Bes87]) one obtains the following theorem from the result in the 
Riemannian case (see introduction). 

Theorem 2.8. (M,h) is a simply connected, complete Lorentzian manifold with par­
allel spinor whose associated vector field is timelike if and only if (M,h) is isometric 
to a product of(R,—dt2) and 1-connected, irreducible Riemannian manifolds with one 
of the following holonomy groups SU(k), Sp(k), Gi, Spin(7) and possibly a flat factor. 

2.) Let Vy lightlike. In this case (M, h) decomposes in a product of irreducible Rie­
mannian manifolds with parallel spinors and an indecomposable Lorentzian manifold 
which is reducible (both are 1- connected), because of the parallel vector field coming 
from the parallel spinor. That means one has to investigate under which conditions 
such a manifold admits a parallel spinor field. This will be the aim of the following 
sections. 

3 . PARALLEL SPINORS ON INDECOMPOSABLE, REDUCIBLE LORENTZIAN 
MANIFOLDS 

3.1. Four types of indecomposable, reducible Lorentzian manifolds. We will 
now cite some results of [BI93] and [Ike96] about holonomy groups of indecomposable 
but reducible Lorentzian manifolds. 

Let (M,h) be a simply connected and complete Lorentzian manifold of dimension 
m = n -f 2 > 3. We consider the tangent bundle as associated to the fibre bundle 
C(M,h) with fibres 

r(AAu\ — $u v v 4 \ a basis in TXM with A(Wn+i) = 1> \ Cx(M,h).-^tQ,Xu...Xn,tn^)'. h{tkjtk) = h{tk^Xi) = 0)h{Xi^Xj)=zSij ] 
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/ 0 0* 1 
and structure group SO(n) where n := I 0 En 0 

\ 1 0* 0 
If (M, h) now is indecomposable and reducible, not necessarily with a fixed lightlike 

vector under holonomy representation but only with an invariant degenerate subspace 
E C TXM then EL is invariant and one defines T := E C\ E1 ^ {0} an invariant, 
isotropic, one-dimensional subspace. This subspace defines via theorem 2.3 an one 
dimensional isotropic parallel distribution T so that we have a reduction of C(M,h) 
to the bundle 

N(M,h) := {{to,Xu...Xn,tn+1)eC\t0 € T} 

and structure group G, which has the Lie algebra 

X* 0 \ 
\a&R,X eRn,Aeso(n) (7) 0 = 

In order to find those subgroups which do not leave any non degenerate subspace 
invariant one fixes some notations: 

1. g is isomorphic to R © Rn © so(n) as vector space and with the commutator: 

(8) [(a,X,A),(6,Y,B)] = (o,(A + a Id)Y~(B + b Id)X,[A,B]so(tl)) . 

2. a := {(a, 0,0) \a G R} C g an abelian subalgebra of g. 
3. n := {(0, X, 0) |X € Rn} C g an abelian ideal in g isomorphic to Rn. 
4. £ := {(0,0, A) \A e so(n)} C g a subalgebra of g isomorphic to so(n). 
5. Further it is [g, a] C n and [g, t] C t K n as well as [!, a] = {0} and [a © fc, n] C n. 

The latter means that 

g = (a © I) tx n. 

Let now I) C g be a subalgebra of g and set 

b := prefj C $ c_. so(n) 

t := 3(b) the center of b, an abelian subalgebra of t 

J) = [b, b] a subalgebra of I. 

From a general theorem (see for example [KN63, Appendix 5]) which asserts that 
subalgebras of so(n) are reductive the following decomposition follows 

(9) b = t © T> and D is semisimple. 

Under the assumption that I) is the holonomy algebra of a Lorentzian manifold 
with invariant degenerate subspace of the holonomy representation in [BI93] now an 
important fact about b is proved which is an analogon to the complete reducibility in 
the Riemannian case. 

Theorem 3.1. [BI93] Let b := pre(f)olx(M, h)) the projection of the holonomy algebra 
of an indecomposable, reducible Lorentzian manifold onto the so(n)-component. Then 
b is completely reducible. I.e. there exist decompositions o/Rn in orthogonal subspaces 
and of b in commuting ideals 

Rn = EQ © Ei © . . . © Er and b = bi © . . . © br 
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where b acts trivial on Eo, bt acts irreducible on __t- and bt(__j) = {0} for i =- j . 

For the following we have to cite another general fact about subgroups of SO(n). 

Theorem 3.2. [KN63, Appendix 5] Let G C SO(n) connected. 

1. If G is semisimple so it is closed in SO(n) and therefore compact. 
2.IfG acts irreducible on Rn then the dimension of the center of G is smaller than 

two, i.e. Z(G) is discrete or isomorphic to S1. 
Together with (9) one concludes that an irreducible acting subgroup of SO(n) is closed 
in SO(n) and therefore compact. 

For a subalgebra f) of g with the property that it does not leave any non degenerate 
subspace invariant (e.g. the holonomy algebra of an indecomposable but reducible 
Lorentzian manifold) in [BI93] is proved a dinstinction in four exclusive types based 
upon the possible projections of f) on a, n and t. (The corresponding Lie groups to 
the algebras are denoted by the corresponding latin capitals.) 

1- PMf)) = n 

Type 1: pra(t)) = a. Therefore \) = (a© b) tx n and so H = (A x B) tx N. 
A __ R + and N __ Rn are closed and by theorem 3.2 also B is closed so that 
H is closed. 

Type 2: pra(tj) = 0 i.e. r) = b tx n, i.e. H = B tx N closed. 
Type 3: Neither Type 1 nor Type 2. 

In that case exists a surjective homomorphism ip : t —•> a, such that 

f) = ([®i>)ixn 

where [ := graph ip = {(<p(T),T)\T G t} C a®t. That means H = (Lx D)K 
N. D and N are closed. Now one shows that L and therefore H are closed 
if and only if Ker <p generates a compact subgroup of T. 

