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ON GEODESIC MAPPINGS OF SPECIAL FINSLER SPACES

SANDOR BACSO

ABSTRACT. In an earlier paper [2] there arose an interesting problem: Determine all the
Finsler spaces which have common geodesics with some Riemannian space, that is, de-
termine all the Finsler spaces which admit a geodesic mapping onto a Riemannian space.
Such Finsler spaces have vanishing Douglas tensor, and are called Douglas spaces [3].
In the present paper we shall give some special examples of geodesic mappings between
a Finsler space and a Riemannian space.

The author is very grateful to Professor Makoto Matsumoto for his continuous en-
couragement and for his valuable cooperation.

1. INTRODUCTION

Let F*(M™,L) be an n-dimensional Finsler space, where M™ is a connected dif-
ferentiable manifold of dimension n and L(z,y), where y* = %!, is the fundamental
function defined on the manifold TM\ O of nonzero tangent vectors. (Throughout the
present lecture we shall use the terminology and definitions described in Matsumoto’s
monograph [8].)

The system of differential equations for geodesic curves of F™ with respect to the
canonical parameter ¢ is given by i’ + 2G*(z,y) = 0, where

G' = 19" (y™OL},)/0z™ — DL?/dz"),

and g% = (g;;)7!, gij = %L?‘.)(j), L) = 8L/8y*. The Berwald connection coefficients
G¥(z,y), Gjx(z,y) can be derived from the functions G*, namely G} = G};); G} =
Gy

Let us consider two Finsler spaces F*(M™,L) and F*(M™,L) and a common
underlying manifold. A diffeomorphism F™ — F™ is called geodesic if it maps an
arbitrary geodesic of F™ to a geodesic of F™. In this case the change L — L of the
metrics is called projective. As it is well known, the mapping F™ — F® is geodesic if
and only if there exists a scalar field p(z, y) satisfying

(1.1) G=G+py; p#0.
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1The Roman indices run over the range 1,...,n.
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The projective factor p(z,y) is a positively homogeneous function of degree one in y.
From (1.1) we have

(1.2) Gi = GS +péi + pjy’,
(1.3) Giy = Gy + pjidk + Pid} + Djky’,
where p; = p(;) and pjk = Pjk).
Using the Rapcsék paper [10] M. Matsumoto obtained the following result [9]:

“If a Finsler space F™ = (M™, L) is projective to a Finsler space F,, = (M™, L)
then

(1.4) l-ij;ryr =0,

where l., = E .'j = (g., l.'lj) and l,' = L(,-).”

The symbol “; ” denotes the h-covariant derivative with respect to the Berwald
connection BT = (G k,G‘) in F™. The purpose of the present paper is to study
equation (1.4) in some special cases, and to investigate the geodesic maps between
Finsler and Riemannian spaces.

2. ON THE EQUATION [;j,»y" = 0
Differentiating (1.4) by y* we have

(2.1) Lijwrgyy™ + liji = 0.
Using the Ricci identities
l-ij;r(k) - I_I'J‘(k);r = _l_mJ'GE:k - iimG;";m
after transvecting by y” we obtain
(2.2) Liwyy" — lijaywy” = 0.

From (2.1) and (2.2) follows that
Lieyrd” + L = 0.

This equation may be written in the form
(2.3) [— lkhu + "Cle - 'Z?(htkl + h; kl )] Yy = _l_l'.'i;k'
Applying (1.2) and (1.3) we get

(%C'ijk);, y" = —%0Cijk + 1 Pijr,
where Cijk = 39ij(k) and Cij;ry" = Pij. Thus (2.3) may be written in the form
(2.4) ;iNe + e Nj + e N + 20Cij — 3 Pije = Lijix
where N; = M;,y" and M; = }1;, which gives

Proposition 1. In the case of a geodesic mapping of Finsler spaces F™ and F™ the
tensor l;j,x is symmetric in all indices.
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Example 1. We consider the Randers change L(z,y) = L(z,y) + B(z,y), where
B(z,y) is a closed one-form, then this change L — L is projective. Thus we get
+hij = }hij, that is I;; = Li;.