2. Type 4: prn(r)) 7- n i.e. f) does not contain n. Then exists 
(a) a non-trivial decomposition n = p © q _ _ R p © R9, 0 < p, q < n, 
(b) a surjective homomorphism ip : t —> q 
such that b C so(p) and (] = (U©() Kp C g where [ := {(ip(A),A) \A G t} = 
graph y> C q © t. Or written as matrices: 

/o 
OH ° 

0 X* 
0 0 

-X A + B 

MA) 0 

Ч>(AY \ 
0 
0 
0 / 

0 _ v * _ n n Aet,BeD,X€R" 

V° 
So H = (L x D) ix P with P isomorphic to Rp and again H and L are closed if 
and only if A'er (p generates a compact subgroup of the torus T. 

Further one observes that the non-triviality of the decomposition of n forces 
the center of b to non-trivial. 

Remark: 

1. In [BI93] examples of metrics for all types and especially with non-closed holo­
nomy groups of type 3 and 4 are given. 

2. From the commutator relation (8) it is clear that the only abelian indecomposable, 
reducible holonomy algebra has to be of type 1 or 2, both with jw>r) = 0. 
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Now one separates the two types with a parallel vector field as follows. 

Definition 3.1. A Lorentzian manifold with a lightlike parallel vector field is called 
Brinkmann- wave (see [Bri25], also [Eis38]). 

Corollary 3.1. An indecomposable, reducible Lorentzian manifold is of type 2 or 4 if 
and only if it is a Brinkmann-wave. 

The proof is clear since the condition for a Brinkmann-wave is equivalent to the 
existence of a one dimensional trivial subrepresentation of f) but this occurs only for 
the types 2 and 4. 

3.2. Conclusions for the existence of parallel spinors. We will now prove some 
first, purely algebraic properties for the components of f) := \)o\x(M, h) in relation to 
the existence of parallel spinors. 

With respect to the four types from the previous section the existence of parallel 
spinors gives an obvious restriction. 

Proposition 3.1. Let (M,h) be an indecomposable Lorentzian manifold with lightlike 
parallel spinor. Then (M, h) is reducible of type 2 or 4-

If further its holonomy algebra is abelian then it is of type 2, namely it equals to n. 

The proof is clear because indecomposable manifolds with parallel spinors are Brink­
mann-waves. 

We consider the Lie-algebras of both types 

f)i = bi tx n and rj2 = (0 © I) x p 

with bi := pre(f)i) C 6 C- so(n) for n + 2 = m and D a semisimple and t an abelian 
subalgebra of so(p) which commute with each other, n = p © q ~ Rn = 1RP © Rq for 
0 < p < n and [ := graph(4>) C t © q f o r 0 : t - + q surjective. We ask under which 
condition 

Vfc : = { » € Ai,TO_. |A;1 (!).)» = 0} 

is non trivial. 
First we can reduce the problem in the following way. 

Proposition 3.2. Let (M,h), x € M, * 0 ,K i , . . . ,-^n^n+i <* basis in TXM as in the 
previous section and (u(efc,... ,e0)|e = ±l,fc = [|]) a basis o/Ai>m_i = Ai,n+i. Then 
the following holds 

1. V~ = span ({u(ek,... ,ei,l)|et- = ±1}). 
2. Let bi=prtfn, i = 1,2. Then dimV^. = |dimVB.. 

Proof. 1.) We consider the following orthonormal frame in TXM ~ Rn+2: 

e_ := -~=(t0 — tn + i) timelike unit vector 
V — 

e+ := "T=(*o + tn+i) 
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and the e i , . . . , en. In this basis the isotropy subalgebra g of t0 in 50(1, ra — 1) D g D rjt 
has the following shape 

0 0 X* 
0 0 X* 
X -X A 

(10) 0 0 X* \ mthX eRn,Aeso(n). 
\ X -X A J 

For the standard basis in so ( l ,m - 1) (see (4)) and e_,e+,ei , .. .en in R n + 2 it is n = 
span (£_ t- + 15+ t\i = 1 , . . . , n) and 

n := A_1(n) = span(e_ • et + e+ • et = -e t - • (e_ + e+), i = 1 , . . . ,n) . 

Since the et's are isomorphisms it is Vn = VRe..(e_+e+) = VR(e_+e+) and from 

(e- + e+) • _ ( £ * , . . . ,£o) = (e0- l)u(eky... ,eu-eQ) 

follows the conclusion. 
2.) Since bt c Spin(n) = span (e t - e j | l <i<j<n) does not act on u(e0) in 

-(ejt , . . . , £0) it is clear that V£. has a basis of the form (vf, u f , . . . V+, vf) with 
v? £ span ({u (ek,... , e1? ±1) |et = ±1}) . 

Then the t;^ lie in Vz. for both i. We have to show that they are a basis of both. 
For i = 1 this is clear because of V̂ - = Vn fl V£. 
For i = 2 one takes a u 6 K 2 . Since it has to be in Vp it must lie in 

span({u(£* , . . . , £ i , l ) | £ t = ±1}) and therefore in V$. This entails i; £ Vj. The as­
sumption to v gives also i! G V£ a n (^ therefore finally v £ 17̂ . Thats why it is 
Vjj-2 = Vj; fl Vji which is spanned by the vf. ---

As a corollary we obtain a sufficient condition for the existence of parallel spinors 

Corollary 3.2. Let(M,h) be a simply connected, indecomposable, reducible Lorentzian 
manifold with \)0\X(M, h) = n. Then (M, h) admits parallel spinors with light like Dirac 
current. 

Remark: 

1. Since the indecomposable reducible Lorentzian symmetric spaces have holonomy 
n (see [CW70], also [BI93] for the result) this corollary gives a first group of 
examples of indecomposable Lorentzian manifold with parallel spinors. In section 
4.3 we give more examples and describe these spaces further. 

2. The parallel spinors resulting from the basis of Vn namely ^(c,.,....*!) := 
[q,u(ek,- • • , £ i , l ) ] are pure. That means the complex dimension of the space 
{Z € TMC\Z - v?(€fc e i ) = 0} is maximal, that is equal to [--±2] (see [KatOO]). A 

basis of this space is given by f £0, ex — ^ i e 2 , . . . , en_i - i£[n]en). 

3. The second point of the proposition reduces the problem to find subalgebras 
t)i C 50(1, m — 1) with Vj. 7- 0 to the problem to find subalgebras b C 5o(n) with 
V£ 7- 0 where here A71 can be understood as the differential of the twofold covering 
A : Spin(n) -> SO(n) since the representations are equivalent Ai,m_i c_ Ai , i®A n . 

From Theorem 3.1 one obtains the following for b. 
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Propos i t ion 3.3. Let b C 6 -*-- so(n). 

1. Lei V ^ 0, E n = F0 © -^i ® • • • © -^r and b = bi © . . . © br iAe decomposition 
in irreducible subrepresentations due to Theorem 3.1. Then for i = 1 . . . k it has 
to be dim Ft = 4kt or 3(bt) = 0. 

2. For b = pr*r) and rj the holonomy algebra of an indecomposable Lorentzian mani­
fold with a parallel spinor. If b is abelian, then it is trivial. 

Proof. 1.) From Theorem 3.2 we have for irreducible acting bt- that the center of bt 

is trivial or one-dimensional, i.e. dim Ft = 2fct and t,- = ^(b t) = RJ with J2 = — Id. 
J is of the form 

J 

/ i o o o \ 
0 j o o 
o o •• o 

V o o o j J 

withj=(_°l J)-

Now it is J := A+
 l(J) = YMLI e 2 / - i ' e2/ and therefore 

Jw(£it.,... ,£i) = - ( ^ + . . . + £i)u (£*,-,... ,£i) • 

In case that V^ 7- 0 the kt's must be even. 
2.) Let b given as in the assumptions. From Theorem 3.1 we have b = bi © . . . © b r 

and R n = £1 © . . . © Kr © K0 such that b acts trivial on E0 and (bt-, £ , ) , i = 1 . . . r 
are irreducible representations. Since b is abelian, so are the b t 's, but this entails 
bi ~ so(2) and Ft = R2, i = 1 , . . . r or b» trivial. Now the second proposition follows 
from the first. • 

4. BRINKMANN-WAVES WITH SPECIAL HOLONOMY AND PARALLEL SPINORS 

4.L T h e local form of the metric of an indecomposable , reducible Lorentzian 
manifold. In [Ike96] the following theorem about the local form of the metric is 
proved. See also [Bri25] and [Eis38] for the second part. 

Propos i t ion 4 .1 . [Ike96] Let (M, h) be an indecomposable, reducible Lorentzian mani­
fold. Then for every point there exists a coordinate system (U, £ := (zo, Xi, •••» x-m £n+i)) 
such that the metric h has the following form on U 

n n 

h = 2 dxodxn+i + y^Uidxidxn+i + /rfxn + 1 + y . Qijdxi dxj 
.=1 t,i=i 

where /,u,-,#y € C°°{U) with ^g{j = -^m = 0. 
If (M, h) is of type 2 or 4, that is a Brinkmann-wave, then one has in addition 

dxo 

It is clear that in case of a Brinkmann-wave the vector field do := -^- corresponds 
to the parallel lightlike vector field. 

If one considers small n-dimensional submanifolds in U through x = £-1(.Xo,£i, 
. . . , xnyxn+i) defined by 

W ( x o , x n + 1 ) : = { r 1 ( ^ o , y i , . . . y n , a ; „ + i ) | ( y i , . . . y n ) G R n n C ( [ l ) } 
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then one can understand the gij as coefficients of a family of Riemannian metrics gXn+i 
and the wt- as coefficients of a family of 1-forms (f>Xn+l on W(X0}Xn+x) which depends on 
a parameter xn+\. 

In this sense [Ike96] proves the following 

Propos i t ion 4 .2 . Let x = (Tl(xo,xu... ,xn,xn+i) G W{x0tXn+l) C U. Then it is 
Holx(W{x0tXn+lhgXn+l) C prK (Holx(M,h)). 

Remark: 

1. In general there is no equality. In [Ike96] is given an example of a 7-dimensional 
Lorentzian manifold for which gXn+l is flat for all x n + i , b is 3-dimensional and acts 
irreducible on R5. But due to the Berger classification b cannot be the holonomy 
algebra of a Riemannian manifold which has to be so(5) in case of irreducible 
action. That means that there is no coordinate transformation such that the 
holonomy of the transformed g corresponds to b. 

2. It is known (see [Eis38], [Sch74]) that every Brinkmann-wave can be transformed 
into the following shape 

n 

(11) h = 2 dxodxn+i + y . gijdxi dxj 
t,j=i 

where g^ G C°°(U) with -^-gij = 0. One can say that this makes the dependence 
of g^ on z n + i more complicated. 

From proposition 4.2 one obtains the following corollary for the existence of parallel 
spinors. 

Propos i t ion 4 .3 . Let (M,h) be a simply connected Brinkmann-wave with parallel 
spinor. Then all metrics gXn+l from the family of metrics given by the local form of h 
admit parallel spinors. 

For the Ricci-tensor one can prove the following. The proof is due to [FO99]. 

Lemma 4 .1 . Let (M, h) be a Brinkmann-wave given in the local form h = h(f, u.-,g.j). 
Its Ricci-endomorphism is totally isotropic if and only if Ric(di,.) = 0. i.e. Ric = 
r dxn+i o dxn+i for a function r. 

4.2. Special Br inkmann waves. In this section we will prove a theorem about a 
special class of Brinkmann waves (M, h). We set the following assumption on (M, h): 

1. For every x G M exists a coordinate neighborhood, such that h has the following 
form on U 

h = 2 dx0dxn+i + <&rn+1Gfon+i + /d-cn + 1 + c2 g 

where ^ / = 0, (£Xn+1 a 1-form on VV(ro,Xn+1) depending on x n + i , g a metric in 

W(r0,xn+i)? n ° t depending on a:n+i and c a function of xn+\. 

Then it is clear that Holx(W{x0iXn+l),g) con3Uiae Holy(W{yo,yn+l),g) for both 
JV's contained in the same coordinate neighborhood U. 

2. We assume furthermore, that this must hold also for JV's in different coordinate 
neighborhoods U and V. 
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3. Finally every <f>Xn+l should be closed: d<j>XnJrX = 0. Since (j)Xn+1 is understood as a 
family of forms on W{xo>Xn+l) the differential is taken with respect to the variables 
X\ ,... xn. 