Dxﬂ'erentlatmg this equation covariantly with respect to BT in F,, we obtain

lijik = Lijk = —F Puji-
Thus in the case of Randers change the equation (2.4) can be rewritten in the form

l:JNk + lckN + leN + 'PC:Jk - le = L 15k

We assume that F™ is a Landsberg space (P;jx = 0) then we get
Fi = 2y (B = 903),

where P; = Pyjg’*; C; = Cijng’*.

At first M. Matsumoto [6], [7] studied the special Finsler space satisfying the con-
dition P;jx = A(,y)Cijk, and after him M. Hashiguchi [4] and H. Izumi [5]. It is
well-known that this condition is satisfied in all two-dimensional Finsler spaces. If we
consider the Finsler space F, fulfilling the condition P.,k = pC.,k, then we get

- 1- -
(2.5) (%l.‘) - y' = ‘Eli;r - Iz .'L;,-] y' =0.
Using the equations (1.1), (1.2) and (1.3) we obtain

I_l;ryr = 2pi/,
liry" =lp+ Lp;.
So, we have
$(ip+ Lp;) — F5li2pL =0,
from which it follows that

=0,

oS
[l

which yields
(26) P(-’C» y) = e'P(’?)f,(z’y).

Thus we have proved

Proposition 2. If we suppose that there exists a geodesic map (Randers change with
respect to projective scalar p(z,y)) between a Landsberg and a Finsler space fulfilling
the condition Py = p(z,y)Cijx, then p(z,y) is given by the equation (2.6).

Question. In which Finsler spaces F™ does the condition P;jx = A(z,y)Cijx hold
where A(z,y) = o(z)L and c(z) depend on the position only?
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Remark [5]. For n > 3, in a C-reducible Finsler space with the condition P;j; =
A(z,y)C;jx we have A(z,y) = o(z)L, where o(z) depends on the position only.

Example 2. From (1.1), (1.2) and (1.3) we can easily obtain the following well-known
relation between the (v)h-torsion tensors of F™ on F™:

Rl = Rl +4"Qi; +60Q; +87Q;,
where Q; =DP;i — PPi and QIJ = Pi;j — Pjis-
Now we assume that P.,k = p(z, ;y)C'.,;c in 7™, and F™ is a Finsler space of constant

curvature. Using the integrability condition of the equation (2.4) we get the following
equation

(27) K (Liy - Ih%) = 4w - Bi = (Nea - Fiy)
from which we get
(2.8) (KLl - Qk)"" (KLL - Q)%

where K is the curvature constant in F;,.

3. ON THE STRONGLY GEODESIC MAPPING

Definition. If a geodesic mapping satisfies the condition Z;;x = 0, the mapping is
called a strongly geodesic mapping.

Now we consider a geodesic mapping between a Finsler (F™) and a Riemannian
(R™) space. Then from (2.4) we get

(3.1) Ui Nk + L N; + LN = Lijix
This equation is satisfied in the case of a geodesic mapping of a Berwald space on a
Riemannian space. We can easily show
Proposition 3. I;;,x = 0 holds good if and only if N; = 0.
From (2.5) we obtain

Proposition 4. In the case of a strongly geodesic mapping F™ — R™ the projective
scalar function p(z,y) = e?@) L(z, ).

The equation (2.7) yields
K (Lh} - %) =
Contracting this by y' we obtain
K(%-%)=o0.
For a Finsler space of constant curvature we have the following

Theorem. If a change F*(M™,L) — R™(M™, L) is strongly projective and F™ is a
Finsler space of constant curvature, then we have two cases

(a) K=0

(b) K #0 and L = e*? L.

From Rund’s [11] and Aikou’s [1] result follows that in the case (b) we get a
homothetic mapping.
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