Then holds the following 

T h e o r e m 4 . 1 . For f sufficient general (e.g. d\f 7- 0) andx = £ _ 1 (x 0 ,X i , . . . x n , x n + i ) 
it is 

Holx(M,h) ~ Holx(W{x0)Xn+l),g) K R». 

Proof. First we will calculate the local curvature forms. We notice that for a 
Brinkmann wave with parallel vector field T = d0 exists a reduction of the bundle 
of orthonormal frames and the Levi-Civita connection to the following bundle 

(12) V := {(X.,X+,Xu...Xn) e 0(M,h)\h(X^,T) = Thh(X{,T) = 0} 

and structure group K \x N ~ SO(n) \x Kn realized as subgroup of 5O(l,rz + 1) as in 
formula (10). Now we formulate a 

Lemma 4.2. Let s = ( s _ , s + , s i , . . . ,sn) G T(U,V(M,h)) be a local section around 
a point x = £_ 1(xo,x, xn+i) which lies in the coordinate neighborhood Vx. Set W := 
U C\ W{x0tXn+l). Then s := ( s i , . . . ,Jn) with st := prTw($i) is a local section in the 
bundle of orthonormal frames for (W,g). For the connection and curvature 0 and 0 
resp. u and SI of g resp. h holds 

1. prS0(n) (cJa(dn+i)) = prso{n) (us(d0)) = 0 and 
2. Prso{n) (us(X)) = 0*(X) for X E TXW\ 
3. prso[n) (ft'(dn+i,.)) = prso{n) (Sls(d0,.)) = 0 and 
4. prso[n) (W(X,Y)) = Q'(X,Y) for X,Y G TXW. 

Proof. First we get rid of the factor c2(xn+i) by a change of coordinates: 

x0 := x0 xn+i := xn+i x t := c(xn+i)x t . 

In this coordinates hij = gij independent of xn+i and cj> = ^ Yl^i uid^i if <t> = 
~~^l=lUidxi. Since ~ = -— one gets that <$> is closed, too. From now on we drop 
the bar. 

Let s = ( s _ , s + , s i , . . . ,sn) G T(U,V(M,h)). Because of h(d0,Si) = 0 it is clear that 
Si has no dn+i-part. We can write in the coordinate neighborhood 

Si = ^jT tikdk +(ido. 
*=i 

Because of the local form of the metric the ftJ are independent of x0 and xn+i- So it is 

(13) [a0,5 t] = [9n+i,3 t] = 0 . 

On W one has s t = 5t-. 

We now consider families of n-dimensional submanifolds W{y0tV \ near W{x x \ = 
W and calculate the relevant terms for the components of us in x: 

1.) h(-7TSi,Sj) = h(VTSi,Sj) = h([T,Si],sj) = 0. 
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2.) For X € TKV(yo,yn+l): h(Vxsusj) = h(Vxs{,Sj) = 

= ^ ( S i ( / i ( X , S } ) ) ^ 

= \ (h (g(X, sj)) - sj (g(X, h)) ~ 9 ([*, i}], S,-) + g ([X, i t] , ^ ) + fl (&, St], X)) 

= .^(V^ii^",). 

3.) Since h(Van+1Si,<90) = 0 it is MVan+1s.,Sj) = /-(Vdn+1Si,S}) and 

^(Van+1i,-,ii) = 2(5«'( / l(9n+i,ij))-ij(M3n+i,i,))) 

= 2 ( ^ ( * ' ' ^ ) ) " ft (t5n+i,ij],i,) + h ([9n+i, Si],ij)) 

= 0. 

So we get on W: 

pr60{n)(Lj3(X)) = Y, WxsusAEij 
l<i<j<n 

0 for X = d0 
W ] 0 for X = an+i 

0'(X) for XGTJV. 

We now prove the same for the local curvature form. 

1. For K, Y £ TJV it holds (because of the result just proved and because of the 
commutator relations in so(n) tx lRn): 

preo{n)(W(X,Y)) = p r 8 0 ( n ) ( ^ ( X , Y ) + i[u>'(X),a;'(Y)]) 

= d8'(X,Y) + i[pr60(n) (u>'(X)) ,pr,0{n) (u>'(Y))) 

= d6s(X,Y)+l-[0s(X),0s(Y)} 

= G'(X,Y). 

2. For X = d0 and Y = dk or = dn+1: 

pr.o(n)(«s(5o,y)) = £ (*(MVy3.,*i))-Y(MVflb^,*i)))i5.i 
l<i<i<n 

= 0. 

3. for X = dn+1,Y = dk: 

pr,0{n) (Sl'(dn+Udk)) = £ (a»+» (MVe.,*, 5i)) " dk (A(V*.+.*. *i))) £,i 
l<t'<i<n 

= 0. 
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This proves the assertion of the lemma. D 

Now we prove the proposition. Let x G VX a coordinate neighborhood and x G 
W(XOiXn+l). gx denotes the Riemannian part of h in Vx. 

The assumption to / ensures that the whole E n is generated so that we have to 
show that 

Pr60(n) {t)0lx(M,h)) ~ i]0\x(W(X0iXn+l),g
x). 

The inclusion D is clear because of proposition 4.2. For the other direction we use the 
Ambrose-Singer holonomy theorem. Let p G VX(M, h) and V"(p) the holonomy bundle 
of p with respect to u) the Levi-Civita connection. We have then by Ambrose-Singer 

t)0\x(M,h) ~ rjoip(u;) ~ {Qq(X,Y)\q G V»(p),X,Ye ThqP] . 

Let q G V0J(p) fixed and ?r(q) =: y G M. We now find a local section s G T(Uy, V(M, h)) 
such that 

s(y) = q and (ds)y(X) G ThqV(M,h) for X G TyM. 

Now we choose a coordinate neighborhood Vy such that Vy C Uy. As in the previous 
lemma we have a section s in the bundle of frames over W(y0iVn+l) =: W orthonormal 
with respect to gy. 

Because of the choosen properties of s one gets 

PrS0(n) {ttq{Yl, Y2)) = Prs0(n) (ftj(-*l, J-"2)) 

LemmaA.2 f 0 * ( X l , X 2 ) for Xi = dn(Yi) G TyW 
[ 0 otherwise. 

We consider now the holonomy bundle Pe(s(y)) of the bundle P of ^-orthonormal 

frames over W with respect to 9. For q G (P9(s(y))j we have q = RA(s(y)) with 

A G Hols(y)(6). Now we can continue the equations from above 

ey(XuX2) = Ad(A~1)(Oq(dRAods(Xl),dRAods(X2))) 

= Ad(A^) Gq {prThp (dRA 0 ds(X1)),prTh^ (dRA o ds(X2))"j 

e Aut(wKy)(6)) e wHy)(9) 

.. 2nd assumption „. 

So we have for an arbitrary q G V"(p): 

prS0(n) (Slq(YuY2)) «-> ^[x(KV (xo, rn+l),^) 

and therefore 

prw(n) (\)0\x(M,h)) ^ t)olx(W(xo,Xn+l),g
x) 

which is the proposition. Q 
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4.3. Brinkmann waves with abelian holonomy. We have seen that one class 
of examples of manifolds with abelian holonomy, i.e. ~ Rn are locally symmet­
ric Lorentzian spaces. Here we will give necessary and equivalent conditions for a 
Brinkmann wave to have abelian holonomy. Therefore we have to consider a very spe­
cial class of Brinkmann waves which are generalization of the so called plane waves. 

Definition 4.1. A Brinkmann-wave is called pp-manifold if for its curvature tensor 
holds the following trace condition 

(14) <r(3|5)(4l6)(^®W) = 0. 

Schimming [Sch74] proved that this condition is equivalent to the existence of local 
coordinates such that the metric h has the following form 

n 

h = 2 dxQdxn+i + /rf-Cn+i + / ^ dx] with dof = 0 . 
t=i 

We now can prove 

Theorem 4.2. A simply connected Brinkmann wave has abelian holonomy Rn if and 
only if it is a pp-manifold. 

Proof. Lets assume, that a Brinkmann wave (M, h) has holonomy Rn. That means 
that the holonomy bundle V"(p) has the structure group Rn. For p € Vx(M,h)) the 
holonomy bundle has fibres 

(?"(p))y = { P » l 7 from x toy}. 

The action of Rn on (V"(p))y is given by 

/ N ( 1 , * ) / . * « * X 
( s _ , S + , S i , . . . , S n ) l-r ( s _ , S + , S i , . . . , S n ) 

with Si = Si + Xi(s- + s+) = si + X{T and 5T = «T ± ( £ n
= 1 Xtst- + \XlX T). But 

this means for (s_ ,s+ ,Si , . . . ,sn) 6 CPw(p))y that 

V-Hi)* = /*(7(1)) T which gives n(si,.,.,.) = 0 

and 
n 

V^(1)3T = ± S 9i{lW)*i + A(7(l)) T which gives K(X, Y)s+ G R T. 
t=i 

So we can check the trace condition with an element from (Vu(p)) : 

tr{3i5){4i6)(n®n)(x,Y,u,v) = -ft(7^(K,y)s_,7^(U,y)s_) 
+/i(/^(X,y)s+,7^(U,V)s+) 

= o . 

This gives one direction. 
The other direction follows from the local form of the metric of a pp-manifold and 

theorem 4.1. D 
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4.4. More examples with parallel spinors. In this last section we will construct 
some examples besides pp-manifolds, analogous to the results of theorem section 4.2. 
We will see that in case of holonomy groups which admit parallel spinors one can 
weaken the conditions of theorem 4.L 

Instead of local considerations in this section we start with a n-dimensional manifold 
N and consider R2 x N 3 (t,r,x) equipped with a family of Riemannian metrics gr 

and of 1-forms <j)r on N and a function f of r and x G N. 
In a first step one constructs a Brinkmann-wave (M,h) 

(15) (M := R2 x N, h = 2 dr dt + fdr2 + <j>rdr + gr) 

with parallel light like vectorfield T := J .̂ 
We denote by p : M -» N the projection, by dp : TM -> TN its differential. 
Now we consider the following fibre bundle over R x N with fibres 

O(N) := {(Xu...,Xn,r)\ r € R and (Xu... ,Xn) 6 G(N,gr)} 
I I 

RxN 3 (r,n(Xu...,Xn)) 

and structure group SO(n). A section in this bundle can be understood as a family 
of sections sr into 0(N,gr) with parameter r. 

dp gives a map between 0(M,h) and O(N) denoted also by dp defined fibrewise 

(0(M,h))(trtX) 9 (X.,X+,XU... ,Xn) fr (dP{t^)(Xl),...,dp(t,r,x)(Xn),r) e O(N) 

such that the diagramm commutes 

0(M,h) % 0(N) 

I I 
M >^)~(-.*) R x i V . 

To a section a := ((a-,a+,a\,... ,an) £ T(0(M,h)) the map dp asigns a section 
denoted by dp(a) G T(C(N)) and defined by 

sr := dp(a) : (r,x) K> (dp^^a^t^^x)),... ,dp{t^x)(an(t,r,x)),r) . 

This definition is correct, i.e. independent of t because of the following considerations: 
If °i = E"=i 6 i - | j + «<|: + bih then it is dp^^t, r, x)) = £ J = 1 ^(t, r, *)-%(*). 
But from the local form of the metric follows that the dj are independent of t. 

One can describe this situation in an equivalent way if one considers TN as a 
subbundle of TM by restricting to vectors with vanishing -^ and Ĵ  components. 
A vectorfield X € T(TM) over M then defines a vectorfield prT7V(X) € Y(M,TN) 
also over M. So we can asign to a section a G T(0(M, h)) a family of sections 
(prTN o (Jx,... ,PTTN o &n) into 0(N,gr) since prjyv o crt- is independent of t again. 

Now we will give an equivalent condition to the existence of parallel spinors on 
(M,h). Therefore we denote as in the previous section the connection corresponding 
to gr by 6r and p^r the parallel displacement along a curve in N C M, i.e. with 
constant r and t component. 

Furthermore we define a family of 2-forms on N. Let sr = (s\,... , sn) be a family 
of sections into 0(N,gr), s* the dual vectorfields. Then we define a family of 2-forms 
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on N depending on the parameter r 

Sr'-=2 _C (M[^^»]^i)-/i([^:^j],.5t)Js*A.s*. 

In the following the hat over the symbol of a section into orthonormal frame bundles 
denotes the lift into the corresponding spin bundle. 

Propos i t ion 4.4. Let (M, h) be a Lorentzian spin manifold given in form (15) with 
arbitrary family gr. Then (M, h) admits a parallel spinor ip if and only if(p is of the 
following form: 

(16) ip = [a, v ® u(\)\ with the property that 

<pr := [sr,v\ is a family of parallel spinors of(N,gr) with sr := rfp(cr) and v £ C7°°(R x 
N,An) independent oft satisfying the equation 

(17) 0 = — (<fir) + («**• + * r W r • 

This is equivalent to the condition that the family of parallel spinors on N is given by 

(18) <pr = [(pe
1
r(p)),v\ where 

1. p £ 0(riX)(N), 7 curves in M with constant r and t component and 
2. v £ C°°(R, V[)oix{N,g)) satisfying the equation 

p\ 
(19) 0 = — ( v ) + ^T (d^SiiS^ + S^Si^Sj^ei-ej-v. 

l<i<j<n 

Proof, ip is a parallel spinor on (M, h) iff <p = [f,iv ® w(l)] where r = p"(p) with p 
an orthonormal basis in T(t>r>x)M and uj £ VJ, (see proposition 3.2). 

Since V^n = span(u(£fc,... ,£i , 1)) we have for (A + X) £ spin(n) tx R n 

(*i fn+i), (A, K) (t; ® ti(l))- = ( * n ) , (A)(V) ® ti(l) . 

Since expG L ( A l n + i ) o ($i,n+i)« = $i,n+i o expSpin(n)r<R„ we have for (A, X) £ Spin(n) x 
Rn the following 

* i t n + i ( -4 , * ) ( „ ® ti(l)) = *»(-4)(t;) ® t i ( l ) . 

For a section a = (cr_, (7+ ,(7i, . . . ,crn) we notice the relations h(aT,T) = + 1 i.e. 
Jj = T = cr_ + cr+ parallel and one gets • 

0 = h(VX((7_+(7+),<7t) 

(20) = h(Vxcr_,(7t) + /i(Vx(7+,(7t) and 

0 = /i(V*(<7-+<7+),(7+) 

= /l(Vx<7_,(7+)+/l(Vx<7+,(7+) 

(21) = / l (V^(7_, (7 + )+K ( / l ( (7 + , (7 + ) ) . 
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So we have for a parallel spinor with r and w as above 

(f = [f,iv®u(l)] 

= [f-(A,X),*n(A)(ti;)®u(l)] 
=: [a,v®u(l)]. 

The equation for the parallelity becomes (with e_,e+,ei,.. .en the standard basis of 
En+2). 

V|[o-,t;®tx(l)] 

[o-, X(t;)®u(l)--(/i(Vxcr_,c7+)e_.e+.(t;®ti(l)) 

- 2 [y^2hi^x^-^i)e- - e t —^/i (VxO -+ ,a t ) e+ .e t ) • (v ® u(l)) 

+ 2 E ^(Vxcr tJ(7 i)e t-.e j-(t;)®ti(l))] 

0 

l<i<j<n 

(20__(21) 

(e_+e+__u(l)=0 

r 1 
<T, X (v) <g> u(l) + - _T A (Vx^+, a,-) (e_ + e+) • a • {v ® «(1)) 

+ 2 _3 A (Vjci-j.^-Jcj-ej •(»)»«(!)] 
l<»<j<n 

&,X(v)®u(l) + - ___ h(V^a,-,<Ti)e,-ei-(u)®«(l) 
l<t<j<n 

Since for K E TN holds h(S7x<?i,o~j) = h(VxSi,Sj) = g(V^5t,5j) with st = pr™ O crt-
one gets 

o = v ^ 

= [c>,(K(t;) + i J ] g(V^t,5i)et.ej.(t;)]®^l)]. 
\ l<t<j<n / 

But this is the equation for a family of spinors ipr := [s,v], with Si = pr?N ° <?{ to be 
parallel with respect to gr. 

In case X := T = ^ it is h(VT<rt-,crj) = 0 because of [T, crt] = 0. So one gets 
- » - 0 . 

In case K := Jj- the parallelity of the spinor is equivalent to 

° = M^W + 5 E ft^cr.-.^e^e,-.^))®^)] 
\ l< t< i<n / 

oszu -=ormu a r^ / , ^ + \ ^ ^{s^Sj) + <£,,($,•, Sj)) et- • e, • t; I ® w(l) 
\ l<»<J<n / 

where st = Prjjv o crt again. But this is equivalent to the equation 
r\ 

• g^(<pr) + {d<f>r + Sr) • fr = 0 
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for a family of spinors ipr := [s r , v(r)] on N. This gives the proposition. 
For the equivalent formulation one writes equation (17) with the representant <pr := 

[(p*r(p)),u]. Then v must satisfy v G C°°(R,V8u{n)) and equation (19). • 

Now we will assume that gr is a family of Kahler metrics with complex structures 
Jr on N2n. Then the bundle V(M,h) defined in formula (12) reduces to the bundle 
U(M,h) with fibres over y = (t,r,x) 

Uy(M,h) = {(X.,X+,Xu...X2n) € Vy(M,h)\dPy(X2k) = Jr(dPy(X2k^))} 

and structure group U(n) tx R2n. Here we use the same realisation of U(n) in SO(n) 
as in [BK99]. Analogously we define the bundles U(N) and U(N,gr) which are the 
{/(n)-bundles. 

We now extend Jr on TM in a trivial way, i.e. Jr (j^) = Jr (-j^) = 0. We consider 
the family of 2-forms Xr on TN : 

(22) Xr(X, Y) := d<f>r(JrX, Y) + d<f>r(X, JrY) + 6r(JrX, Y) + 6r(X, JrY). 

with 6r the above defined family of 2-forms on N. It is clear that 

(23) Xr(JrX,JrY) = -Xr(X,Y) 

(24) Xr(X,JrY) = Xr(JrX,Y) 

(25) i.e. Xr(X,JrX)=0. 

That means that Xr defines a family of 2-forms with complexification in A(2'°'N. 
We now show that the vanishing of the projection of VxJ on TN is equivalent to 

the vanshing of Xr and to the fact that Holx(M, h) C U(n) tx E n . 

L e m m a 4 .3 . Xr = 0 if and only if Holx(M,h) C U(n) tx R n . 

Proof. We consider an arbitrary local section s = ( s _ , s + , s i , . . . s 2 n ) € T(U(M,h)). 
If we consider T N as a subbundle of TM over M we can define vector fields s{ :=-
prrN ° Si : M -> TN, i = 1 , . . . 2n. We show that 

UJS(X) C u(n) ix E 2 n i.e. prso{n) (u>s(X)) C u(n). 

Again it is 

prB0{n)(u>s(X))= ] T h^xs^s^Eij^ £ M V ^ s ; ) E t i . 

l< i< j<n l< i< j<n 

It is 

pr60(n) (o;5(K)) C u(n) 
/i(Vx52fc_i,s2/-i) = n(Vxs2fc,52/) and 

h(Vxs2k-i,s2i) = h(Vxs2i-i,s2k) 
for s2i = Js2t+i, i = 1 , . . . , n 

^ ( ( V x J ) ^ , ^ ) = 0(2 = 1 , . . .2n) , le.prTN(VxJ) = 0. 

Since 0 = [^,s t] = V a.st- this is obviously true for X = -£-. 
Because Jr is integrable on N this holds also for X € TN . 
We show that for X = ^ this is equivalent to Xr =- 0. 
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Since Jr is extended on TM in a trivial way, i.e. J ( ^ ) = J (-^-) = 0 we get 

(26) h (J (Vxsi), ij) = -h (V,J., J (sj)) . 

The rest of the proof is a direct calculation with the help of the Koszul-formula. • 

If we now assume that (M, h) with a family of Kahler metric gr admits parallel 
spinors then gr must be a family of Ricci-flat Kahler metrics. In [BK99] also is shown 
that 

(27) Vsu{n) = {veAn lA^fctifrOXtO = 0} = span{tz (e,... ,e) \e = ±1} . 

By the proposition parallel spinors are given by (pv with v £ C°° (R, Vsu(n)) and equa­
tion (17). 

We now prove the following 

L e m m a 4.4 . Let tp := [s,v] a family of spinors on N with s 6 T(U(N)) a family of 
sections in U(N,gr) and v G C°°(N x R, Ku(n))- Then holds the following 

(28) (d<f>r + Sr)-<p = iel (trJrdcf)r + trJrSr) <p - -\r ' V ) 

n 

where trJrd(j)r = y^d<f)r(s2k-us2k) 
k=i 

n 

irjrSr = )jSr(s2k-i,s2k). 
k=i 

Proof. We show this equality for ipr = [sr,u(e,... ,e)] and sr := ( s i , J r S i , . . .sn,Jrsn,r) 
er(U(N)). 

First we notice that 

e2*-i • e2i-iu(e,... ,e) = -e2k • e2iu(e,... ,e) = 

= (-l)l-k-1el-ku(^,... , £ , ^ , . . . 6 , . . . ,6,^,6,... ,^€j 

n l k 1 

e2ik-i • t2lu(e,... , e) = e2k • e2l-Xu(e,... ,e) = 

= -i (-\)l-k-xel-k-lu(e,... ,e,-e,e,... ,e,-6,e,... ,e). 

Then we calculate 

Xr-V3 = [5 r , ^ Z Xr(5,- ,3j)e t - -e j -u(e , . . . ,e)j 
l<t<j<2n 

= Mr, 22 Xr(^2k-i,s2i-i)(e2k-i • e2/_i - e2k • e2/) • u(e,... ,e) 
l<k<l<n 

Kk<Kn 
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l-k-l£l-k = 2 £ (-!)'----« 
l<fc<Kn 

\i z(S(s2k-i,s2i-i) -S(s2k,s2l) + d(j)r(s2k-i,s2i-i) - d<i>r(s2k,s2t)) 

+ S(s2k-i,s2i) + 6(s2k,s2i-i) + d(f>r(s2k-i,s2l) + d<j>r (s2k,s2\-i)\ 

Sr,U\£, ...£,,—£,£,.. . ,£,—£,£,... ,£) . 

Now it is for ipr = [sr, u(£,... , e)] 

(d<f>r + Sr) • Ipr 
n 

= Sr>2^ (d(j>r(s2k-l,S2k) +Sr(s2k-i,s2k))e2k-i ' e2k -u(£,... ,£)> J 
k=l ^ 

=ieu(e}... ,e) for all k 

+ Y, (-l)'-k-1e'-k 

l<k<l<n 

\d(j)r(s2k-i,s2i-i) - d(j)r(s2k,s2i) + Sr(s2k-i,s2l-x) - Sr(s2k,s2i) 

- i £(d(j>r(s2k-i,s2i) + d(j>r(s2k,s2l-1) + Sr(s2k-i,s2i) + Sr(s2k,s2l-i))j 

[sr,u(£,... ,£,-£,£,... ,£,-£,£,... ,£)] 
i £ 

= i £ (trJrd<j>r + trJrSr) <pr - -^Xr • W • 

This is the proposition. • 

Now we can prove the following 

Theorem 4.3. Let (M := 1R2 x N2n, h := 2drdt + fdr2 + (j)rdr + gr) be a Lorentzian 
manifold where N is a n-dimensional manifold with a family of Riemannian Kahler 
metrics gr and a 1-form <f>r. 

1. If(M,h) admits a parallel spinor then gr is a family of Ricci-flat Kahler metrics 
and if Holx(N,gr) = SU(n) for all r then the parallel spinor is given via formula 
(16) by a family of parallel spinors ipr with respect to gr satisfying the equation 

(29) 0 = f -r- + i\ e (trJrd(j)r + trJrSr) J <pr - — Xr • ¥r • 

In particular this family is given by ipr := [p*r(p), v(r)] with v € C°°(R,Ku(n)) 
satisfying in case n 7-= 2,4 the equations 

(30) 0 = I Tr + i e [ ^2dMs2k-i,s2k) + Y^Sr(s2k-i,s2k) 1 J v and 

(31) 0 = — ^ Xr(si,Sj)ei-erv. 
l<i<j<2n 
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2. If Holx(N,gr) C SU(n) then a spinor given by a family of parallel spinors with 
respect to gr satisfying equation (29) is parallel. 

Proof. From the existence of a parallel spinor on (M,h) it is clear that the family gr 

of Kahler metrics must be Ricci-flat. 
The parallel spinor ip is given by a family of parallel spinors ipr with respect to gr due 

to equation (16) satisfying (17). Since Holx(N,gr) = SU(n) for all r it is ipr = [s,v] 
with v G C°°(R, Ku(n)) so that we have by the previous lemma the formula of the 
proposition. By excluding the cases n = 2 and n = 4 the formula (29) is equivalent 
to both algebraic conditions (30) and (31) with tpr written as in the proposition. The 
other direction is clear: a given <pr family of parallel spinors over the family of Ricci-
flat Kahler manifolds with the additional equation defines a parallel spinor on M by 
the previous lemma and proposition. n 

In the following proposition we give sufficient conditions for the reduction of the 
Levi-Civita connection u> to the bundle U(M,h). 

Corollary 4.1. Let (M,h) be a Brinkmann-wave as just constructed with the addi­
tional conditions 

1. gr = g and Jr = J both independent ofr, 
2. (d<t>r)c G A ( U ) N i.e. d<f>r(JX,JY) = d(j>r(X,Y) for X,Y G TN. 

Then the Levi-Civita connection reduces to the U(n) K R2n bundle U(M,h), 
i.e. Holx(M,h)cU(n)*R2n. 

Proof. Because of the first condition it is [j^.s.] = 0 such that 8r = 0. The second 
gives d(f>r(JX, Y) + d<f>r(X, JY) = 0 such that Xr = 0. Then we apply lemma 4.3. • 

Now we will give sufficient conditions in that setting for (M,h) to admit parallel 
spinors. 

Corollary 4.2. Let (M,h) be a Brinkmann wave as in the previous corollary with the 
additional condition that g is a Ricci-flat Kahler metric and 

n 

trj (d(j>r) := ^ d(t>r(s2k-i, Js2k-i) = $ 
k=i 

where d is a function of only r. Then (M,h) admits parallel spinors. 
IfHolx(N,g) = SU(n) then Holx(M,h) = SU(n) x Rn. 

Proof. The proof follows from the theorem. Equation (29) becomes 

Writing tp := y>v = [s,v] with v G Ku(n) this gives 

9v 
0 = — + ied. 

Or 
Written v in the basis u ( l , . . . ,1) and u(—1,... , —1) of Ku(n) this is a pair of ordi­
nary differential equations in two functions of r which is solvable so that we get the 
proposition. 
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If the holonomy of g equals to SU(n) so the holonomy of (M, h) contains SU(n) txR2n 

and must properly contained in U(n) tx R2n which gives Holx(M,h) = SU(n) tx R2n 

since dim U(n) = dim SU(n) + 1. • 

By formula (11) in an above remark it is clear that there exists a coordinate trans­
formation such that 

h = dt dr + fdr2 + gr 

with gr a family of Ricci-flat Kahler metrics. 
Easily we get another class of manifolds with parallel spinors. 

Corollary 4.3. Let (M,h) be a Brinkmann-wave constructed as above with additional 
condition that (N,g) is a hyper-Kahler manifold with complex structures I,J,K = IJ 
and 

d<t>r(X,Y) = d<j>r(IX,IY) = dcf>r(JX,JY). 

Then Holx(M,h) C Sp(n) tx R4n. 

Necessary conditions for the existence of parallel spinors on a Brinkmann-wave de­
termining the holonomy group until now are only known in low dimensions. Bryant 
([Bry99a] resp. [BryOO], see also [FO99]) has recently proved that for dimensions 
m < 11 the maximal groups admiting parallel spinors are all of the form 

Riemannian holonomy with parallel spinors tx Rn, 

i.e.: R,E2 ,R3 ,5p(l) K R4,(SP(1) x 1) tx R5,SU(3) tx R6,C72 tx R7,Spin(7) K R8, 
(Spin(7) x 1) tx R9, but it is not known whether all subgroups can be obtained in this 
way. The example of Ikemakhen in [Ike96] which is not of this form does not admit 
parallel spinors. 

Bryant also shows in [Bry99b], resp. [BryOO] the following. For an 11-dimensional 
Brinkmann-wave (M,h = dt dr + fdr2 + gr) with a family of Riemannian metrics, the 
condition to h to have holonomy (Spin(7) x R) tx R9 is equivalent to the fact that gr 

is a conformal anti-selfdual family. This means that the family of the Spin(7)-defining 
4-form 0r satisfies ^0r = a 9r + T with a function a and an anti-selfdual 4-form T. 
This condition is locally trivial, i.e. for every given family of Spin(7) metrics one can 
find diffeomorphisms such that the family of the transformed metrics with Spin(7) 
holonomy is conformal anti-selfdual. 

Another class of metrics was obtained by Figueroa O'Farril who proved in [F099] 
the following. Let (M,h) be a Brinkmann-wave and (M,g) a Riemannian manifold 
and a € C°°(M) but only dependent on zn+i. Then for the holonomy group of the 
product manifold and the warped product metric h = h + erg holds the following 

Hol{x,y)(M x N,h) = (Holx(M,h) X Holy(M,gj} tx Rn. 

So by choosing both factors with parallel spinors — in [F099] this is done in dimension 
11 — one gets a new class of metrics with parallel spinors, but no new examples of 
holonomy groups admitting trivial subrepresentations which cannot be constructed by 
the method of proposition 4.1. 
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